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Abstract: Sunflower is an important crop that is susceptible to various diseases, which can significantly
impact crop yield and quality. Early and accurate detection of these diseases is crucial for implementing
appropriate management strategies. In recent years, deep learning techniques have shown promising
results in the field of disease classification using image data. This study presents a comparative analysis
of different deep-learning models for the classification of sunflower diseases. five widely used deep
learning models, namely AlexNet, VGG16, InceptionV3, MobileNetV3, and EfficientNet were trained
and evaluated using a dataset of sunflower disease images. The performance of each model was
measured in terms of precision, recall, F1-score, and accuracy. The experimental results demonstrated
that all the deep learning models achieved high precision, recall, F1-score, and accuracy values for
sunflower disease classification. Among the models, EfficientNetB3 exhibited the highest precision,
recall, F1-score, and accuracy of 0.979. whereas the other models, ALexNet, VGG16, InceptionV3 and
MobileNetV3 achieved 0.865, 0.965, 0.954 and 0.969 accuracy respectively. Based on the comparative
analysis, it can be concluded that deep learning models are effective for the classification of sunflower
diseases. The results highlight the potential of deep learning in early disease detection and classification,
which can assist farmers and agronomists in implementing timely disease management strategies.
Furthermore, the findings suggest that models like MobileNetV3 and EfficientNetB3 could be preferred
choices due to their high performance and relatively fewer training epochs.

Keywords: disease classification; sunflower diseases; artificial intelligence; convolutional neural
networks; transfer learning; precision agriculture; adjustable learning

1. Introduction

Sunflower (Helianthus annuus) is a widely cultivated crop across various regions of
the world due to its economic significance and versatility. It is grown in diverse climates
ranging from temperate to subtropical regions, making it adaptable to a wide range of envi-
ronmental conditions. Sunflower cultivation spans continents, including North America,
Europe, Asia, Africa, and South America, with major producing countries including Russia,
Ukraine, Argentina, the United States, and China. The global production of sunflower seeds
during the year 2022–2023 is around 51.17 million metric tons [1]. The biggest producer
is Russia with 16.5 million metric tons followed by Ukraine with 10 million metric tons,
European Union with 9.48, Argentina with 4.6, Turkey 1.9, and rest 8.6 million metric
tons [1]. The cultivation of sunflowers serves numerous purposes, such as animal feed
production, oil extraction for different applications (culinary and industrial applications),
and as a source of raw materials for biofuel production [2]. The widespread cultivation of
sunflower reflects its agricultural significance and the recognition of its economic value in
different regions of the world.
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Sunflower seed cultivation is critical in many ways, including economic, agricultural,
nutritional, and environmental considerations. Sunflower seeds are high in oil and have
numerous applications, making them a valuable crop around the world [3]. Sunflower
seeds are an excellent source of oil that is edible, frequently referred to as sunflower
oil. Given its pleasant flavor, high smoke point, and nutritional benefits, sunflower oil
is frequently utilized in cooking, frying, and salad dressings. Sunflower cultivation has
various agricultural advantages as well. Sunflowers are well-known for their ability to
take nutrients from the soil, making them an excellent rotation crop. Farmers can improve
soil fertility and prevent pest and disease accumulation by planting sunflowers in rotation
with other crops [4]. Sunflowers are an adaptive crop that can adapt to a wide range of
climates and flourishing conditions, helping to increase agricultural biodiversity. Sunflower
farming enhances biodiversity by providing a habitat for various beneficial insects, birds,
and pollinators [4].

Sunflowers are prone to various diseases that can significantly influence the produc-
tivity, growth, and quality of crops. To avoid the adverse effect of diseases on productivity,
it is important to identify and manage these diseases at the right time. There are some
diseases commonly found in sunflowers such as Downy Mildew (Plasmopara halstedii),
Sclerotinia Head Rot (Sclerotinia sclerotiorum), Rust (Puccinia helianthi), Phoma Black Stem
(Phoma macdonaldii), Powdery Mildew (Erysiphe cichoracearum). It is very important to
identify such diseases at the right time to avoid many things such as the effect on yield
production, environmental impact, crop rotation, and future planning. Identifying such
diseases needs a trained expert or a person who has knowledge. However, when talking
about developing countries the farmers are illiterate and are not sound when it comes to
technology usage. Such issues further negatively impact yield production. Identification
and detection of sunflower diseases in developing countries are manually performed by
the farmers through visual observation. It can’t be done by a layman but by a person who
has a lot of experience in such an area. Nevertheless, such observations are highly likely
error prone. Moreover, it is not possible to identify the diseases regularly through visual
inspection, which results in significant financial losses [5]. There are different methods to
detect diseases in plants such as the use of spectrometers. Spectrometers are more accurate
than traditional methods to classify diseased leaves from healthy ones [6]. Furthermore,
molecular techniques like the polymerase chain reaction and the real-time polymerase
chain reaction can be employed to detect plant illnesses [7–9]. Such methods demand
qualified people to operate and are time-consuming, expensive, and difficult. Therefore, a
system easy to use, and works on images will be more practical than any traditional system.

