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Abstract: The pose of cows reflects their body condition, and the information contained in the
skeleton can provide data support for lameness, estrus, milk yield, and contraction behavior detection.
This paper presents an algorithm for automatically detecting the condition of cows in a real farm
environment based on skeleton spatio-temporal features. The cow skeleton is obtained by matching
Partial Confidence Maps (PCMs) and Partial Affinity Fields (PAFs). The effectiveness of skeleton
extraction was validated by testing 780 images for three different poses (standing, walking, and
lying). The results indicate that the Average Precision of Keypoints (APK) for the pelvis is highest in
the standing and lying poses, achieving 89.52% and 90.13%, respectively. For walking, the highest
APK for the legs was 88.52%, while the back APK was the lowest across all poses. To estimate the
pose, a Multi-Scale Temporal Convolutional Network (MS-TCN) was constructed, and comparative
experiments were conducted to compare different attention mechanisms and activation functions.
Among the tested models, the CMS-TCN with Coord Attention and Gaussian Error Linear Unit
(GELU) activation functions achieved precision, recall, and F1 scores of 94.71%, 86.99%, and 90.69%,
respectively. This method demonstrates a relatively high detection rate, making it a valuable reference
for animal pose estimation in precision livestock farming.

Keywords: cows; skeletons; pose estimation; attention mechanisms

1. Introduction

Machine vision technology is receiving increasing attention for its application in
animal husbandry, and remarkable advancements have been achieved in cow behavior
detection [1–4]. The daily pose of a cow (standing, walking, lying) can indicate its health
status and offer significant data support. Manually observing and recording information
about each cow is a laborious, costly, and inefficient process. Consequently, numerous
researchers are currently utilizing diverse sensors to detect cow behavior [5,6]. As the
sensors can elicit a stress response, this adversely affects the well-being of the cows and
results in a decline in milk quality [7]. In contrast, machine vision offers the advantage
of long-term non-contact monitoring and has been extensively employed for monitoring
livestock activity and health in precision animal husbandry. In recent years, an increas-
ing number of studies have focused on detecting cow behavior using machine vision,
encompassing various aspects such as lameness, vocalization type, milk yield, estrus,
parturition, and rumination. For instance, McDonagh, J utilized a non-local network to
classify the behaviors of each cow, including standing, lying, walking, shuffling, eating,
drinking, and contractions [8]. Nyambo, D.G used the MARS framework and a model
design approach to simulate and model the average milk yield of cows [9]. Speroni, M
used posture changes to determine whether a cow was close to calving [10]. Maw, S.Z
developed an augmented Markov chain model for predicting cow calving time [11]. Lod-
kaew, T designed CowXNet, an automated system for detecting cow estrus [12]. Shorten, P
developed an algorithm for distinguishing between three types of cow vocalizations: open,
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closed, and mixed (closed/open) [13]. Li, Q proposed a temporal aggregation network that
utilizes micromotion and spatio-temporal features to accurately identify early signs of cow
lameness [14].

Estimating cow poses is of significant importance in the field of machine vision.
Through the automatic detection of cow pose, potential health problems can be quickly
detected and appropriate measures can be taken to avoid causing property damage [15,16].
This technology has the potential to decrease manual labor and enhance management
efficiency. For instance, Fan Q employed a bottom-up approach to develop a compact
multi-branch network (CMBN) for estimating cattle poses using HRNet [17]. This model
achieved an average precision (AP) of 93.2 on the NWA-FU-Cattle dataset, which com-
prises 2432 images and 3101 instances. However, this method does not consider the time
information of keypoints. Li X developed three deep cascade models for robust cow pose
estimation using RGB images captured under real conditions on cattle farms [18]. The
dataset comprises 2134 images of 33 dairy cows and 30 beef cattle captured in diverse
natural poses under real conditions. These three models achieve a mean PCKh@0.5 score
of 90.39 for 16 joints. However, they do not consider the temporal information of cow
keypoints. Russello H introduced the T-LEAP model, which employs temporal information
from videos to estimate the pose of walking cows [19]. This model achieves a PCKh@0.2
score of 93.8% for known cows and 87.6% for unknown cows. However, it was solely
tested on images featuring a single cow. The field of human pose estimation has reached
a significant level of maturity, enabling the accurate extraction of human skeleton infor-
mation in various environments [20–23]. Nevertheless, extracting bone information from
cows presents several challenges. Cows have limbs that are highly similar, and accurately
distinguishing between forelimbs and hind limbs proves challenging. Additionally, the
color of the cow’s fur influences the extraction of its skeleton. Extracting the skeleton
becomes more challenging when the farm environment exhibits a similar color to that of
the cow’s fur.

