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Abstract: Existing deep learning methods usually adopt deeper and wider network structures to
achieve better performance. However, we found that this rule does not apply well to crop disease
identification tasks, which inspired us to rethink the design paradigm of disease identification models.
Crop diseases belong to fine-grained features and lack obvious patterns. Deeper and wider network
structures will cause information loss of features, which will damage identification efficiency. Based
on this, this paper designs a very lightweight disease identification network called VLDNet. The
basic module VLDBlock of VLDNet extracts intrinsic features through 1 × 1 convolution, and uses
cheap linear operations to supplement redundant features to improve feature extraction efficiency.
In inference, reparameterization technology is used to further reduce the model size and improve
inference speed. VLDNet achieves state-of-the-art model (SOTA) latency-accuracy trade-offs on
self-built and public datasets, such as equivalent performance to Swin-Tiny with a parameter size of
0.097 MB and 0.04 G floating point operations (FLOPs), while reducing parameter size and FLOPs
by 297 times and 111 times, respectively. In actual testing, VLDNet can recognize 221 images per
second, which is far superior to similar accuracy models. This work is expected to further promote
the application of deep learning-based crop disease identification methods in practical production.

Keywords: disease identification; lightweight model; reparameterization; CNN

1. Introduction

Traditional crop disease identification relies mainly on the long-term accumulated
experience of farmers, as the symptoms of diseases are complex and varied, requiring high
levels of professional knowledge from agricultural producers. Manual observation and
judgment of disease types may be subject to strong subjectivity and is also time-consuming.
Therefore, using modern information technology to achieve efficient and accurate crop
disease identification is of great importance. Traditional image processing methods require
manual disease spot segmentation, feature extraction, and classifier construction, which
consume a lot of time in terms of data preprocessing and are greatly affected by objective
conditions, making feature extraction difficult [1,2].

In recent years, the rapid development of deep learning has provided new solutions
for agriculture disease identification. Convolutional neural networks (CNN) have powerful
feature extraction capabilities and have achieved successful applications in the fields of
image classification [3], object detection [4], semantic segmentation [5], etc. In the field
of agriculture, some scholars have successfully applied deep learning to crop disease
identification. For example, ref. [6] used healthy and diseased leaf images to train CNN
models for disease detection and diagnosis, achieving an identification accuracy of 99.53%
when classifying 17,548 plant leaf images using VGGNet [7]. Ref. [8] used more than
40,000 images to train the GoogleNet model and obtained identification accuracies ranging
from 75% to 100% on different plants. Ref. [9] proposed a new deep neural network
structure consisting of two sub-models that separated the tree leaves from the background
in the original image. Then, various popular pre-trained models were used to extract
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features and classify diseases. They achieved an 87.45% identification accuracy in the 2019
AI Challenger competition. Early research in crop disease identification used relatively
simple CNN structures, which had a large number of parameters and lower identification
accuracy in complex environments. Some studies have also used the Vision Transformer [10]
for disease identification, which has become popular recently and has achieved good results.
For example, ref. [11] proposed a method that combines CNN and Transformer structures
for kiwi disease identification, achieving an identification accuracy of 98.78% on a self-built
dataset. Ref. [12] proposed PlantXViT based on traditional CNN and Visual Transformer for
apple, corn, and rice disease identification, with average identification accuracies exceeding
93.55%, 92.59%, and 98.33%, respectively.

Through the analysis of the above research work of crop disease recognition based on
deep learning, we found that these models usually directly or indirectly use models that
perform well on the publicly available ImageNet dataset. These models achieve excellent
identification performance on ImageNet by designing very deep and wide networks to
learn different feature patterns for various objects, including cats and dogs. After the input
image enters the network model, the detailed information gradually decreases, and the
final network model uses advanced semantic information for the final decision. However,
as the features of crop leaf surface diseases are usually discrete and similar, and often small,
there is no obvious pattern, which means that models that achieve good identification
performance on ImageNet may not necessarily be able to improve the performance of crop
disease identification solely by stacking network layers and increasing model width. On the
contrary, this may lead to the loss of detailed disease features and undoubtedly increase the
model’s parameters and FLOPs, ultimately leading to a decrease in identification accuracy.