Automated disease recognition systems have gained popularity recently thanks to
developments in computer vision and machine learning approaches. These systems
use deep learning algorithms to detect diseases quickly and accurately by analyzing
massive amounts of visual data [10,11]. Deep learning has gained a lot of attention
lately due to its promising results in terms of improving accuracy. Deep learning has
been incorporated into many domains because of its remarkable ability to solve complex
problem. Such as Computer Vision [12], Object Detection and Recognition [13], Image
Segmentation [14], Image Generation [10], Healthcare [15,16], Finance [17], Autonomous
Systems [18], Education [19,20], Natural Language Processing (NLP) [21]. Bantan et al. [22]
proposed a CNN-based sunflower seed classification model. The dataset is containing
seven different varieties of sunflower seeds. Their proposed model achieved 98% accuracy
in terms of identifying different varieties of sunflower seeds. Kurtulmus et al. [23] tried
to use three different deep learning models such as AlexNet, GoogleNet, and ResNet to
find their accuracy in terms of identifying sunflower seeds. They stated that GoogleNet
has achieved 95% accuracy. In study [24], the authors have proposed a deep learning
model based on VGG16 to classify fourteen different types of seeds. The VGG16 model
has been modified by adding five more layers before the classifying layer to improve the
performance of the model. From the results, it can be inferred that the proposed model
has achieved 99% accuracy. Sirohi et al. [25] proposed a hybrid deep learning model
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for classifying sunflower diseases. They created their dataset containing four different
classes such as Alternaria leaf blight, Downy mildew, Phoma blight, and Verticillium wilt.
Their hybrid model is based on VGG16 and MobileNet. Their proposed hybrid model has
achieved 89.2% accuracy in identifying different types of diseases in sunflowers and they
claimed that their model outperformed other models. Albarrak et al. [26] proposed a model
based on MobileNetV2 to classify different types of date fruits. They trained the model
on a dataset containing eight different types of date fruits found in Saudi Arabia. Their
proposed model has achieved 99% accuracy and has outperformed state-of-art models.

Chen et al. [27] proposed a model based on YOLOv4 to detect sunflower leaf diseases.
The modified version of YOLOv4 is obtained by collecting three effective layers of three
versions of MobileNet model and used that to replace the feature layer of the original
YOLOv4. Doing so has helped to improve the accuracy of the model and outperformed the
original YOLOv4. Malik et al. [5] proposed a deep learning model for sunflower disease
identification. They used a dataset collected from the Internet. The proposed model is based
on MobileNet and VGG16. They claimed that the model based on VGG16 has achieved
81% accuracy whereas the model based on MobileNet has an accuracy of around 86%.
Carbone et al. [28] proposed a model for sunflower-weed segmentation classification. They
created a dataset containing both RGB and NIR data. their proposed model has shown an
IoU performance of 76.4%. Dawod et al. [29] proposed a R-CNN-based model to classify
Foliar diseases in sunflowers. They have perfumed the segmentation before they classified
the different classes of foliar lesions. Gulzar [30] proposed a MobileNetV2-based modified
model to classify forth different types of fruits. The modified proposed model has achieved
99% accuracy and has outperformed state-of-art models such as VGG16, AlexNet, and other
models. whereas in another study Aktas et al. [31,32] trained AlexNet and InceptionV2
models to classify open and closed pistachios and achieved 96.13% and 96.54%, respectively.
In another study, Dowod et al. [33] proposed a model to classify foliar diseases in sunflowers
based on ResNet architecture. They claimed that by doing the segmentation, the results in
terms of accuracy have increased by far and avoid many wrong predictions which usually
happen without segmentation. Song et al. [34] trained their model based on remote sensing
images to recognize the sunflower growth periodically. Their proposed model, PSPNet
achieved 89.01% accuracy. Furthermore, Barrio-conde et al. [35] have a deep learning-based
model to classify High Oleic Sunflower Seed Varieties. They used around 6000 images
of six different types of sunflower seeds to train their model. The model achieved 100%
accuracy for two of the classes whereas, for the remaining classes, the model achieved 89.5%
accuracy. Sathi et al. [36] have conducted a study to classify sunflower diseases used a
dataset containing 1428 images of three classes. They have trained and tested four CNN
models based on the said dataset. they concluded that ResNet50 model was identified as
optimal model with accuracy 97.88%. Ghosh et al. [37] have proposed a hybrid model for
recognition of sunflower diseases. The hybrid model is the combination of VGG19 and small
CNN model. they have trained around eight CNN models and out of those the proposed
model has outperformed all the other models in detecting sunflower diseases.

