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Abstract: Dehydration of maize grains in the field can reduce costs associated with drying after
harvest. A delayed harvest approach after physiological maturity, in which plants stand in the field
to allow the stems to dry, has been widely adopted in maize production. However, it remains unclear
how harvesting at different time points during the dehydration stage may affect grain yield and
quality. In the present study, experiments were conducted in the Ningxia Irrigation Area of northwest
China from 2019 to 2022, we continuously observed and used a linear-plateau model to analyze the
changes in grain weight and quality traits (such as bulk density and levels of starch, protein, oil, fiber,
and free fatty acids) during the field dehydration period of maize hybrids with differing maturity
times. Harvesting at a grain moisture content of >31.0% was shown to affect grain weight, whereas
harvesting at a moisture content of <25.9% did not affect grain weight or yield. The stable period
for grain weight occurred during the physiological maturity stage for an early-maturing hybrid and
5–12 days before physiological maturity for the mid–late-maturing hybrids. When the field grain
moisture content was <37%, harvesting did not affect the grain bulk density. Grain bulk density
tended to stabilize one to two weeks earlier than grain weight and two to three weeks before the
physiological maturity period. The protein, oil, fiber, and free fatty acid contents in maize kernels
at 30 days after silking were not affected by the harvesting period, and the starch contents were
unaffected in maize kernels harvested at any time later than 50 days after silking. Overall, maize grain
should be harvested during field dehydration and delayed harvesting after physiological maturity
with relatively low moisture content to get a better yield with superior quality.; delayed harvesting is
therefore an important technical approach to improve the efficient production of high-quality maize.

Keywords: maize; dehydration period; moisture content; kernel weight; bulk density; grain quality;
harvest time

1. Introduction

Maize (Zea mays L.) is the most abundantly produced food crop throughout the world.
A wide variety of cultivars are planted, most of which produce high yields, and there
are extensive, well-established maize industrial chains across the globe [1–4]. In addition,
maize has important roles as a feed material in aquaculture and as a raw material in industry.
It is a highly significant target for ensuring food security and feed safety in China [5–7].
The past few decades have seen significant changes in Chinese maize harvesting methods,
beginning with traditional manual harvesting, transitioning to mechanical ear harvesting,
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then progressing to mechanical grain harvesting [8–10]. Mechanical harvesting from plants
with low moisture content not only reduces drying costs and improves harvesting efficiency,
but also improves maize quality. It is therefore an important method in modern maize
production [8,11].

The dehydration process for maize grains in the field includes dehydration both before
and after physiological maturity (PM) [12,13]. Delayed harvest after PM is a universal
management strategy that is used to reduce grain drying costs worldwide [14–16]. Delaying
harvest, drying straw in the field, dehydrating maize grains, and directly harvesting and
storing grains only after the moisture content (MC) has been reduced to a safe storage
level greatly reduces drying costs [11,15]. Delayed (i.e., low-moisture) harvesting of maize
takes advantage of regional light and heat resources, and is an important future direction
in maize production [8,17,18]. However, significant controversy remains regarding the
impacts of delayed harvest on maize yield. Some studies have shown that yield losses
are caused by delayed harvesting after PM [19,20], whereas other studies have found
no significant changes in grain weight during the straw-drying period in the field after
PM [12,21–23]. However, reductions in grain MC resulting from delayed harvesting have
been demonstrated consistently [14,24].

Grain MC is an important factor in crop harvesting, storage, and preservation man-
agement and a key characteristic that determines grain pricing [25,26]. Grain traders are
willing to pay higher prices for maize with MC < 13.0% (which can be immediately stored
safely) than for grains with unknown or higher MC [27]. In the northern Midwest region
of the USA, the cost of grain drying is a major expenditure in maize production, second
only to fertilizer or seed purchases [14,28]. The standard MC range for grain sales and safe
storage is 13–15.5% [21]. High MC in stored grains can lead to aflatoxin contamination; the
fungi that produce aflatoxins can breed in the grains when MC exceeds 13% [29,30]. The
Harvest Quality Report by the US Food Commission showed that the average grain MC
was 16.41% during the maize harvest period from 2011 to 2019 [18]. Maize MC during the
PM period typically ranges from 15–42%, with significant differences between plants with
different genetic backgrounds and growth environments [8,31].