The above disease recognition model also faces the problem of a large number of
parameters and complex calculation. In order to reduce model parameters and FLOPs,
some researchers have proposed lightweight deep learning algorithms that can help deep
learning models to be applied to different edge devices. For example, ref. [13] combined the
advantages of Transformer and CNN to propose lightweight apple disease recognition, and
obtained competitive results. Ref. [14] developed WearNet, a lightweight convolutional
neural network, to enable automatic scratch detection of contact sliding parts such as
metal molding. Compared with the existing networks, WearNet can achieve 94.16% excel-
lent classification accuracy with smaller model size and faster detection speed. Ref. [15]
proposed a lightweight sheep face recognition model, SheepFaceNet, which achieved
97.75% recognition accuracy with 0.60 MB parameters. Ref. [16] used depthwise separable
convolutions to construct a lightweight CNN model for plant disease leaf classification.
Compared with traditional CNN models, the network has fewer parameters. Ref. [17]
proposed a lightweight SimpleNet model that performs well in automatic wheat spike
disease identification. These works greatly reduce the number of model parameters and
FLOPs, contributing to the deployment of deep learning models on edge devices. However,
related research shows that these indicators may not have a good correlation with the
model’s inference speed. Efficiency indicators such as FLOPs do not consider memory ac-
cess costs and parallelism, which can have a significant impact on latency during inference.
Therefore, ref. [18] implemented real-time disease identification using Faster-RCNN and
Yolov4, which is highly applicable to edge devices, but the identification accuracy cannot
meet the needs of actual production.

In this context, we need to rethink the design paradigm of crop disease identification
models and study algorithms that are computationally efficient and have high identification
accuracy to serve the development of smart agriculture. This paper proposes a relatively
shallow and narrow lightweight disease identification network VLDNet. The basic structure
of VLDNet, VLDBlock, extracts intrinsic features through 1× 1 convolution and uses cheap
linear operations to supplement redundant features, improving feature extraction efficiency.
During inference, reparameterization techniques are used to reduce model parameters and
computational costs and increase inference speed. VLDNet achieved SOTA model latency-
accuracy trade-offs on self-built and publicly available datasets, achieving performance
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comparable to Swin-Tiny with 0.097 MB parameters and 0.04 G FLOPs, respectively, while
reducing parameters and FLOPs by 297 times and 111 times, respectively. In actual testing,
VLDNet can recognize 221 images per second, far superior to similar-accuracy models. This
paper’s work is expected to further promote the application of crop disease identification
in actual production.

The contributions of this paper include:

1. We found no strict correlation between the depth, width design of the disease identifi-
cation model, and the model performance.

2. We proposed a shallow, narrow crop disease identification model: VLDNet.
3. VLDNet achieved a good latency-accuracy tradeoff.

2. Materials and Methods
2.1. Datasets
2.1.1. PlantVillage Dataset

PlantVillage [19] is a publicly available dataset that contains 54,306 images of 38 classes
of diseases and healthy crop leaves. These images are complete leaf images with a single
background and without any interference from obstructions or background factors. This
makes the PlantVillage dataset a good data foundation for research into disease identifica-
tion. Information on the crop species and disease categories covered in this dataset can be
found in the Table A1. In this paper, the dataset is divided into training, validation, and test
sets in a ratio of 7:2:1. It should be noted that, due to the enormous size of the dataset, no
data augmentation operations were performed. Some examples of this dataset are shown
in Figure 1.
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Figure 1. Examples of PlantVillage dataset.

2.1.2. Building Our Own Dataset

This dataset was collected from the apple and kiwi fruit experimental stations at
the Northwest A&F University in Shaanxi Province, China. Healthy and diseased leaves
were photographed using BM-500GE/BB-500GE (JAI Company, Copenhagen, Denmark)
color digital cameras. The images have a resolution of 2456 × 2058 pixels, and a total of
4180 images were obtained. The dataset is divided into training, validation, and test sets
in a ratio of 7:2:1. This includes six types of apple leaf disease images: spot, brown spot,
flower leaf, gray spot, rust, and healthy, as well as four types of kiwi leaf disease images:
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brown spot, flower leaf, anthracnose, and leaf blight. Examples of the images can be found
in Figure 2.
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Figure 2. Example of the self-built dataset.

To expand the dataset and improve the identification performance of the model, the
necessary data augmentation strategies were applied to the training set, including random
cropping, brightness adjustment, rotation, flipping, and adding salt and pepper noise
and Gaussian noise to simulate the impact of the shooting equipment on the simulated
results. A total of 14,600 images were obtained from the augmented training set. Detailed
information on each type of image before and after enhancement is provided in Table 1. In
order to reduce training time, the image sizes in the dataset were adjusted from 2456 × 2058
to 224 × 224.

Table 1. Statistics of self-built dataset.