The study investigated the classification of sunflower diseases using deep learning
techniques, specifically employing five popular convolutional neural network (CNN)
models: AlexNet, VGG16, InceptionV3, MobileNetV3, and EfficientNetB3. The contribution
of this study is as follows:

• Improved Disease Detection: The study highlights the use of deep learning models,
such as AlexNet, VGG16, InceptionV3, MobileNetV3, and EfficientNet, for the classifi-
cation of sunflower diseases. These models have demonstrated high precision, recall,
F1-score, and accuracy in detecting and classifying various sunflower diseases. This
contribution improves the early detection of diseases, allowing farmers to implement
timely management strategies and minimize crop yield and quality losses.

• Comparative Analysis of Deep Learning Models: The study provides a comparative
analysis of different deep learning models, allowing researchers and practitioners
to assess their performance in sunflower disease classification. By evaluating the
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precision, recall, F1-score, and accuracy of each model, the study offers valuable
insights into their effectiveness and helps in selecting the most suitable model for
sunflower disease detection tasks.

• Potential Benefits for Farmers and Agronomists: The study’s results emphasize the
potential of deep learning models in early disease detection and classification, offering
significant benefits to farmers and agronomists. By utilizing these models, farmers
can quickly identify and categorize sunflower diseases, enabling them to implement
timely and appropriate disease management strategies. This contribution has practi-
cal implications in enhancing crop productivity and minimizing economic losses in
sunflower farming.

• General Applicability to Other Crops: While this study specifically focuses on sun-
flower disease detection, the findings have broader implications for other crops as
well. Deep learning models trained on image data can be adapted and applied to
different plant species, aiding in disease identification and classification across various
agricultural contexts. The study’s comparative analysis provides valuable insights that
can be utilized in similar studies on different crops, benefiting farmers and researchers
in multiple agricultural domains.

• Reduced Training Epochs: The study suggests that models like MobileNetV3 and
EfficientNetB3 offer high performance while requiring relatively fewer training epochs.
This finding is beneficial in terms of computational efficiency and time-saving during
the training process. By reducing the required training time, farmers and researchers
can expedite the development and deployment of disease detection models, facilitating
faster decision-making and implementation of appropriate management strategies.

2. Material and Methods

Figure 1 provides a summary of the overall methodology used in this study. The
images of sunflower leaves and blooms that are available online were used for four-class
classification of healthy and infected groups. Pre-trained networks like AlexNet [38],
VGG16 [39], InceptionV3 [40], MobilenetV3 [41], and EfficientNet [42] are used for the
classification. Prior to the splitting dataset into training, validation, and testing sets, images
were resized according to model requirements which are given in Figure 1.
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2.1. Dataset

In this study, a public dataset [43] containing images of a total of 1892 images of
healthy and infected sunflower leaves and blooms was used. The National Institute of
Textile Engineering and Research in Bangladesh is the host institution for the dataset,
which is publicly accessible online. The dataset originally containing images of a total of
467 images was created by researchers using sunflowers from the Bangladesh Agricultural
Research Institute (BARI) demonstration farm at Gazipur. All the images were reported
to be captured manually using a digital camera at a resolution of 512 × 512 pixels. Re-
searchers later used original images to create 1892 augmented images. A dataset containing
augmented images was split into training, validation, and testing subsets using a ratio of
70:15:15. The number of images per class and its distribution by subclasses are shown in
Table 1. Whereas Figure 2 shows the sample of each class of diseases found in sunflowers.

Table 1. Dataset distribution.

Class Name Training Set Validation Set Testing Set Number of Images Per Class

Downy Mildew 329 70 71 470
Fresh Leaf 360 77 78 515
Gray Mold 278 60 60 398
Leaf Scars 356 76 77 509

Total 1323 283 286 1892
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2.2. State-of-Art Models

In this study, we have selected start-of-art models which are very well-known for im-
age classification. Due to their high popularity, we have selected AlexNet [38], VGG16 [39],
InceptionV3 [40], MobilenetV3 [41], and EfficientNet [42] for this comparative study.