Grain quality is another key economic trait that is crucial in maize production and
directly determines the market price and application value of maize [32]. Maize grains
with high bulk density are generally considered to be high-quality [33]. The bulk density
and nutritional composition of maize kernels form the basis of the metabolic energy supply
and nutritional value of feed products [34]. A study of changes in the nutritional quality of
mature maize found no significant changes in protein, oil, or starch content in maize kernels
after PM or during 1–2 weeks of delayed harvesting, indicating that maize can be harvested
at any time after PM [14]. Previous studies have revealed structural changes in starches
and proteins in the endosperm during the drying process of maize kernels; such changes
primarily depend on environmental temperatures and the grain MC [35,36]. Previous
studies of maize kernel quality have focused on the effects of various environmental factors
(such as temperature and light), cultivation measures, maize varieties, fertilizer regimens,
and water management measures [37–40]. There has been comparatively little research
into changes in maize grain quality as a result of harvesting at different points during the
dehydration period.

The Ningxia Irrigation Area belongs to China’s high-yield maize area. This region
has abundant light and heat resources, and there is just one maize growing season per
year. Thus, the abundance of light and heat resources both before and after the PM period
are underutilized by the plants. A study has not yet been conducted to establish the
critical time points associated with grain weight and to assess key quality traits during
the maize stem dehydration period in the field. Such data would provide important
theoretical support for the formulation of technical measures to regulate grain quality and
accelerate dehydration before PM. Furthermore, these data would allow the promotion
and application of delayed, low-MC grain harvesting technologies in other regions of the
world with similar environments.
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Our hypothesis was that field dehydration and delayed harvesting affected the weight
and quality of the grains significantly. Therefore, the objectives of this study were as follows:
(1) to elucidate the dynamic changes in grain weight and key quality indicators during
the field dehydration period; (2) to identify the time point after which harvesting would
not affect maize grain weight or key grain quality indicators; and (3) to comprehensively
evaluate the impacts of low-moisture harvesting on maize grain quality. These results
will provide a theoretical basis for the implementation of delayed low-moisture maize
harvesting in similar areas in northwest China. Overall, this study has important guiding
significance for promoting the development of a high-quality maize industry in this region
and throughout the world.

2. Materials and Methods
2.1. Experimental Site

All experiments were conducted at the Wanghong Experimental Base of the Crop Re-
search Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yongning County,
Ningxia Irrigation District, China (116◦41′ E, 39◦91′ N) from 2019 to 2022. Ningxia Irriga-
tion District includes the Yang-Huang Irrigation District and the Yellow River Diversion
Irrigation District. This region has a typical continental semi-humid and semi-arid climate
and is located within the latitude zone containing high-yield maize fields in China [41].
The region has an altitude of 1100–1400 m. The total solar radiation was 1692.3 W/m2;
the sunshine duration was 3000 h/year; the average annual temperature was 8–9 ◦C; the
annual accumulated temperature (AT)≥ 10 ◦C was 3100–3300 ◦C; and the average sunshine
percentage was >60% [42]. The annual rainfall was 200–300 mm, with increases in precipi-
tation corresponding to increases in altitude from the north to the south of the region. The
average daily temperature from late September to late October in each year from 2019–2022
was 15.3 ◦C, 13.2 ◦C, 10.5 ◦C, and 8.1 ◦C, respectively; the 10-d rainfall averages during the
same periods were 11.2 mm, 7.4 mm, 3.9 mm, and 4.1 mm, respectively [11] (Figure 1). The
average physical and chemical properties of the soil at the test site were assessed at a depth
of 0–40 cm (Table 1).
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Figure 1. Average daily temperatures during the period from silking to field dehydration in 2019
through 2022.