Label ID Type of Disease Original Training Set The Augmented Training Set

1 Apple Black rot 370 1850
2 Apple Brown spot 435 2175
3 Apple Healthy 475 2375
4 Kiwi Anthracnose 186 930
5 Kiwi Brown spot 70 350
6 Kiwi Leaf ulcer 99 495
7 Kiwi Mosaic leaf 61 305
8 Apple Mosaic leaf 375 1875
9 Apple Rust 438 2190
10 Apple Spotted leaf fall 411 2055

2926 14,600

2.2. Methods
2.2.1. Do Deeper and Wider Networks Have Better Performance?

In this section, experiments were conducted on the PlantVillage dataset to preliminarily
validate whether deeper and wider networks can achieve better performance. EfficientNet,
PVTv2, and ResNet series models, each with different depths and widths, were selected for
the experiment. The experimental results are shown in Figure 3. There is little difference in
identification accuracy between the EfficientNet models, and their identification accuracy
curves almost overlap. The loss curves of different sizes of EfficientNet models are also very
consistent, with smaller models converging faster. For the PVTv2 model, the identification
accuracy curves of models of different sizes are not stable, showing a fluctuating trend,
but the final identification accuracy is almost the same. Moreover, the relatively smaller
PVTv2-b1 obtained better identification results, which confirms our hypothesis. For the
ResNet model, the identification accuracy of small-sized models is basically the same
as or even higher than that of large-sized models. The convergence speed is also not
significantly different, which further verifies our conjecture that deeper and wider models
cannot achieve better results for crop disease identification tasks. Even if deeper and
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wider models can achieve a slight identification accuracy advantage, this comes at the
cost of increasing parameter size and computational complexity several times, which is
unacceptable for edge devices.
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Figure 3. (a,d) are the experimental results of EfficientNet on the PlantVillage dataset, (b,e) are the
experimental results of PVTv2 on the PlantVillage dataset, and (c,f) are the experimental results of
ResNet on the PlantVillage dataset.

2.2.2. VLDNet

To further investigate the relationship between network model width, depth, and
model performance, we propose a lightweight disease recognition model called VLDNet.
The overall structure of VLDNet is shown in Figure 4. It includes a VLDBlock, four
VLDBottlenecks, an average pooling layer, and a fully connected layer. The VLDBlock
is built upon the MobileNet-V1 building block. It consists of a 3 × 3 depth convolution,
followed by a 1 × 1 pointwise convolution. Each operation is repeated four times. It also
introduces parameterized skip connections and Batch Normalization (BN), using the ReLU
activation function. The VLDBlock has two different structures during training and testing.
During training, it has a branch with 1 × 1 pointwise convolution and batch normalization.
During inference, all parameterized branches are removed by parameterization. The
VLDBlock forms the feature extraction network of VLDNet, enhancing the effectiveness
and efficiency of feature extraction. Based on the VLDBlock, we propose VLDBottleneck
following the idea of ResNet. VLDBottleneck consists of two stacked VLDBlocks. The first
VLDBlock serves as an expansion layer to increase the number of channels. The second
VLDBlock reduces the number of channels to match the residual connection. A residual
connection is added between the input and output of the two VLDBlocks. Each VLDBlock
is followed by a BN layer and ReLU activation function, except for the second VLDBlock.
A stride = 2 depth convolution is inserted between the two VLDBlocks for downsampling.
VLDBottleneck is used to extract disease features while reducing the model’s parameter
count. The average pooling layer mainly aims to reduce computation and extract essential
features. The fully connected layer transforms the feature map into a vector representation
of the disease and outputs the disease category.

VLDBlock is a structural reparameterization of the Ghost module [20], shown in
Figure 5b. Deep convolutional neural networks often consist of many convolutional
layers, which leads to significant computational costs. Although recent works such as
MobileNet [21] and ShuffleNet [22] have introduced depthwise convolutions or shuffle
operations to construct efficient convolutional neural networks using smaller convolutional
kernels, the remaining 1 × 1 convolutional layers still consume a considerable amount
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of memory and parameters. This process is illustrated in Figure 5a and can be expressed
mathematically as follows:

Y = X ∗ F + B (1)

The shape of the input data X is X ∈ Rc×h×w, where c, h, and w represent the
number of channels, height, and width, respectively. The * symbol denotes the convolution
operation. B represents the bias term. Y ∈ Rh′×w′×n is the output feature map with n
channels. F ∈ Rc×k×k×n represents the convolutional kernels in this layer, where h′ and w′

are the output height and width, respectively, and k × k is the size of the convolutional
kernel F. In this process, the FLOPs are typically very large.
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Figure 5. Traditional convolution and Ghost module [20].