To address these challenges, this paper builds upon the research concept of human ac-
tion recognition [24–26]. The well-established human pose estimation model is utilized for
estimating cow poses through Transfer Learning. The skeleton extraction model retrieves
the skeleton information of the same cow from two consecutive frames and feeds it into
the improved MS-TCN model to estimate the cow’s three poses. The performance of the
skeleton extraction model is validated by comparing the APK values of 16 keypoints before
and after Transfer Learning. Furthermore, a comparison is made between MS-TCN models
with various attention mechanisms and activation functions. This study provides two main
contributions to the field of precision livestock technology:

• Proposing a skeleton extraction method based on PAFs and PCMs for accurately
extracting the skeletons of multiple cows in complex environments;

• Performing pose estimation utilizing the spatio-temporal information derived from
the cows’ skeletons.

2. Materials and Methods
2.1. Video Acquisition

The data utilized in this study were collected from Inner Mongolia at Flag Herding
and Ibecon Ranch in 2018. There were nine cows in a barn that was 35 m long and 20 m
wide. Each cow was in good health and was provided with ample space for mobility. The
fence was equipped with two infrared cameras, measuring 4 m in height and possessing a
resolution of 5 megapixels. There was no direct contact between the equipment, the experi-
menter, and the cows during the data collection process. This method alleviates stress on
cows and enhances animal welfare, as opposed to the traditional manual detection method.
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2.2. Image Labeling
2.2.1. Skeleton Extraction Dataset

Three cow poses were selected from the video. The image annotation tool Labelme
was used to label the keypoints of cows in 3900 images, including 1300 standing, walking,
and lying, and divided the images into a training set and a validation set according to the
ratio of 4:1. Figure 1 displays the location and order of the 16 keypoints, annotated as A,
B, . . ., P. Considering that the tail of cows is flexible and easily obscured, which has little
impact on the monitoring of the cow’s pose, the tail is not marked in this paper. Visible
points are labeled as 2, invisible points are labeled as 1, and keypoints that cannot be
estimated are labeled as 0.
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Figure 1. Location and order of the 16 keypoints of the cow skeleton (Visible points are marked in
green, while invisible points are marked in red. The 16 keypoints (A, B, . . ., P) represent the following
anatomical regions: head, left upper arm, right upper arm, left lower arm, right lower arm, left hand,
right hand, left calf, right calf, left knee, right knee, left foot, right foot, neck, back, and pelvis).

2.2.2. Pose Estimation Dataset

The video is divided into frames, and the skeleton extraction model is used to obtain
the keypoint data of the cow in each frame. Each keypoint data consists of the x and y coor-
dinates of the respective point. The keypoint coordinates of the same cow in consecutive
frames are grouped together to create a pose estimation dataset. These datasets provide
both temporal and spatial information about the cow’s movement. In this study, a total
of 1800 datasets (600 sets each for standing, walking, and lying) were generated. These
datasets were then divided into a training set and a validation set in a 9:1 ratio.