Table 1. The average Physical and chemical properties of test site soil at a depth of 0–40 cm.

pH Organic Matter
(g kg−1)

Total N
(g kg−1)

Available N
(mg kg−1)

Available P
(mg kg−1)

Available K
(mg kg−1)

7.87 15.11 0.84 54.84 21.81 99.57
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2.2. Experimental Design and Field Management

Four hybrids that are widely planted in Northwest China were selected, namely the
early-maturing hybrid KWS9384 and three mid–late-maturing hybrids (DK159, XY335, and
YY439). The key growth periods and AT ≥ 0 ◦C from the silking to PM period are detailed
in Table 2. The planting density was 90,000 plants ha−1, with each hybrid growing in an
area >667 m2. Other field management conditions were consistent with local practices.
The average temperature and other meteorological data required for calculating AT were
obtained from the small meteorological station installed in the experimental field (Watch
Dog 2900 Weather Station).

2.3. Sampling and Measurements

Measurements were taken during the entire process of grain filling and dehydration
in the early-maturing and the mid–late-maturing maize hybrids, ranging from 30 d after
silking until 30 d after PM. Measurements were taken every 10 d, and it is ~5 d before
PM. If precipitation occurred on a scheduled sampling day, sampling was postponed until
the following day. Take 5 consecutive spikes between rows of each hybrid each time,
5 consecutive spikes are taken from the rows of each hybrid, along with the bracts. Sam-
ples were returned to the laboratory for manual threshing. From the middle of each ear,
100 kernels were removed and the fresh weight (FW) was measured. The kernels were then
dried in an air-drying oven at 85 ◦C for 48 h before the dry weight (DW) was measured.
The grain MC was calculated from the kernel FW and DW as follows [43]:

MC(%) =
FW − DW

FW
× 100% (1)

To accurately predict the optimal harvest period for each cultivar based on the grain
MC, we analyzed the relationship between AT and MC after the silking stage [44–46]. A
regression model was established to estimate the relationship between silking AT and
MC [47]. Based on the distributions of MC and AT, a logistic power nonlinear growth
model was selected to establish the regression models:

MCP =
90

1 +
(

AT
b

)c (2)

where MCP is the predicted grain MC (%), b and c are regression parameters, and
AT (≥ 0 ◦C) is the cumulative temperature (◦C per d) starting from silk spinning. When the
average air temperature was below 0 ◦C, this equation was not applicable.

Grain weight was defined as the DW of the middle grain of the ear. Grain bulk
density (the mass of a given volume of grain, including air space) was measured for all
four varieties in 2021 and 2022. The grain MC of each hybrid ranged from 10.4% to 12.2%.
After the maize grains were dried in the shade, bulk density was measured in kg/hl using
a GHCS-172 bulk density instrument (Shanghai Precision Instrumentation Co., Shanghai,
China). For each cultivar, three samples of 1000 g were measured. Maize grain nutritional
composition profiles were also established. Specifically, percentages of moisture, proteins,
oils, starches, fiber, and free fatty acids were measured in dried samples with a DA7250
multifunctional full-spectrum near-infrared spectrum analyzer (Perten Instruments, Inc.,
Hägersten, Sweden). The nutritional component yield was calculated with the following
equation [48]:

Nutritional component yield = grain yield × nutritional composition concentration (%) (3)

The nutritional component yield and grain yield were expressed in mg ha−1.
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Table 2. Basic data for each hybrid tested in this study.

Year
Hybrid Characters

Hybrid Hybrid Type Sowing Date Emergence Date Silking Date PMa Date Growth Period (d) SKb-PM
(d)

SK-PM
(◦C)

Standing Straw
after PM (dc)

2019
KWS9384 EMV 17 April 1 May 3 July 31 August 122 59 1491 64

XY335 MLMV 17 April 1 May 11 July 22 September 144 72 1731 39

2020

KWS9384 EMV 21 April 2 May 2 July 2 September 123 62 1538 58
DK159 MLMV 21 April 2 May 10 July 23 September 144 75 1729 37
XY335 MLMV 21 April 2 May 10 July 23 September 144 75 1729 37
YY439 MLMV 21 April 2 May 10 July 25 September 146 77 1764 37

2021

KWS9384 EMV 19 April 3 May 30 June 29 August 118 60 1444 56
DK159 MLMV 19 April 3 May 8 July 21 September 141 75 1676 35
XY335 MLMV 19 April 3 May 8 July 21 September 141 75 1676 35
YY439 MLMV 19 April 3 May 8 July 24 September 144 78 1729 32