In fact, generating redundancy during the calculation of feature maps is necessary for
the performance of the network, as seen in Figure 6, where there are many similar feature
maps. However, it is not necessary to generate these redundant feature maps one by one
using a large number of parameters and FLOPs. Therefore, this paper uses a simple linear
transformation to achieve mutual conversion between redundant feature maps, as shown
in Figure 5b.

The intrinsic feature maps and redundant feature maps together constitute the feature
maps. The process of generating m inherent feature maps Y′ ∈ Rh′×w′×m is shown in
Equation (2). The inherent feature maps are the remaining feature maps after subtracting
redundant feature maps from the total feature maps.

Y′ = X ∗ F′ (2)

This process is generated by a primary convolution, with convolution kernel param-
eters identical to those in Equation (2). Here, F′ ∈ Rc×k×k×m represents the convolution
kernel used. The process of generating n redundant feature maps from m inherent feature
maps using an inexpensive linear transformation is described by Equation (3):

yij = Φi,j
(
y′i
)
, ∀ i = 1, . . . , m, j = 1, . . . .s. (3)
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Here, y′i represents the i-th inherent feature map in Y′, and Φi,j is the j-th linear
transformation used to generate the j-th feature map yij in Equation (3). Using Equation (3),
we can obtain n = m * s feature maps Y = [y11,y12, . . . yms]. Linear transformations operate on
each channel, and their computational cost is much lower than that of normal convolutions.
The structure of the linear transformations is shown in Figure 5b.

Although reducing FLOPs and parameters may lower the computational complexity of
the model, ref. [23] has shown that these metrics are not well correlated with the efficiency
of the model. This is because metrics like FLOPs do not take into account memory access
costs and parallelism, which can have a significant impact on latency during inference [24].
Therefore, this paper proposes the reparameterization of structure Figure 5b to build the
basic structure VLDBlock of VLDNet, in order to further reduce the cost and inference time
of the model.

The structural reparameterization technique [25,26] is an effective neural network
technique that decouples training and inference, greatly facilitating the deployment of deep
neural networks in practical applications. During training, for a given backbone network,
the structural reparameterization technique increases the model’s representational power
by adding multiple branches or specific layers with various neural network components
to the backbone network. During inference, the added branches or layers can be merged
into the backbone network’s parameters through equivalent transformations, significantly
reducing the number of parameters or computational costs without affecting performance
and accelerating inference.

In this paper, during training, for a convolution layer with kernel size K = {1,3}, input
channels Cin, output channels Cout, the weight matrix can be represented as
W ′ ∈ RCout×Cin×K×K, and the bias represented as B′ ∈ RD. The BatchNorm (BN) layer
includes accumulated mean µ, variance σ, and bias β. As convolution layers and BN are
linear operations during inference, they can be merged, and the corresponding weights
are Ŵ = W ′ ∗ γ

σ , bias is B̂ = (B′ − µ) ∗ γ
σ + β, where γ is the scaling factor. For skip con-

nections, BN is merged into identity 1 × 1 kernel with 0-padding. After merging BN into
each branch, the corresponding weight matrix is W = ∑M

i Ŵi, and the bias is B = ∑M
i B̂i,

where M is the number of network branches, as shown in Figure 7. This way, the number
of parameters and computational cost of the model are significantly reduced, and the
inference speed is also increased.
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3. Results
3.1. Evaluation Indicators and Experimental Parameter Settings
3.1.1. Evaluation Indicators

The evaluation metrics used in this paper include accuracy, balanced accuracy, recall,
precision, F1 score, geometric mean, parameters, and FLOPs. This is calculated as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

F1 Score = 2/((1/precision) + (1/recall)) (7)

FLOPs = 2hw×
(

Cin × K2 + 1
)
× Cout (8)

Speci f icity = TN/(TN + FP) (9)

Balanced Accuracy =
1
n

n

∑
1

Accuracyi, iε[1, n] (10)

Geometric Mean =
√

Speci f icity×Recall (11)

TP represents true positives, FP represents false positives, TN represents true negatives,
and FN represents false negatives. Accuracy represents the proportion of correctly classified
samples. Balanced accuracy is a measure of the proportion of correctly classified data on
imbalanced datasets. n is the number of classes. Recall represents the proportion of all
positive samples that are correctly identified by the classifier. Precision represents the
proportion of samples that the classifier correctly identifies as positive out of all the samples
it classifies as positive. The F1 Score is a measure that takes into account both precision
and recall. Geometric mean calculates the geometric mean of the sensitivity of each class
to take into account the predictive power of the model on different classes. Parameters
refer to the number of adjustable parameters in a model, including weights and biases.
Smaller numbers of parameters mean less requirements for hardware. FLOPs represent the
computational complexity of a model, with lower values indicating simpler calculations.
Among the formula variables, h, w, and Cin represent the height, width, and number of
channels of input feature maps, respectively, while Cout represents the number of output
feature map channels, and K represents the convolution kernel width. By selectively



Agriculture 2023, 13, 1482 9 of 17

controlling FLOPs and parameters, we can reduce the size of a model while maintaining
its performance.