2.3. Methods

Pose estimation is mainly divided into two methods: top-down and bottom-up. Top-
down methods first perform object detection and subsequently estimate body parts [27].
These methods rely on object detection, which can often result in error propagation and
missed detections. Consequently, their practicality diminishes when dealing with complex
environments, such as farms. In contrast, bottom-up methods initially detect individual
body parts and subsequently perform matching. This method exhibits high flexibility,
robustness, accuracy, and versatility while being resistant to occlusion, illumination, and
other factors. As a result, it is well-suited for complex scenes such as farms. Bottom-up
methods have become increasingly popular among researchers in recent years [20–23]. To
enhance the detection accuracy, this paper introduces a combined approach involving a
bottom-up skeleton extraction and a temporal convolutional network. The network utilizes
the spatio-temporal information of the skeleton to facilitate pose estimation.

2.3.1. Skeleton Extraction

This paper utilizes the initial 10 layers of VGG-19 as a feed-forward neural network
for extracting features and further enhances it through the integration of the feature fusion
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concept. The cow’s body surface is flat, and its fur color is uniform. Image feature extrac-
tion from cows is more sensitive to scale information compared to human image feature
extraction. Deep features carry more semantic information, whereas shallow features
contain relatively more detailed information. In order to integrate image features from
various depths, we downsampled layers 2 and 4 and connected them to layer 9, as depicted
in Figure 2. Through feature fusion, the feedforward network can enhance information
extraction and strengthen the network’s robustness.
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Figure 2. Feedforward neural network structure.

Given the presence of semantic information between each keypoint, and considering
the differing detection difficulties of all keypoints, utilizing information extracted from
previous stages in the multi-stage CNN enhances the performance of subsequent stages,
thereby enabling the detection of relatively complex keypoints. This paper utilizes a multi-
stage two-branch network to process the image features extracted by a feedforward neural
network, as depicted in Figure 3. The output of each stage is integrated with the feature
map F and serves as the input for the subsequent stage.
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Figure 3. Multi-stage two-branch skeleton extraction network.

Each stage consists of three convolutional blocks in both branches, comprising 1 × 1,
3 × 3, and 3 × 3 convolutional layers, along with two 1 × 1 convolutional layers, as
illustrated in Figure 4. Within each convolutional block, the last convolutional layer
employs dilated convolution to expand the receptive field, effectively enhancing the sensing
range of neural networks and capturing a broader spectrum of contextual information.
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Figure 4. Network structure of each stage in the multi-stage CNN.

L(L1, L2, . . .,LC) represents the vector field between every two keypoints. S(S1, S2, . . .,SJ)
represents the confidence map of the keypoints. The upper and lower branches predict the
PAF heat map L1 = ϕ1(F) and the PCM S1 = ρ1(F), respectively.

Lt = ϕt
(

F, Lt−1
)

, ∀2 ≤ t ≤ TPL1S1 (1)
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STP = ρt
(

F, LTP
)

, ∀t = TP (2)

St = ρt
(

F, LTP , St−1
)

, ∀TP ≤ t ≤ TP + TC (3)

where ϕt and ρt are the CNNs of stage t, TP is the total number of PAF stages, and TC is the
number of total PCM stages.

The PCM represents a two-dimensional matrix of confidence levels, wherein each
level corresponds to the probability of the cow’s keypoint being present in a specific pixel
region with a unique location. In the case of a single cow, each keypoint will exhibit a peak
xj,k in the confidence map. If multiple cows are present, a peak will be observed at the
visible keypoint of j for target k, indicating the precise location of the jth keypoint of the
kth cow. At this point, the confidence of the surrounding pixels is:

S∗j,k(p) = exp
(
−
∥∥∥p− xj,k

∥∥∥2

2

/
σ2
)

jk (4)

S∗j (p) = max
k

S∗j,k(p) (5)

where σ is used to control the peak expansion. When there are multiple cows, the informa-
tion from each keypoint is obtained by extracting the maximum value of the Gaussian curve.

Each branch in the image is depicted by unit vectors that encompass both position
and orientation information. The collection of these unit vectors is known as PAF. The
mathematical expression for PAF is presented below.