2022

KWS9384 EMV 22 April 2 May 1 July 1 September 122 61 1496 34
DK159 MLMV 22 April 2 May 10 July 21 September 142 73 1666 15
XY335 MLMV 22 April 2 May 10 July 21 September 142 73 1666 15
YY439 MLMV 22 April 2 May 10 July 23 September 144 75 1694 13

EMV, early-maturing hybrid; MLMV, mid–late-maturing hybrid; PMa, physiological maturity; SKb, silking date; dc, days of standing in field after physiological maturity until harvest.
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2.4. Statistical Analysis

Excel 2013 was used to calculate and plot the data. Origin 2022 was used to fit the data
for the variation of maize grain moisture content and statistically analyze the data. Grain
kernel weight, bulk density, nutritional composition and nutritional component yield were
regressed against the day of the year using a linear-plateau model with the Origin 2022
(Piecewise Fit v1.40). The coefficient of determination (R2) was significant at p < 0.01.

3. Results
3.1. Dynamic Changes in Grain Moisture during the Field Dehydration Period

Overall, grain MC decreased as the harvest period was delayed. There was a rapid
decline period before PM followed by a slower decline after PM (Figure 2). There were
differences in grain MC between hybrids and years during PM; the average grain MC in
KWS9384, DK159, XY335, and YY439 was 29.9%, 27.2%, 24.7%, and 27.2%, respectively,
during PM. The parameters used to fit the dehydration model for each cultivar are shown in
Table 3. Among all of the tested hybrids, the coefficients of determination (R2) between AT
after silking and the grain MC ranged from 0.8747 to 0.9485, indicating that the models fit
well. The predictive models of grain MC were used to calculate the time point at which MC
would reach 25% in each cultivar. The early-maturing hybrid KWS9384 was predicted to
reach 25% MC in early September, whereas the mid–late-maturing hybrids XY335, DK159,
and YY439 were predicted to reach 25% MC at the end of September. Similarly, KWS9384
was predicted to reach 20% MC in mid-September, whereas XY335, DK159, and YY439 were
predicted to reach 20% MC in early, mid-, and late October, respectively. The early-maturing
hybrid KWS9384 dehydrated quickly after PM, and its MC was predicted to reach 16% by
the end of September. XY335 was predicted to reach 16% MC in early November.
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Table 3. Prediction of the harvest period for grains with different standard moisture contents and
parameters used to fit grain dehydration models.

MC% MC Standard

Hybrid
Model Coefficient

MC of PM %

25% 20% 16%

b c R2 SK-25%
AT ◦C Date SK-20%

AT ◦C Date SK-16%
AT ◦C Date

KWS9384 1025.3 2.35 0.9485 ** 29.9 1539.9 3 September 1747.5 13 September 1967.6 26 September
DK159 1139.1 2.32 0.8747 ** 27.2 1720.9 24 September 1956.5 10 October 2206.8 — —
XY335 1093.6 2.23 0.8950 ** 24.7 1677.1 21 September 1915.7 6 October 2170.2 7 November
YY439 1106.3 2.03 0.8962 ** 27.2 1771.2 26 September 2050.4 20 October 2352.1 — —

MC, moisture content. ** Coefficient of determination (R2) was significant at p < 0.01. — — grain moisture content
of this hybrid could not be predicted.

3.2. Changes in Kernel Weight during the Field Dehydration Period

The maize hybrids differed in the number of days required to reach PM. However,
the pattern of kernel weight variation was the same for all tested hybrids, with the ker-
nel weight stabilizing prior to PM. The 1000-kernel weight did not significantly change
after PM for any of the hybrids. This pattern was consistent in 2021 and 2022. Overall,
kernel weight first increased during the advanced harvest period, then stabilized. For each
cultivar, this relationship was fitted to a linear-plateau model (Figure 3). The 1000-kernel
weights of KWS9384, XY335, DK159, and YY439 stabilized at 0, 5, 9, and 12 days before
PM, respectively. Based on the grain dehydration prediction model (Table 3), the grain MC
values ranged from 25.9–31.0%, with an average of 28.7%, at the kernel weight stabiliza-
tion point. In KWS9384, XY335, DK159, and YY439, the 1000-grain weight decreased by
4.44 g d−1, 5.03 g d−1, 5.57 g d−1, and 5.6 g d−1, respectively, before the kernel weight
stabilized. In summary, when the grain MC was <31.0%, the harvest time did not affect the
kernel weight.