3.1.2. Experimental Parameter Setting

The experiment was conducted on Ubuntu 20.04 with an Intel Core i9 10900X processor,
48GB RAM (Dell T5820 graphics workstation, Round Rock, TX, USA), and two GeForce
RTX 3090 GPUs (NVIDIA, Santa Clara, CA, USA). The deep learning framework used
was PyTorch, and training was carried out using Cuda 11.1. Please refer to Table 2 for
information on the other settings.

Table 2. Experimental parameter configuration.

Config Value

Optimizer Adam
Loss function CrossEntropyLoss

Initial learning rate 0.0001
Momentum 0.0005

Weight decay 0.05
Dropout 0.6

Batch size 64
Learning rate schedule cosine decay

Training epochs 250
Image resolution 224 × 224

3.2. Experimental Results on PlantVillage Dataset

To validate the effectiveness of our proposed VLDNet model, we conducted experi-
ments on the PlantVillage dataset and compared the results with those of recent studies.
As shown in Table 3, our model achieved an impressive identification accuracy of 99.26%,
far surpassing a range of large-scale models. For instance, compared to VGG16, reported
by [27], VLDNet achieved an accuracy that was 17.43% higher, with an almost negligible
parameter count. Compared to DECA-ResNet18 [28], which achieved the highest identifica-
tion accuracy on this dataset, our model’s identification accuracy was only 0.64% lower, but
our model’s parameter count was reduced by 499 times. This demonstrates the advantage
of VLDNet in model lightweighting. VLDNet achieves high identification accuracy and
has fewer parameters, making it ideal for deployment on resource-limited edge devices.

Table 3. Comparison of results between VLDNet and other studies on PlantVillage dataset.

Study Year Dataset Method Accuracy (%) Parameters (MB)

[29] 2017 PlantVillage Inception-V3 80 23.83
[30] 2018 PlantVillage MobileNet 92 3.3
[27] 2019 PlantVillage VGG16 81.83 138.3
[31] 2019 Tomato leaf disease MobileNet 88.4 3.3
[32] 2020 PlantVillage INC-VGGN 91.83 -
[33] 2020 PlantVillage VGG16 97.82 138.3
[33] 2020 PlantVillage GoogleNet 95.3 6.62
[33] 2020 PlantVillage Resnet50 95.38 25.5
[28] 2021 PlantVillage DECA-ResNet18 99.74 48.6
[34] 2022 Part of PlantVillage RIC-Net 99.55 19.1
[35] 2022 PlantVillage VGG-ICNN 99.16 6
[36] 2023 PlantVillage MobileNetV2 99.10 2.3
[36] 2023 PlantVillage MDCDenseNet 99.40 7.3

Ours 2023 PlantVillage VLDNet 99.26 0.097
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3.3. Experimental Results on Self-Built Dataset
3.3.1. Comparison between the Proposed Model and Lightweight SOTA

To further validate the performance of the VLDNet model, we conducted experiments
on a self-built dataset. As shown in Table 4, VLDNet achieved an identification accuracy
of 98.32%, outperforming a range of widely used lightweight CNNs such as MobilenetV2
(96.17%), MobilenetV3 (96.70%) [37], etc., with identification accuracy that was higher than
them by 2.15% and 1.62%, respectively, while having a smaller model size. Compared to
Swin-Tiny, which has the best identification accuracy (98.77%), VLDNet’s identification
accuracy was only 0.45% lower, while its parameter count, and FLOPs were reduced by
297 and 111 times, respectively. This, once again, demonstrates the advantage of VLDNet in
lightweighting. Compared to the smallest MobileViT-XXS [38] (97.97%), VLDNet achieved
an identification accuracy that was 0.35% higher, but its parameter count and FLOPs were
only 7.6% and 16% of it, respectively. It can be seen that VLDNet achieves a good balance
between computational efficiency and identification accuracy of the model.

Table 4. Comparison of identification results with other lightweight models on self-built datasets.