L∗c,k(p) =
{

v i f p on limb c, k
0 otherwise

(6)

v =
(

xj2,k − xj1,k

)/∥∥∥xj2,k − xj1,k

∥∥∥
2

(7)

where v is the unit vector.
If there is an overlap of limbs at point p, the vector field at point p is calculated as the

average of all target vector fields. Obtain the vector L∗c (p) at each point p within the limb
region of the cow and select the point p(u) located between two adjacent keypoints.

L∗c (p) = 1/nc(p)∑
k

L∗c,k(p) (8)

p(u) = (1− u)dj1 + udj2 (9)

where nc(p) is the number of nonzero vectors at p, dj1 and dj2 are the predicted coordinates
of the keypoints j1 and j2, and u is the relative distance between dj1 and dj2.

The association confidence between two keypoints, dj1 and dj2, is determined through
the linear integration of the partial affinity vector Lc(p(u)) at each point p.

E =
∫ u=1

u=0
Lc(p(u)) · dj2 − dj1

/∥∥dj2 − dj1
∥∥

2du (10)

where Lc(p(u)) represents the summation of projections in the direction from j1 to j2. The
weight E reaches its maximum when the affinity vector at position p(u) is isotropic to the
unit vector. Due to the infinite number of points on the line segment between two adjacent
keypoints, it is essential to evenly sample the line segment in practice.

When performing PCM and PAF matching, there may be multiple values to consider.
The problem can be transformed into a bipartite graph matching problem, and the Hungar-
ian algorithm can be used to obtain the optimal matching. The cow’s skeleton is obtained
by marking and connecting the keypoints in the image, as illustrated in Figure 5.
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Figure 5. Diagram of the skeleton of a cow.

2.3.2. Pose Estimation

Each frame represents a specific point in time, and the time interval between two
consecutive frames is known. The action pose of a particular cow in adjacent frames
contains both temporal and spatial information. The time series data for pose estimation
is composed of the relative coordinates of the keypoints. The MS-TCN is a deep learning
model architecture designed for processing time series data. Its network structure is
composed of multiple Single-Stage Temporal Convolutional Networks (SS-TCN). Each
stage of the network is comprised of several sets of dilated convolutions, as depicted in
Figure 6. The MS-TCN utilizes dilated convolutions to increase the receptive field, allowing
it to capture a broader range of temporal information. This expansion of the receptive
field grows exponentially with the number of layers, which effectively mitigates the risk of
overfitting during the model’s training process. The composition of the MS-TCN involves
the utilization of four SS-TCN modules, inspired by the work of reference [25].
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In this study, the Gaussian Error Linear Units (GELU) activation function [28] is
employed as a replacement for the ReLU activation function in the original network
structure. In contrast to ReLU, GELU exhibits linearity for x < 0 and nonlinearity for x > 0.
The mathematical expression for the GELU activation function is provided below.

GELU(x) = xP(X ≤ x) = xΦ(x) = 0.5x
(

1 + tanh
(√

2/π
(

x + 0.044715x3
)))

(11)

where Φ(x) is the cumulative distribution function and xP(X ≤ x) is the cumulative
probability of the standard normal distribution at x.
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3. Results

The experimentation for this study was performed on a Microsoft Windows 10 oper-
ating system, equipped with an Intel(R) Xeon(R) Bronze 3106 1.7 GHz CPU, 64 GB RAM,
and a 48 GB NVIDIA RTX A4000 GPU. The code implementation was conducted using
TensorFlow 2.4.

In this study, the weights trained on the COCO2017 human pose estimation dataset
were utilized, and a proprietary dataset was subsequently trained using these weights.
The skeleton extraction network was trained using the L2 loss function, with a total of
40 training rounds and a batch size of 16 images. The Adam optimizer was employed to
update the network parameters, with an initial learning rate of 0.0001. This learning rate
was reduced by a factor of 0.9 at the beginning of each subsequent round. The classification
network utilized the Categorical Crossentropy loss function. The Adam optimizer was
employed with a learning rate of 0.001. The training process consisted of 300 rounds, and a
dropout rate of 0.3 was applied. For the classification task, we utilized a fully connected
layer with a size of 3 and employed the softmax activation function.