3.3. Changes in Key Grain Qualities during the Field Dehydration Period

Bulk density is an important indicator for measuring grain quality and storage prop-
erties. Here, variations in bulk density were generally consistent with changes in kernel
weight, and the patterns of variation in bulk density were consistent across hybrids. Fur-
thermore, bulk density stabilized prior to PM. As with the 1000-kernel weight, grain
bulk density showed a trend of first increasing, then stabilizing in all four hybrids. Sta-
bilization tended to occur between 17 and 24 days before PM. The bulk density of the
early-maturing hybrid KWS9384 decreased by 1.08 kg hl−1 d−1 in mid-August (17 days
before PM), after which the harvest bulk density remained unchanged. For the mid–late-
maturing hybrids DK159 and XY335, bulk density stopped increasing at the end of August
(24 days before PM); earlier harvesting was associated with decreases of 0.65 kg hl−1 d−1

and 0.47 kg hl−1 d−1, respectively. In early September (22 days before PM), the early-
harvest bulk density of the mid–late-maturing hybrid YY439 decreased by 0.43 kg hl−1 d−1.
After this period, harvesting did not affect bulk density. Notably, the period of bulk density
stability occurred earlier than grain weight stability (Figure 4). Based on the grain dehy-
dration model, the predicted grain MC ranged from 37.1% to 41.3% when bulk density
stabilized. Thus, harvesting maize at MC values of 25%, 20%, and 16% did not affect grain
bulk density.
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Figure 3. Maize 1000-kernel weight values during the harvest period for four hybrids. Linear-
plateau models are shown for (a) KWS9384, (b) DK159, (c) XY335, and (d) YY439. ** Coefficient of
determination (R2) was significant at p < 0.01.

There were no significant changes in the nutritional qualities of any hybrid from
30 days after silking until 30 days after PM. This indicated that maize could be harvested at
any time beyond 30 days after silking and maintain optimal levels of protein, oil, fiber, and
free fatty acids. The starch content showed a trend of first increasing, then stabilizing as the
harvest period was delayed. The linear–plateau models for all four hybrids were statistically
significant (p < 0.01, n = 70). Harvesting at any time later than 50 days after silking did
not affect the starch content; the average PM was 70 days after silking. Harvesting prior to
50 days after silking reduced the grain starch content by 0.197% d−1. There were differences
in the rate of starch content reduction between the hybrids. For each nutrient quality
component, the yield per unit area of grain first increased, then stabilized as the harvest
period was delayed. These data could also be fitted using a linear–plateau model. The
rate of yield increase varied between the nutritional quality components. Overall, the
starch, fiber, and free fatty acids reached maximum yield during the same time period
and showed consistent patterns with kernel weight. However, the maximum protein yield
was associated with decreased grain MC during harvest. These results indicated that the
early-maturing hybrid KWS9384 should be harvested after PM when MC is below 17.5%,
whereas the mid–late–maturing hybrid XY335 should be harvested after PM when MC is
below 23.6%. When the grain MC of XY335 was lower than 26% (similar to the MC at the
PM stage), the contents of starch, oil, and fiber were not affected (Table 4, Figure 5).
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of determination (R2) was significant at p < 0.01.

Table 4. Parameters for linear-plateau models used to analyze the relationships between nutritional
component yield and harvest time of hybrids KWS9384 and XY335.