2.2.1. AlexNet

AlexNet [38] is a groundbreaking convolutional neural network (CNN) architecture
that won the ImageNet Large Scale Visual Recognition Challenge in 2012. Figure 3 shows
the architecture of AlexNet. It introduced several key innovations that revolutionized
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deep learning and image recognition. AlexNet consisted of eight layers, including five
convolutional and three fully connected layers. It employed the rectified linear unit (ReLU)
activation function, local response normalization, and dropout regularization to improve
performance and prevent overfitting. Notably, AlexNet utilized multiple GPUs for parallel
processing, significantly reducing training time. With a top-5 error rate of 15.3% on the
ILSVRC 2012 dataset, AlexNet outperformed previous approaches by a large margin. Its
success propelled the development of more complex CNN architectures and accelerated
the advancement of deep learning in computer vision tasks. The influential principles and
design choices of AlexNet continue to shape the field of deep learning, making CNNs the
standard model for image classification.
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2.2.2. VGG16

VGG16 [39] is a popular convolutional neural network (CNN) model known for its
simplicity and effectiveness in image classification. Figure 4 shows the architecture of VGG16.
Developed by the Visual Geometry Group (VGG) at the University of Oxford, VGG16 consists
of 16 layers, including 13 convolutional layers and three fully connected layers. It follows
a uniform architecture with small 3 × 3 filters and max pooling layers. VGG16’s depth
and small filter size contribute to its impressive performance. Despite its simplicity, VGG16
achieved outstanding results on the ImageNet dataset, surpassing previous models in accuracy.
However, its large number of parameters makes it computationally expensive and memory-
intensive, limiting its usage in resource-constrained environments. Nevertheless, VGG16’s
impact has been significant, serving as a benchmark for subsequent CNN architectures and
influencing the development of deeper networks. Its simplicity and effectiveness have made
it a widely studied and referenced model in the field of deep learning.
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2.2.3. InceptionV3

The InceptionV3 [40] model is a deep convolutional neural network (CNN) architec-
ture developed by Google researchers for image recognition tasks. Figure 5 shows the
architecture of InceptionV3. It builds upon the original Inception architecture and is known
for its high accuracy and computational efficiency. InceptionV3 utilizes inception modules,
which incorporate different filter sizes to capture both local and global information while
reducing the computational cost. Additional techniques like batch normalization, factor-
ized convolution, and regularization contribute to improved performance and prevent
overfitting. InceptionV3 has achieved impressive results in various image recognition
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challenges, including winning the ImageNet Large Scale Visual Recognition Challenge in
2015. Its balance between accuracy and efficiency has made it a popular choice in computer
vision applications. Furthermore, InceptionV3 has influenced subsequent iterations of the
Inception architecture, such as InceptionV4 and Inception-ResNet, which have introduced
advanced techniques to further enhance performance. The model’s impact on deep learn-
ing is substantial, inspiring researchers to explore more sophisticated and efficient CNN
architectures for image recognition tasks.
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2.2.4. MobileNetV3

MobileNetV3 [41] is a highly efficient convolutional neural network (CNN) model
designed for mobile and resource-constrained devices. Figure 6 shows the architecture of
MobileNetV3. It builds upon the success of the original MobileNet architecture by intro-
ducing several improvements. Developed by Google, MobileNetV3 utilizes depth-wise
separable convolutions, which split the standard convolutional operation into separate
depth-wise and pointwise convolutions. This reduces computational complexity while
maintaining high accuracy. It also incorporates inverted residuals and linear bottleneck lay-
ers to further enhance efficiency. MobileNetV3 achieves a good balance between accuracy
and efficiency, making it suitable for real-time applications on devices with limited compu-
tational resources. It has been widely adopted in mobile vision applications, enabling tasks
such as image classification, object detection, and semantic segmentation. MobileNetV3’s
contributions to efficient CNN architectures have played a crucial role in enabling deep
learning on mobile devices and expanding the reach of AI-powered applications.
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2.2.5. EfficientNet