Model Parameters
(MB)

FLOPs
(G)

Acc
(%) Balanced Acc Precision

(%)
Recall

(%) F1 Score G-Mean

Resnet18 11.5 1.71 98.32 0.9823 98.29 98.32 0.9831 0.9833
MobilenetV2 2.23 0.32 96.17 0.9608 96.15 96.17 0.9616 0.9617
MobilenetV3 5.4 0.22 96.70 0.9661 96.68 96.72 0.9670 0.9671

EfficientNet-B0 5.3 0.41 96.30 0.9621 96.57 96.30 0.9643 0.9631
EfficientNet-B1 7.73 0.56 96.82 0.9673 96.65 96.82 0.9673 0.9683

DeiT-Tiny 5.68 1.05 96.47 0.9638 96.36 96.47 0.9641 0.9648
ViT-Tiny 9.70 1.06 96.91 0.9682 96.78 96.90 0.9684 0.9691

Swin-Tiny 29 4.5 98.77 0.9848 98.80 98.71 0.9875 0.9875
PVT-Tiny 12.33 1.82 97.71 0.9752 97.65 97.71 0.9768 0.9772
PVTV2-b0 3.67 0.52 98.41 0.9812 98.39 98.46 0.9842 0.9847
PVTV2-b1 14.01 1.99 98.73 0.9864 98.76 98.79 0.9878 0.9879

MobileViT-XXS 1.27 0.25 97.97 0.9774 98.01 98.01 0.9801 0.9802
MobileViT-XS 2.31 0.69 98.68 0.9849 98.63 98.70 0.9866 0.9870
MobileViT-S 5.57 1.39 98.73 0.9834 98.74 98.73 0.9874 0.9873

MobileViTV2-50 1.36 0.35 97.18 0.9707 97.19 97.22 0.9721 0.9723
MobileViTV2-75 2.85 0.78 97.71 0.9732 97.63 97.67 0.9765 0.9768
MobileViTV2-100 4.88 1.38 98.68 0.9839 98.65 98.67 0.9866 0.9868

ConViT-Ti 9.5 0.98 96.91 0.9622 96.96 96.91 0.9693 0.9691
Ours 0.097 0.04 98.32 0.9813 98.30 98.32 0.9831 0.9833

3.3.2. Comparison between the Proposed Model and Heavyweight SOTA

Table 5 shows the comparative experimental results of VLDNet with other heavy-
weight SOTA models on our self-built dataset. We can see that, even when facing models
with much larger parameters and computational complexity, VLDNet’s identification
performance is still competitive. For example, it achieved higher identification accuracy
than a range of large-scale models, such as ViT-base, PVTV2-b5 [39], ConViT-Base [40],
etc. This validates our hypothesis that deeper and wider network structures may not
necessarily achieve better results in crop disease identification tasks. Compared to the best
performing model VGG16, VLDNet’s identification accuracy was only 1.06% lower, but at
a very high cost of resource consumption and computation, which is unacceptable for edge
devices. However, VLDNet achieves a high identification accuracy with very little resource
consumption and consumption, which is very friendly to edge devices.
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Table 5. Comparison of identification results with other heavyweight models on self-built dataset.

Model Parameters
(MB)

FLOPs
(G)

Acc
(%) Balanced Acc Precision

(%)
Recall

(%) F1 Score G-Mean

ResNet-101 44.55 7.68 98.78 0.9859 98.86 98.71 0.9875 0.9874
VGG16 138 15.5 99.38 0.9919 99.35 99.42 0.9938 0.9943

Densenet121 7.9 2.77 97.35 0.9706 97.38 97.26 0.9732 0.9728

DeiTBase 86.56 16.47 96.21 0.9612 96.27 96.08 0.9617 0.9673
ViT-base 86.56 16.47 96.38 0.9619 96.37 96.36 0.9638 0.9637

PVT-Large 61.4 9.8 98.41 0.9822 98.48 98.32 0.9844 0.9843
PVTV2-b4 62.56 9.59 98.94 0.9856 98.91 98.93 0.9892 0.9893
PVTV2-b5 81.96 11.12 98.24 0.9815 98.25 98.24 0.9825 0.9825
Swin-Base 87.7 14.81 98.79 0.9830 98.81 98.73 0.9877 0.9875

ConViT-Base 86.39 16.42 97.35 0.9726 97.38 97.26 0.9732 0.9729
Ours 0.097 0.04 98.32 0.9813 98.30 98.32 0.9831 0.9833

3.4. Five-Fold Cross-Validation on Self-Built Dataset

In order to further validate the performance of VLDNet, we conducted a five-fold
cross-validation on our self-built dataset. The experimental parameters were set to the
default values provided in Table 2. A total of 50 epochs of experiments were performed,
and the results of the test set are shown in Figure 8. F1–F5 represent models trained using
different validation sets. It can be observed that the models trained with different validation
sets converge quickly. The final identification accuracy rate is consistently above 98%, which
is essentially consistent with the previous experimental results. This demonstrates the
excellent performance of VLDNet.
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3.5. Do Deeper and Wider Networks Lead to Better Identification Results?