Nutritional
Component Yield Hybrid

Model Coefficient Join Point

Intercept Linear Slope R2 Days Since
Start of Year

Yield
(Mg ha−1) MC%

Protein KWS9384 −1.8 0.01 0.5885 ** 263 1.3 17.5
XY335 −2.6 0.02 0.8322 ** 267 1.5 23.6

Oil KWS9384 −1.3 0.01 0.5983 ** 249 0.5 23.2
XY335 −0.7 0.00 0.4748 ** 260 0.6 26.4

Starch KWS9384 −19.2 0.11 0.7461 ** 256 10.0 19.9
XY335 −30.6 0.16 0.9116 ** 261 12.1 26.0

Fiber KWS9384 −3.3 0.02 0.5896 ** 237 0.5 30.3
XY335 −1.4 0.01 0.7416 ** 259 0.5 27.0

Free fatty acids KWS9384 −48.9 0.23 0.5400 ** 254 9.5 20.8
XY335 −14.8 0.09 0.2123 261 9.1 26.0

** Coefficient of determination (R2) was significant at p < 0.01.
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nutritional component. ** Coefficient of determination (R2) was significant at p < 0.01. * Coefficient of
determination (R2) was significant at p < 0.05.
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4. Discussion

It has become common for farmers to reduce maize drying costs by delaying harvest,
which reduces grain MC directly in the field [12,14]. Some studies have confirmed that
delaying maize harvest for one to two weeks after PM decreases grain MC from 30% to
15%, resulting in yield losses of up to 1255 kg ha−1 [20]. Delaying harvest from a high grain
MC to an MC of 26% can cause maize yield losses of 10–40 kg ha−1 d−1 [49]. In the present
study, we analyzed dynamic changes in maize grain MC from 30 d after silking through
30 d after PM in the Ningxia Irrigation Area. Rainfall was relatively low during the tested
growing seasons (2019–2022), which led to favorable conditions for drying maize stalks
and grains directly in the field [11]. From the timepoint with the highest measured grain
MC (60.6%) to the timepoint with the lowest MC (11.2%), grain weight first increased, then
stabilized. This trend was observed across cultivars with different maturity types. When the
grain MC exceeded 31.0% prior to PM, the 1000-kernel weight decreased by 4.44–5.6 g d−1;
in contrast, when the grain MC was ≤31.0%, the kernel weight and yield remained stable.
Research conducted in the main maize production areas in China’s Huang-huai-hai Plain
has shown that delayed harvesting reduces grain MC without causing yield losses due
to decreased grain weight [12], consistent with our results. Hunter et al. [50] found that
the same hybrid did not lose any seed dry matter after PM. Paszkiewicz et al. [51] found
no changes in kernel dry matter content after PM in the majority of cultivars studied
(14 of 18 hybrids in one experiment and 37 of 42 in another). The results of the present
study showed that grain weight remained unchanged after PM across four hybrids in four
different years. The MC in the harvested grains ranged from 25.9–31.0%, and the impact
of MC on grain weight varied between cultivars. The range of grain MC measured here
was consistent with previous reports of grain MC in many maize hybrids during the PM
period [12,31]. The differences in grain weight between hybrids were not affected by their
maturation periods [14,52]. We found that harvesting at any time point after PM did not
cause yield loss. However, care must still be taken in mechanical harvesting; yield loss
could result from a high machine harvesting fragmentation rate, field loss rate, or lodging
rate. Generally, the mechanical harvesting fragmentation rate is lowest when the grain MC
is between 18% and 23% [8,33,53,54].

Quality traits are crucial components of maize production. Grain quality is primarily
determined during the filling stage [55]. Grain bulk density is a key indicator for evaluating
quality and yield [33]. We here found that changes in bulk density caused by differences
in harvest time were consistent with changes in grain weight; bulk density first increased,
then stabilized. However, grain bulk density stabilized earlier than grain weight did. When
maize was harvested at MC < 37%, grain bulk density was not affected. Cloninger et al. [56]
found that grain protein concentrations remained unchanged during different harvest
periods, but that oil concentrations decreased. Here, we found no significant differences
in protein, oil, fiber, or free fatty acid contents in the grains from 30 days after silking to
30 days after PM. Thus, harvesting maize at any time later than 30 days after silking did not
affect the protein, oil, fiber, or free fatty acid contents. In contrast, the starch content first
increased, then stabilized as the harvest period was delayed. Grain starch content stabilized
by 50 days after silking, with the starch contents of grains harvested prior to that timepoint
decreasing by 1.97% d−1. Previous studies have indicated that delayed harvesting does not
affect wheat protein concentrations [57]. Md et al. [14] found that delaying harvest after
PM did not change the quality or content of proteins, oils, or starches in the grains; those
results were consistent across locations, years, harvest dates, and cultivars. The results
of the present study were similar to those of Md et al. [14], with no changes in the starch,
protein, oil, fiber, or free fatty acid contents or quality in maize kernels harvested at any
time beyond 20 days before PM.