EfficientNet [42] is a state-of-the-art convolutional neural network (CNN) model
renowned for its exceptional efficiency and accuracy trade-off. Figure 7 shows the archi-
tecture of EfficientNet. Developed by researchers at Google, EfficientNet introduces a
compound scaling method that optimizes the model’s depth, width, and resolution simul-
taneously. By systematically scaling up these dimensions, EfficientNet achieves superior
performance while keeping computational requirements in check. This approach ensures
efficient resource utilization and enables the model to perform well across a wide range
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of resource constraints. EfficientNet has consistently achieved top-tier performance on
various benchmark datasets, surpassing previous models in both accuracy and efficiency.
Its versatility and scalability have made it popular in computer vision tasks such as image
classification and object detection. The EfficientNet architecture serves as a guiding prin-
ciple for developing efficient and effective CNN models, empowering the deployment of
deep learning models on devices with limited computational capabilities. EfficientNet-B0 in
the base mode which consists of 237 layers. Moving from EfficientNet-B0 to EfficientNet-B7
number of layers is increasing reaching 813.
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2.3. Model Tuning

Transfer Learning: Transfer learning is a powerful technique in deep learning where
pre-trained models are used as a starting point for solving new tasks. In this study, we
have incorporated transfer learning for all our state-of-the-art models (AlexNet, VGG16,
InceptionV3, MobileNetV3, and EfficientNet). By leveraging transfer learning, we have
initialized all the networks with weights pertained on large-scale image classification
dataset (ImageNet). Fine-tuning the SOTA models helps in accelerating the training and
improves the performance.

2.4. K-Fold Validation

Cross-validation is a popular technique for estimating the skill of machine learning
models. Because it has a lower bias, it is widely used to compare and select models for
a given predictable modelling problem [44]. The entire procedure of the K-Fold cross
validation algorithm used in this study is listed in following steps:

1. Shuffle the entire dataset and split data set into training and test dataset with the
ration of 08:20.

2. Split training set into 4 subsets. Create a loop to train model 4 times.
3. In first loop first subset is used for validation and the last 3 parts are used for training.

Train and test the model.
4. In second loop second subset is used for validation and the remaining 3 parts are used

for training. Train and test the model.
5. In third loop third subset is used for validation and the remaining 3 parts are used for

training. Train and test the model.
6. In last loop last subset is used for validation and the first 3 parts are used for training.

Train and test the model.
7. Summarize the overall performance of all models of all trained K-Folds.

2.5. Experimental Environment Settings and Performance Evaluation Metrics

This research aims to propose an optimal model which identifies and classifies different
types of images. The proposed model was implemented using Python (v. 3.8), OpenCV
(v. 4.7), Keras Library (v. 2.8) were used on Windows 10 Pro OS, with system configuration
using an Intel i5 processor running at 2.9 GHz, an Nvidia RTX 2060 Graphical Processing
Unit and 16 GB RAM.

Several metrics were employed to evaluate the performance of classifying sunflower
blooms and leaves, including accuracy, precision, recall, and F1-score, which are frequently
used indicators [30]. Accuracy is the ratio of samples from all classes that can be correctly
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identified, Recall is the ratio of correctly classified positives among all actual positives, and
Precision is the ratio of correctly identified positives versus all expected positives [45]. The
metrics were calculated using Equations (1)–(4).

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(1)

Recall =
True Positive

True Positive + False Negative
(2)

Precision =
TP

True Positive + False Positive
(3)

F1 − Score = 2 × Recall × Precision
Recall + Precision

(4)

3. Results

The performance of all classifiers, such as AlexNet, VGG16, InceptionV3, MobilenetV3,
and EfficientNet, models were evaluated with evaluation metrics as mentioned in
Section 2.5. The convergence graphs of performed training were also given to track the
accuracies and losses of training with epoch. Transfer learning was employed for the
training processes, and ImageNet weights were used to initialize the weights models. To
produce results that can be compared, each training procedure was completed using the
same settings, such as batch size, dataset split ratio, learning rate, and optimizer. The
number of the epoch was set to 300, the early stop parameter was set to 30, the batch
size was set to 32, the initial learning rate was set to 0.0005, and the SGD optimizer was
chosen as the optimizer during the training process. Figure 8 displays the training accuracy,
validation accuracy, training loss, and validation loss vs. the number of epochs for all
models after using transfer learning considered in this study.
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Initially, the number of epochs was set to 300 for all the models but it is important to
note that the early stop parameter was also deployed to avoid the wastage of time when
there is no positive/negative change occurring to the model training. From Figure 8, it can
be depicted that each model has taken different epochs to train and validate. It took 117, 76,
201, 126, and 89 epochs to AlextNet, VGG16, InceptionV3, MobileNetV3, and EfficientNetB3
respectively. From Figure 8A it can be detected that the training accuracy of ALexNet
started at 40% at the initial iterations and gradually increased and remained around 85%
until there was no improvement in the model training accuracy. From Figure 8B it can be
seen that the training accuracy rate of VGG16 started at 35% from the first iteration and
continued to improve until iteration 22. From iteration 22 model has been performing well
in terms of training accuracy and has reached the optimal accuracy. Whereas when it comes
to the validation accuracy, it can be seen that model has performed identically to training
accuracy. When it comes to the training loss and validation loss, it can be depicted from the
Figure that at initial iterations the model isn’t doing well due to the high number of losses.
But gradually it can be seen that when the model started to learn and remember more about
the data, it performed well, and the training and validation loss decreased. By the 20th
iteration, it can be seen that model accuracy reached to maximum value. From Figure 8B
it can be seen that VGG16 has achieved 96.5% accuracy. When it comes to InceptionV3,
it has performed similarly to VGG16 in terms of training and validation. However, the
accuracy rate of VGG16 is better than InceptionV3. It may be due to many factors such as
architectural design, parameter efficiency, computational efficiency, dimensional reduction,
and auxiliary classifiers.