3.1. Evaluation of Skeleton Extraction Models

In this study, the evaluation metric used is the Average Precision of Keypoints (APK),
which is a commonly employed metric in the field. The APK evaluates the precision and
recall by setting various thresholds and calculates the average precision for each keypoint.
This comprehensive approach enables an effective assessment of the model’s performance.
When computing the APK, the Euclidean distance is utilized to evaluate the proximity
between the predicted keypoint and the labeled keypoint. The mathematical expressions
for precision and recall are defined as follows:

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

where TP, FP, and FN stand for True Positive, False Positive, and False Negative, respectively.
APK is calculated using the following formula (thresholds are set to 1, 3, and 5):

APK =
1
m

m

∑
i=1

∫ 1

0
Pi(r) · δ(ri ≤ r)dr (14)

where m denotes the number of keypoints, Pi(r) is the precision of the ith keypoint at a
recall of r, and δ(ri ≤ r) is the indicator function when ri ≤ r is 1 and 0 otherwise.

To assess the effectiveness of the pre-trained weights and evaluate the performance of
the subsequent estimation network, a total of 780 cow images were utilized in this study
for testing purposes. APK values were computed for 16 keypoints, and the corresponding
experimental results are depicted in Figure 7. These keypoints, labeled from 1 to 16,
respectively, represent specific anatomical features such as the cow’s head, left and right
upper arms, left and right lower arms, left and right hands, left and right calves, left and
right knees, left and right feet, neck, back, and pelvis. The experimental results demonstrate
that the utilization of pre-trained weights results in a 10.36% improvement in the average
APK value of the model. Moreover, the APK value of each keypoint was improved, serving
as evidence for the effectiveness of the pre-trained weights.

During both standing and walking, the mean APK values for the six keypoints of
the forelimb (2, 3, 4, 5, 6, and 7) were recorded as 87.44% and 88.07%, showing a 2.33%
and 0.3% increase compared to the respective values for the six keypoints of the hindlimb
(8, 9, 10, 11, 12, and 13). The APK value of the forelimb when in a lying down position
was measured at 85.98%, exhibiting a 1.19% decrease compared to that of the hind limb.
The average APK value of the leg keypoints, comprising both forelimb and hindlimb, for
the three behaviors were recorded as 88.61%, 88.52%, and 86.56%, respectively. The head
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APK of the three behaviors was 88.24%, 86.67%, and 87.51%. The pelvic APK was 89.52%,
86.36%, 90.13%. The APK values of the back were the lowest, at 80%, 81.82%, and 83.33%,
respectively. The results show that the pelvic APK values were highest during standing
and lying, and the leg APK was highest during walking. In contrast, the back exhibited the
lowest APK values across all behaviors.
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3.2. Evaluation of Pose Estimation Models

The attention mechanism excels at extracting vital information from data, especially
when dealing with intricate feature relationships. To enhance the model’s expressive ca-
pacity, an attention mechanism is implemented before the fully connected layer for the
weighted fusion of input information from various positions. The self-attention mecha-
nism utilizes the relative positional relationship between the current position and other
positions for calculating the weight of each position. This enables the establishment of
complex dependencies and the acquisition of global information, fostering interactions
among different positions. The Multi-Head Attention mechanism conducts multiple linear
transformations on the input, followed by the concatenation of the outputs. It significantly
enhances the model’s capacity to capture critical information from diverse perspectives
within the input sequence. Coord Attention (CA) is a special self-attention mechanism
that adaptively learns the dependencies between different locations according to the spa-
tial relationships of the input data [29]. For different attention mechanisms, this paper
applies them to the MS-TCN for experimental verification and performance evaluation. In
this paper, different attention mechanisms were applied to the MS-TCN for experimental
verification and performance evaluation.

The test set contains a total of 420 sets of data. Comparative experiments were
conducted to evaluate the four models, both before and after replacing the ReLU activation
function with the GELU activation function. The evaluated models include MS-TCN,
SMS-TCN with self-attention, MHMS-TCN with Multi-Head Attention, and CMS-TCN
with CA. Table 1 presents a comparison of the evaluation metrics for the four models using
the ReLU activation function.