We here found that maize grain bulk density stabilized earlier than grain weight. In
the early-maturing hybrid, grain weight (yield) stabilized during PM, whereas in the mid–
late-maturing hybrids, grain weight stabilized 5–12 days before PM. Grain bulk density
stabilized one to two weeks earlier than grain weight, which was two to three weeks
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before PM. However, there were differences between hybrids that matured at different
times. The data indicated that harvesting maize two to three weeks before PM would
affect yield but not bulk density or quality. Thus, in areas with low AT, or circumstances
in which an early frost prevented maize from reaching PM, harvesting mid–late-maturing
hybrids at 5–12 days before PM would not affect maize yield or nutritional quality, and
harvesting at two to three weeks before PM would not affect bulk density or nutritional
quality. However, these plants would have incompletely mature seeds with high MC
during harvest, meaning extra care should be taken during mechanical harvesting and
grain drying. High maize grain MC is associated with low mechanical harvesting quality,
which increases the cost of mechanical operations [8–10,58]. Decreasing grain MC also
reduces the risk of mold growth and toxin production in the grains [29,30]. In the literature,
differences in yield responses of maize to delayed harvest have been partially attributed
to genetic backgrounds and environmental conditions. The selection of maize varieties
that are suitable for a specific environment and planting regimen is a critically important
management strategy for farmers; the genetic background influences maize maturity time
and the susceptibility to stalk lodging before late harvesting [59]. Previous studies have
shown that straw lodging caused by delayed harvesting is the main cause of maize yield
loss [22,60]. Allen et al. [61] found that when MC was 15% at harvesting, the straw lodging
rate increased by 42%, resulting in a yield loss of up to 30%. The irrigation areas of
northwest China are rich in light and heat resources, with low air humidity and low rainfall,
providing highly favorable conditions for drying maize grains and straw in the field after
PM. In recent years, Chinese agricultural researchers have developed a low-moisture, direct-
harvest technology based on the delayed and late harvest technologies used for maize in
the northwest region. This strategy was identified as the main agricultural technology
of China in 2022 (http://www.moa.gov.cn/, accessed on 6 September 2022), and it is
therefore of great significance for improving the quality and efficiency of maize production.
Combining efficient production technologies with the natural light and heat resources of this
region will help to ensure continued high yield and quality in the maize produced in this
unique area.

5. Conclusions

Maize grain quality is an important economic trait that determines the market price
and application value of maize. Field dehydration of maize grains can reduce costs associ-
ated with airing and drying after harvest. This study provides the first detailed analysis
of changes in grain weight and quality during the transition from high to low grain MC.
In the Ningxia Yellow River Irrigation Area, the linear-plateau model results showed that
harvesting grains with MC > 31.0% (i.e., before PM) affected maize grain weight, whereas
harvesting grains with MC < 25.9% did not affect grain weight or yield. Furthermore, har-
vesting grains with MC < 37% did not affect grain bulk density, which tended to stabilize
one to two weeks earlier than grain weight did (two to three weeks before PM). Early-
maturing hybrids showed grain weight stabilization during PM, whereas grain weight
stabilized 5–12 days before PM in mid–late-maturing hybrids. Levels of protein, oil, fiber,
and free fatty acids in the kernels tended to stabilize around 30 days after silking, but starch
formation did not stabilize until 50 days after silking. Delayed harvesting of maize after PM
did not affect key qualities such as grain weight, bulk density, or levels of starch, protein,
oil, fiber, or free fatty acids. This study serves as an important reference for delaying
and improving maize yield and quality during low-moisture harvesting in the heat- and
light-rich region of northwest China.

http://www.moa.gov.cn/
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