Figure 8D,E present the training accuracy, validation accuracy, training loss, and
validation loss of MobileNetV3 and EfficeintNetB3. From Figure 8D,E, it can be seen that
both models are performing better than AlexNet, VGG16, and InceptionV3 in terms of
training accuracy. The model validation accuracy of MobileNetV3 and EfficientNetB3
started from 55% and 70% respectively. From Figure 8D it is evident that the MobileNetV3
model has reached optimal accuracy before reaching 35 iterations whereas EfficientNetB3
has reached optimal accuracy within the first 10 iterations. As far as training and validation
loss is concerned both models are performing well. During the training accuracy, validation
accuracy, training loss, and validation loss, it can be concluded that EfficientNetB3 has
outperformed state-of-art models.

Figure 9 shows the confusion matrixes of sunflower leaf and bloom classification
results of all models. where it is seen that most of the images were assigned to the correct
classes. According to Figure 9E, the EfficientNetB3 model has the fewest misclassifica-
tions. EfficientNetB3 predicted 3 items in the Leaf Scars class as the Downy Mildew class
and 4 items in the Downy Mildew class as the Leaf Scars class. Figure 9A shows that
39 out of 286 images were misclassified by AlexNet, which is the highest misclassifica-
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tion score. According to Figure 9B,D, several misclassifications made by VGG16 (10) and
MobileNetV3 (9). However, all models showed perfect recognition of healthy leaves and
gray mold disease, where no misclassifications were observed, except AlexNet. It can be
also observed that AlexNet did not perform well and had the highest number of misclassi-
fications in all the classes.
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Table 2 shows the evaluation metric in terms of precision, recall, F1-score, and accuracy
of all the models used in this study. According to the results given in Table 2 performance
of the models in the discrimination of healthy leaves from infected items is very high,
where the classification accuracy is 100%. The classification accuracy for the detection
of Gray Mold disease was also 100% (except AlextNet), whereas classification accuracies
for the detection of Downy Mildew and Leaf Scars disease were comparatively lower
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for all models. Downy Mildew and Leaf Scars classes were classified by InceptionV3
with accuracies of 91.4% and 91.0%, respectively. whereas for VGG16, it got 94.2% and
92.4% for Downy Mildew and Leaf Scars classes respectively. The lowest performance in
the detection of Downy Mildew and Leaf Scars disease was obtained by AlexNet, with
classification accuracies of 82.4% and 74.7%, respectively. The highest performance in
detection of sunflower diseases is obtained by EfficientNetB3, with a classification accuracy
for Downy Mildew and Leaf Scars is 95.7% and 94.9%, respectively.

Table 2. Evaluation Metrics for the Performance of Models.