Table 1. Comparison of all algorithm evaluation metrics using the ReLU activation function.

Types of Algorithms Precision
(0.6)

Recall
(0.6)

F1
(0.6)

Precision
(0.8)

Recall
(0.8)

F1
(0.8)

MS-TCN 87.87% 73.13% 79.83% 91.15% 61.12% 73.17%
SMS-TCN 89.29% 78.05% 83.26% 93.06% 71.45% 80.84%

MHMS-TCN 88.08% 76.38% 81.81% 92.18% 70.36% 78.94%
CMS-TCN 89.43% 80.03% 84.47% 93.83% 78.64% 85.57%



Agriculture 2023, 13, 1535 9 of 14

In the comparison of longitudinal data, the CMS-TCN outperforms other models sig-
nificantly in terms of accuracy, recall, and F1 value. This could be attributed to the fact that
CA takes into account temporal relationships while placing emphasis on spatial locations.
This enhances the network’s capability to accurately capture the dynamic changes in the
skeleton in the temporal dimension. Moreover, each keypoint holds varying importance in
the estimation task. CA facilitates the network’s ability to prioritize relatively important
locations by autonomously learning the weights associated with different positions.

The comparison of the evaluation metrics of the four models using the GELU activation
function is shown in Table 2.

Table 2. Comparison of all algorithm evaluation metrics using the GELU activation function.

Types of Algorithms Precision
(0.6)

Recall
(0.6)

F1
(0.6)

Precision
(0.8)

Recall
(0.8)

F1
(0.8)

MS-TCN 89.13% 81.57% 85.17% 91.97% 68.9% 78.78%
SMS-TCN 92.45% 81.79% 86.79% 93.98% 74.34% 81.9%

MHMS-TCN 91.93% 84.13% 87.86% 93.5% 73.38% 82.23%
CMS-TCN 93.83% 87.25% 90.42% 94.71% 86.99% 90.69%

The experimental results demonstrate a slight improvement in the performance of all
algorithms when utilizing the GELU activation function, suggesting its slight superiority
over the ReLU activation function in this study. This can be attributed to two main reasons:

• Smoothness and differentiability. GELU is a continuously differentiable and smooth
non-linear function, while ReLU is a piecewise linear function. The smoothness
reduces abrupt changes in gradient calculations, promoting stability in parameter
updates for the network.

• Approximate Identity Mapping. When the input is close to zero, the output of the
GELU activation function closely resembles the input. This property facilitates the
preservation of information transfer and flow.

4. Discussion

In the actual farming environment, the complexity and variability of the dairy farming
conditions can cause interference factors that impact the acquired data, including image
quality, the occlusion of targets, and pose transformations. This paper examines various
factors that may affect pose estimation to evaluate the model’s effectiveness.

4.1. Analysis of the Influence of Image Quality on Keypoints Extraction and Pose Estimation

Various factors, such as lighting conditions and environmental interference, can cause
noise to appear in the image during the data acquisition process. The presence of this
noise can interfere with pose recognition and estimation by the model, thereby affecting
the accuracy of the pose estimation. Gaussian filtering is widely employed as a filtering
method to effectively eliminate image noise and enhance image clarity and smoothness.
Figures 8 and 9 illustrate the comparison between the images before and after applying
Gaussian filtering. The experimental results indicate that Gaussian filtering results in a
slight improvement in the APK values of leg keypoints for cows in standing, walking, and
lying poses, reaching 90.31%, 89.48%, and 88.67%, respectively. One possible explanation
for this is that Gaussian filtering enhances the effectiveness of image edge detection,
particularly since the keypoints of the legs may be influenced by the contour of the body.
Another potential factor could be the presence of texture, fur, or other leg details that
impact the accuracy of keypoint estimation. Nevertheless, the application of the Gaussian
filter results in image blurring and a reduction in image resolution. Consequently, this may
lead to a decrease in the detection accuracy of cows located far away from the camera. To
address this, super-resolution techniques can be employed in future work to enhance the
image resolution.
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4.2. Analysis of the Effect of the Mutual Occlusion of Scenes and Cows on Pose Estimation