The experimental results in Sections 2.2.1 and 3.3.2 have already shown that deeper
and wider networks may not necessarily improve disease identification accuracy, and
sometimes may even lead to a decrease in accuracy. For example, on our self-built dataset,
PVTV2-b5 had a lower identification accuracy than PVTV2-b0. To further validate this issue,
we conducted additional experiments in this section. The experiments were conducted on
our self-built dataset using VLDNet, with the network width controlled by the parameter α
= {1,2,4}, which increased the network width by multiplying the number of channels in each
layer by α, while keeping the network depth constant. The experimental results are shown
in Figure 9, which shows that there is no difference in identification accuracy between
models of different widths, and that shallower networks actually converge faster. This once
again confirms our hypothesis and demonstrates the effectiveness of VLDNet’s design.
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3.6. Model Inference Time Testing

In this section, we tested the inference time of different models on an NVIDIA GTX
1650Intel (R), Core (TM) i7-10700 CPU @ 2.90 GHz. As shown in Figure 10, the red arrow
points to the VLDNet model, which has the fastest inference speed while maintaining a
high identification accuracy of 98.32%. In actual measurements, VLDNet can recognize
221 images per second, with an average of 4.52 ms per image, which is more than 37% faster
than Resnet18 (6.2 ms), which has the closest inference speed. Compared to PVTV2-b5
(98.24%) with a similar identification accuracy, the inference speed of VLDNet is increased
by 11.6 times. Compared to VGG16 (99.38%), which has the best identification performance,
although the identification accuracy of VLDNet is 1.06% lower, its inference speed is
increased by 8.2 times. VLDNet not only has fewer model parameters and lower FLOPs, but
also has a fast inference speed, thanks to the use of inexpensive operations to supplement
redundant features and the operation of reparameterization.
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3.7. Ablation Experiments

In order to validate the necessity and effectiveness of each design in VLDNet, this
section conducted ablation experiments on our self-built dataset. The experimental results
are shown in Table 6. Even with a shallow and narrow ordinary model without using linear
operations to supplement redundant features and reparameterization, an identification
accuracy as high as 98.33% can be achieved while keeping the model parameters and FLOPs
low. This result again validates our hypothesis about the relationship between model
depth, width, and performance. When linear operations are used to supplement redundant
features, the number of model parameters and FLOPs is reduced to half of the original,
while the identification accuracy is not significantly affected, indicating the effectiveness of
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this operation. Furthermore, based on this, using structural reparameterization reduces
the number of model parameters and FLOPs to 12% and 11% of the original, respectively.
The identification accuracy of the model also did not change significantly. The ablation
experiment verifies that each design in VLDNet is effective and necessary.

Table 6. Results of ablation experiments.

Linear Operation Reparameterization Parameters (MB) FLOPs (G) Accuracy (%)

0.747 0.354 98.35√
0.373 0.176 98.33√ √
0.097 0.040 98.32

3.8. Visual Display of Identification Results

In this section, the Grad-CAM method was used for visualization to observe the
classification basis of the VLDNet model. The experimental results are shown in Figure 11.
Grad-CAM [41] is a deep neural network visualization method based on gradient local-
ization. It calculates the weight of each feature map in the last convolutional layer for
the image category and obtains the weighted sum of each feature map. Then, it maps
the weighted feature maps to the original image in the form of a heatmap to explain the
classification basis of the deep neural network model. Figure 10 shows that the VLDNet
model accurately focuses on the area where the disease occurs in each disease image, which
is consistent with our judgment basis. This indicates that the VLDNet model has good
performance in crop disease classification.
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4. Discussion

This paper rethinks the relationship between the depth and width design of disease
identification models and model performance. It found that the commonly used paradigm
of designing models with wide and deep structure to improve identification accuracy is
not applicable in disease identification tasks. Based on this finding, this paper proposes the
lightweight disease identification model VLDNet, which achieves a good balance between
efficiency and accuracy. The paper first experiments with ResNet and other models on
the public dataset PlantVillage to verify their hypothesis about the non-strict correlation
between the depth and width design of disease identification models and their performance.
Based on this, the paper proposes the VLDNet, which uses the basic module VLDBlock
to extract inherent features using 1 × 1 convolutional operations, and then supplements
redundant features using inexpensive linear operations, thereby improving the efficiency
of feature extraction. The paper also uses structural reparameterization during inference
to reduce the number of model parameters and FLOPs and accelerate model inference.
VLDNet achieves good identification results on both the PlantVillage and self-built datasets,
with fewer model parameters, simpler computation, and faster inference speed. In addition,
the paper conducts ablation experiments to verify the necessity and effectiveness of each
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design of VLDNet, and the visualization graphs also prove that VLDNet can accurately
focus on diseased areas.

