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Suppl. Table S1: Physiological and biochemical responses of plants upon abiotic stresses 

Sr. No Parameter Crop Physiological & biochemical re-
sponses to stress 

Ref. 

1 Heat stress  

(32 °C) 

Tomato Decrease in fruit yield, increase in an-
tioxidant content in leaf and fruit 

[1] 

2 Heat Stress  

(35°C/25°C : 
day/night) 

Lamb’s 
Lettuce 

Decrease in plant biomass and photo-
synthetic pigments, accumulation of 
high H2O2 in leaf 

[2] 

3 Salinity Stress 
(75mM NaCl) 

Rice Depletion in cellular water content, 
higher accumulation of Na+, decrease 
in photosynthetic pigments Chl a and 
Chl b, Activation of aquaponic genes 

[3] 

4 Heat stress (35-
42 °C) 

Rice Decrease in seedlings growth and 
chlorophyll content, decrease in sur-
vival rate by 18-20%, increase in per-
centage of injury 

[4] 

5 Heat stress  

(38 °C/ 31 °C : 
day/night) 

Wheat Changes in rate of evapotranspira-
tion, increased plants wilting, in-
crease water loss in tissues, decrease 
in volume 

[5] 

6 Low tempera-
ture stress  

(9 °C/ 5 °C : 
day/ night) 

Cucum-
ber 

Increased electrolytes leakage, hydro-
gen peroxide levels and intracellular 
concentration of CO2, decrease in rel-
ative water content, net photosyn-
thetic rate, rate of transpiration, sto-
matal conductance, and leaf pigments 

[6] 



7 High CO2 lev-
els 

Wheat  

 

(heat tol-
erant gen-
otype) 

Decrease in lysine metabolism, and 
metabolites including N acetyloni-
thine, overall yield did not improved 

[7] 

8 Elevated CO2 
levels 

Barley Decrease in specific leaf area and sto-
matal conductance, decrease in tran-
spiration rate 

[8] 

9 Salinity stress 
(150-300mM 
NaCl) 

Sugarcane Decrease in photosynthetic rate, sto-
matal conductance and photoassimi-
late transportation from leaves to 
other plant tissues 

[9] 

10 Salinity stress 
(250mM NaCl) 

Soybean Decrease in photosynthetic pigments, 
carbohydrates, phenolic content, fla-
vonoids and antioxidants 

[10] 

11 Salinity + Heat 
Stress 

(75mM NaCl + 
30 C/ 26 C : 
day/ night)  

Rice Reduced dry and fresh weight of 
shots, reduced relative water content 
of leaves 

[3] 

 

 

Suppl. Table S2: Effect of Biochar on crops and soil properties 

 

Sr. 
No. 

Type of 
Biochar 

Crop Treatment effect on soil Treatment effect on crops Ref. 

1. Pine nee-
dle Bio-
char 

Chick pea Treatment resulted in elevated 
water holding capacity, Buff-
ered the soil pH to 6.5 

Increase in Biomass and 
plant fresh weight 

[11] 

2. Corn stalk 
Biochar 

Sugar Beet Reduction in soil fomesafen 
residues by 29-46%, increase in 
soil pH by 3.49%, increase in 
soil water content by 13. 8%, 
increase in soil nitrogen, potas-
sium, soil organic matter by 
9.68, 17.7 and 11.8% 

Increase in growth, devel-
opment and photosyn-
thetic content of crop 

[12] 

3. Sunflower 

Biochar 

Millet Increased soil water content by 
47%, increased soil dissolved 
organic carbon by 90% and ni-
trogen by 74% 

Increased plants nutrients 
sodium, potassium and 
phosphorus, increased leaf 
relative water content by 
40%, improved overall 
yield by 58% 

[13] 



4. Sunflower 
Plate Bio-
char 

Rice Increased soil pH and pH buff-
ering capacity, reduced the 
available Cd content of soil 

Reduced the potential risk 
of cadmium absorption by 
rice plants 

[14] 

5. Biochar-
Fertilizer 

Chinese 
Cabbage 

 

 

 

 

 

Maize 

Increased the inorganic nitro-
gen content of soil 

Increased leaf length, 
width and leaf number. In-
creased the nitrogen utili-
zation efficiency, amino ac-
ids, sugars and vitamin C 
content 

 

Increased plants height, 
stem diameter, ear height 
and starch content of 
grains 

[15] 
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