In real farming environments, mutual occlusion frequently occurs among cows. Such
occlusion diminishes the quantity of visible keypoints, consequently leading to a decline
in the precision of keypoint detection. When the cow’s head is facing or turned away
from the camera, the number of visible keypoints decreases, subsequently reducing the
detection accuracy or potentially resulting in missed detections, as illustrated in Figure 10.
Nonetheless, the occlusion of cows for extended durations is relatively uncommon in real
dairy farming scenarios. Future research can employ multi-view fusion techniques to
acquire the comprehensive pose information of cows from multiple cameras or viewpoints
and combine them to mitigate the issue of partial occlusion.
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4.3. Analysis of the Effect of Pose Variation on Pose Estimation

Due to the similarity in features between standing and walking poses, the accuracy
decreases when cows transition between these poses. The standing and walking poses
can be easily misidentified when the cow’s head is either facing or facing away from the
camera. However, it is worth noting that such pose changes are transient and have minimal
impact on the detection process. In comparison to the standing and walking poses, the
lying pose exhibits more discernible features and achieves relatively higher accuracy. In our
future research, we plan to enhance the network’s ability to capture accurate information by
increasing the number of frames, thereby improving detection accuracy. Concurrently, we
will optimize the network by reducing the number of parameters to enhance its efficiency.
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5. Conclusions

This paper presents a pose estimation algorithm that utilizes the spatio-temporal
features of cow bones. The algorithm employs a Transfer Learning strategy to identify three
common poses of cows in a real farm environment. The paper also examines the factors
that can potentially impact the accuracy of the detection, including image quality, object
occlusion, and pose transformation.

1. In the actual farm environment, there is often noise in the images acquired by the
equipment. Gaussian filtering was employed to mitigate the impact of noise on the
accuracy of detection by effectively removing it from the image. The experimental
results demonstrate a slight increase in the APK values of the leg keypoints for the
three poses after applying Gaussian filtering, reaching 90.31%, 89.48%, and 88.67%,
respectively. This observation suggests that the image quality directly influences
the detection process. Considering that Gaussian filtering induces image blurring,
subsequent work will incorporate super-resolution techniques to enhance the im-
age resolution.

2. The presence of mutual occlusion among cows can result in a decrease in the number
of detectable keypoints, consequently leading to a decline in detection accuracy. When
the head of the cow faces or turns away from the camera, the number of detectable
keypoints is reduced, resulting in decreased detection accuracy and potential missed
detections in severe cases. However, cows on real farms are rarely obstructed for
extended periods of time. Therefore, this study exhibits a certain degree of stability
and can be employed for cow pose estimation. In future work, multi-view fusion
will be leveraged to gather extensive cow pose information from multiple cameras or
views, thereby mitigating the impact of partial occlusion.

3. The accuracy slightly decreased when the cow transitioned between standing and
walking poses. In practical scenarios, these pose transitions typically happen briefly,
resulting in a relatively minor impact on the accuracy of detection. The accuracy
rate of the lying pose is relatively high as its features are more distinct compared to
standing and walking poses. In future work, we will increase the number of frames
to enhance the network’s ability to capture precise keypoint information, thereby
improving detection accuracy.

The pose estimation method of cows based on the spatio-temporal features of the
skeleton in this study is beneficial for researchers in animal behavior to gain a deeper
understanding of cow behavior. The algorithm provides data support for the future
detection of the lameness, vocalization type, milk yield, estrus, and calving of dairy cows
on farms. Moreover, the proposed algorithm has applications that extend beyond cow
pose estimation. The paper presents an effective method for researching animal behavior
with the potential for further expansion and application in the future. In future work, we
will optimize the network structure to reduce the number of parameters and enhance the
efficiency without reducing the detection accuracy.
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