Model Class Precision Recall F1-Score Accuracy

AlexNet

Downy Mildew 0.824 0.662 0.734 0.662
Fresh Leaf 0.950 0.974 0.962 0.974
Gray Mold 0.952 0.983 0.967 0.983
Leaf Scars 0.747 0.844 0.793 0.844

VGG16

Downy Mildew 0.942 0.915 0.929 0.915
Fresh Leaf 1.000 1.000 1.000 1.000
Gray Mold 1.000 1.000 1.000 1.000
Leaf Scars 0.924 0.948 0.936 0.948

InceptionV3

Downy Mildew 0.914 0.901 0.908 0.901
Fresh Leaf 1.000 1.000 1.000 1.000
Gray Mold 1.000 1.000 1.000 1.000
Leaf Scars 0.910 0.922 0.916 0.922

MobilNetV3

Downy Mildew 0.956 0.915 0.935 0.915
Fresh Leaf 1.000 1.000 1.000 1.000
Gray Mold 1.000 1.000 1.000 1.000
Leaf Scars 0.925 0.961 0.943 0.961

EfficientNetB3

Downy Mildew 0.957 0.944 0.950 0.944
Fresh Leaf 1.000 1.000 1.000 1.000
Gray Mold 1.000 1.000 1.000 1.000
Leaf Scars 0.949 0.961 0.955 0.961

The overall performance of the models before and after incorporating transfer learning
is given in Table 3. From the table it can be seen that incorporating transfer learning the
precision, recall, F1-score, and accuracy has changed by a lot in all the models. Before
transfer learning the model the accuracy of ALexNet, VGG16, InceptionV3, MobileNetV3,
EfficientNetB3 are 83.5%, 93.4%, 93.2%, 83.2% and 88.5% respectively. However, after
incorporating transfer learning EfficientNetB3 model has achieved the highest accuracy,
97.6% in just 89 epochs among all the models. MobilenetV3 achieved an accuracy of 96.9% in
126 epochs, whereas the AlextNet model achieved the lowest classification accuracy (86.4%)
in 117, the second worse accuracy obtained by a model is InceptionV3 with 95.4% accuracy
within 201 epochs, which has the highest number of epochs compared to other models.

Table 3. Overall performance of models before and after transfer learning.

Models Models Precision Recall F1-Score Accuracy Epochs

Before
Transfer
Learning

AlexNet 0.835 0.831 0.832 0.835 300
VGG16 0.934 0.936 0.935 0.934 300

InceptionV3 0.932 0.933 0.932 0.932 300
MobilenetV3 0.832 0.835 0.838 0.832 300

EfficientNetB3 0.902 0.890 0.889 0.885 300

After
Transfer
Learning

AlexNet 0.865 0.866 0.861 0.864 117
VGG16 0.965 0.965 0.965 0.965 76

InceptionV3 0.954 0.954 0.954 0.954 201
MobilenetV3 0.969 0.969 0.969 0.969 126

EfficientNetB3 0.976 0.976 0.976 0.976 89
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To evaluate the skill of the used models and check dependency to dataset K-fold
cross-validation technique was applied. In this study entire data set was divided into
5 subsets. One subset was used for testing and the remaining 4 subset were used in training
in loop, where different subsets were assigned as validation set. The results of applied
method are given in Table 4.

Table 4. K-fold cross-validation results.

Models Loop1 Acc Loop2 Acc Loop3 Acc Loop4 Acc Mean Acc

AlexNet 0.846 0.857 0.854 0.846 0.851
VGG16 0.960 0.960 0.981 0.957 0.965

InceptionV3 0.936 0.955 0.955 0.981 0.957
MobilenetV3 0.959 0.955 0.960 0.955 0.957

EfficientNetB3 0.984 0.970 0.976 0.989 0.980

According to the results given in Table 4 EfficientNetB3 model has achieved the
highest mean accuracy of 98.0% among all the models. AlextNet model achieved the lowest
classification accuracy of 85.1%. The second-best accuracy was obtained by VGG16 model
(96.5%). InceptionV3 and MobilenetV3 achieved the same mean accuracy of 95.7%.

Inference time performance results of these models are given in Table 5. The trained
models are used in real-time systems, different batch sizes and inference times are calculated
for each model in order to obtain test performance results. A total of 1000 test data were used
as test data in order to calculate the inference times precisely, and thus more normalized
values were obtained. For example, for AlexNet architecture the Batch Size = 1 as shown in
Table 5, the calculated time is 4.4 ms. This value is calculated as follows: 1000 images are
given as test data and Batch size = 1 is chosen. The total test time is 4447 ms, during which
1000 images were classified. In other words, it took 4447/1000 = 4.4 ms to classify 1 image.
Similarly, Batch Size is set to 16 for AlexNet model, the total test time of 1000 images were
calculated as 1832 ms. In other words, it took 1832/1000 = 1.8 ms to classify 1 image. These
operations were performed for all models and batch sizes in the table, and the results are
obtained as mentioned in Table 5.

Table 5. Inference time performance.