Compared to large-scale models such as [28,33,34], our model performs better or on
par with them in terms of identification accuracy. Although the differences in identification
accuracy are not significant, our model has much fewer parameters and FLOPs than
theirs, and its inference speed is faster. Some works choose to use strategies such as
pruning, quantization, and distillation to obtain lightweight models [27,42]. Although
these methods can reduce the number of model parameters and computational complexity,
the identification accuracy of the model may decrease. In addition, even if large-scale
models are lightweighted through these strategies, it is still difficult to achieve complete
lightweighting. In contrast, our model has the same identification accuracy as large-scale
models, while having much fewer parameters and FLOPs than them. There are also some
works that specialize in designing lightweight models to reduce params and FLOPs, such
as [16,17], and have achieved high identification accuracy, but their actual inference speed
needs to be verified. In addition, the lightweight network designed by [16] achieved high
recognition accuracy in complex backgrounds, but the number of model parameters and
FLOPs still cannot be compared with ours. Ref. [18] and our model achieved real-time
identification effects, but empirical evidence suggests that our model has higher inference
efficiency, which means that our model has lower device requirements and a wider range
of applications. Our model uses structural reparameterization for optimization, but this
requires redesigning and adjusting the structure and parameters in the neural network,
which is more complex than traditional neural network models. Additionally, further
improvement is needed in our model’s support for large-scale data.

This paper discovers that the paradigm of designing models with wide and deep
structure to improve identification accuracy is not applicable in disease identification tasks.
The authors hope that researchers can further verify this discovery and apply it to guide
the design of disease models. The proposed lightweight identification model VLDNet has
very low requirements for deployment devices, which will help accelerate the deployment
process of deep learning-based disease identification models on edge devices and promote
the development of smart agriculture.

5. Conclusions

This paper proposes a rethinking of the design paradigm for crop disease identification
models based on deep learning. The experiment verifies that there is a non-strict correlation
between the depth and width design of disease identification models and their performance.
Based on this, the paper designs the VLDNet, a lightweight disease identification model
that achieves a good balance between efficiency and performance. VLDNet performed
well on both public and self-built datasets. This discovery is crucial for the efficient design
of models, especially for the deployment of deep learning-based identification methods
on edge devices in smart agriculture. Our future research direction is to apply structure
reparameterization techniques to Vision Transformers. This is because Vision Transformers
have stronger expressive power, which has the potential to further enhance the performance
of disease recognition tasks based on deep learning. We will continue to explore efficient
model design methods, improve and optimize VLDNet, and better serve the development
of smart agriculture.
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Appendix A

Table A1. The PlantVillage dataset Label ID and corresponding Label Name.

Label ID Label Name Label ID Label Name

1 Apple_Apple_scab 21 Potato_Early_blight
2 Apple_Black_rot 22 Potato_healthy
3 Apple_Cedar_apple_rust 23 Potato_Late_blight
4 Apple_healthy 24 Raspberry_healthy
5 Blueberry_healthy 25 Soybean_healthy
6 Cherry_(including_sour)_healthy 26 Squash_Powdery_mildew
7 Cherry_(including_sour)_Powdery_mildew 27 Strawberry_healthy
8 Corn_(maize)_Cercospora_leaf_spot Gray_leaf_spot 28 Strawberry_Leaf_scorch
9 Corn_(maize)_Common_rust_ 29 Tomato_Bacterial_spot

10 Corn_(maize)_healthy 30 Tomato_Bacterial_spot
11 Corn_(maize)_Northern_Leaf_Blight 31 Tomato_healthy
12 Grape_Black_rot 32 Tomato_Late_blight
13 Grape_Esca_(Black_Measles) 33 Tomato_Leaf_Mold
14 Grape_healthy 34 Tomato_Septoria_leaf_spot
15 Grape_Leaf_blight_(Isariopsis_Leaf_Spot) 35 Tomato_Spider_mites Two-spotted_spider_mite
16 Orange_Haunglongbing_(Citrus_greening) 36 Tomato_Target_Spot
17 Peach_Bacterial_spot 37 Tomato_Tomato_mosaic_virus
18 Peach_healthy 38 Tomato_Tomato_Yellow_Leaf_Curl_Virus
19 Pepper_bell_Bacterial_spot
20 Pepper_bell_healthy
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