Model Name Batch Size = 1
(ms)

Batch Size = 16
(ms)

Batch Size = 32
(ms)

AlexNet 4.4 1.8 1.7
VGG16 9.9 4.1 4.0

InceptionV3 18.3 3.8 3.3
MobileNetV3 11.1 2.2 1.9
EfficientNetB3 25.7 9.4 5.7

Based on these results, when such a classification is desired to be used in real-time
applications, the EfficientNetB3 model can be used to achieve high accuracy, if there is
no shortage of time. If such an application will be used on mobile devices and in case of
hardware capacity shortage, it would be more accurate to use the MobileNetv3 model in
terms of both accuracy and low inference time.

4. Discussion and Conclusions

In this comparative study, we investigated the classification of sunflower diseases
using deep learning models and incorporated transfer learning techniques. The mod-
els evaluated in this study included AlexNet, VGG16, InceptionV3, MobileNetV3, and
EfficientNet. By leveraging pre-trained models, we aimed to enhance the accuracy and
efficiency of sunflower disease classification.
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Our findings indicate that deep learning models are highly effective in accurately
identifying and classifying various sunflower diseases. Through a thorough analysis
of the results, we observed that all the models achieved considerable accuracy rates,
highlighting their potential for disease detection in sunflower crops. However, some models
demonstrated superior performance compared to others, providing valuable insights into
their capabilities for this specific task.

Among the models evaluated, EfficientNetB3 consistently outperformed the other
architectures in terms of accuracy, precision, recall, and F1-score metrics. it may be due to
many characteristics that make it stand out compared to the other models:

• Compound Scaling: EfficientNetB3 includes a technique known as compound scaling,
which systematically grows the model’s depth, width, and resolution all at once. This
method enables EfficientNetB3 to perform better across a wide variety of computa-
tional resources and dataset sizes. EfficientNetB3 achieves improved accuracy while
keeping efficiency by scaling the model in a balanced manner.

• Depth and Width: When compared to MobileNetV3 and InceptionV3, EfficientNetB3
is deeper and wider. Because of the enhanced depth, it can capture more complicated
features and hierarchies in the data. The increased width, which refers to the number
of channels in each layer, improves the model’s representational capacity and allows
for more fine-grained detail to be captured.

• Resolution: When compared to AlexNet, MobileNetV3, InceptionV3, and VGG16,
EfficientNetB3 has higher-resolution input images. The higher the input resolution,
the more visual information the model can learn from, which is very useful when
working with detailed or high-quality photos.

• Efficient Architecture: Despite its depth and breadth, EfficientNetB3 retains compu-
tational efficiency. It accomplishes this by employing efficient network design ideas
such as inverted residual blocks and squeeze-and-excite modules. When compared to
VGG16 and InceptionV3, these design choices lower the number of parameters and
operations, resulting in faster training and inference times.

• State-of-the-Art Performance: EfficientNetB3 has regularly achieved top performance
in a variety of computer vision tasks, including picture classification and object recog-
nition, in many benchmark datasets, including ImageNet. The balanced scalability and
efficient architecture contribute to its high performance, making it a suitable solution
for many real-world applications.

The utilization of transfer learning in sunflower disease classification showcases its
potential as a valuable technique for agricultural applications. By leveraging pre-trained
models, we were able to benefit from the learned features and representations of general
images, adapting them to the specific task of sunflower disease classification. This approach
circumvents the need for training models from scratch, which can be computationally
expensive and resource intensive.

As with any scientific study, there are opportunities for future work to build upon the
findings of this research. One avenue for future research includes expanding the dataset used
for training and evaluation. While our study utilized a comprehensive dataset, incorporating
additional samples from diverse geographical locations and under different environmental
conditions would further enhance the generalization capability of the models. This would
enable the models to accurately classify diseases in various regions and environments,
ensuring robustness and reliability. Exploring the interpretability of the deep learning
models could be also a potential improvement. Interpretability is a crucial aspect, especially
in agricultural applications, where understanding the decision-making process is vital for
the acceptance and adoption of these models. While deep learning models are often regarded
as black boxes due to their complex architectures, efforts have been made to interpret and
visualize the learned features and decision boundaries. Such interpretability techniques can
provide valuable insights into the factors contributing to disease classification, ultimately
aiding farmers and agricultural experts in decision-making processes.
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Furthermore, exploring model optimization techniques specific to sunflower disease clas-
sification could potentially improve the performance of the deep learning models. Techniques
such as neural architecture search (NAS) can be employed to automatically discover optimal
architectures for this task, considering the unique characteristics of sunflower diseases.
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