ﬁ\ﬁ agriculture

Article

MobileNet-CA-YOLO: An Improved YOLOvV7 Based
on the MobileNetV3 and Attention Mechanism for Rice
Pests and Diseases Detection

Liangquan Jia 1T, Tao Wang 1'*, Yi Chen 2, Ying Zang !, Xiangge Li !, Haojie Shi 3

check for
updates

Citation: Jia, L.; Wang, T.; Chen, Y.;
Zang, Y.; Li, X.; Shi, H.; Gao, L.
MobileNet-CA-YOLO: An Improved
YOLOvV? Based on the MobileNetV3
and Attention Mechanism for Rice
Pests and Diseases Detection.
Agriculture 2023, 13, 1285. https://
doi.org/10.3390/ agriculture13071285

Academic Editor: Feng Yang

Received: 12 May 2023
Revised: 14 June 2023
Accepted: 20 June 2023
Published: 22 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Lu Gao V*

1 School of Information Engineering, Huzhou University, Huzhou 313000, China; 02426@zjhu.edu.cn (L.].);
2022388330@stu.zjhu.edu.cn (T.W.); 02750@zjhu.edu.cn (Y.Z.); 2021388222@stu.zjhu.edu.cn (X.L.)

2 School of Arts and Science, Fujian Medical University, Fuzhou 350122, China; chenyi0594@fjmu.edu.cn

College of Modern Agriculture, Zhejiang A&F University, Hangzhou 311300, China; shj@zafu.edu.cn

*  Correspondence: 02430@zjhu.edu.cn; Tel.: +86-183-6726-9616

1t These authors contributed equally to this work.

Abstract: The efficient identification of rice pests and diseases is crucial for preventing crop damage.
To address the limitations of traditional manual detection methods and machine learning-based
approaches, a new rice pest and disease recognition model based on an improved YOLOvV?7 algorithm
has been developed. The model utilizes the lightweight network MobileNetV3 for feature extraction,
reducing parameterization, and incorporates the coordinate attention mechanism (CA) and the SloU
loss function for enhanced accuracy. The model has been tested on a dataset of 3773 rice pest and
disease images, achieving an accuracy of 92.3% and an mAP@.5 of 93.7%. The proposed MobileNet-
CA-YOLO model is a high-performance and lightweight solution for rice pest and disease detection,
providing accurate and timely results for farmers and researchers.

Keywords: MobileNetV3; rice pests and diseases; YOLOV7; coordinate attention mechanism; SloU

1. Introduction

Rice is one of the main food sources in the world, with many countries, including
China, relying on it as a staple food. By 2050, global rice production is expected to increase
to about 650 million tons, which means a 40% increase in rice yield will be needed to meet
the growing demand for food from a rising population [1]. However, increasing global food
production faces some challenges. According to statistics, plant diseases and insect attacks
worldwide cause annual crop yield losses ranging from 20% to 40%, resulting in global
economic losses of USD 220 billion and USD 70 billion, respectively [2]. Traditional rice
pest and disease recognition primarily rely on manual identification, which is inefficient
and often leads to delayed detection. The widespread development of computer vision
technology has been applied to crop pest and disease recognition in the agricultural field [3].

Classifier-based methods have been widely used in the identification of rice diseases
and pests. These methods train models using machine learning algorithms, such as decision
trees, support vector machines (SVMs) [4], and K-nearest neighbor (KNN) [5], to classify
images based on their features. The advantages of these methods are their fast training
speed and high accuracy. However, their disadvantage is that they require professional
image processing techniques for complex diseases and pests, and their performance is
limited by the quality and quantity of the training data [6]. Vakilian et al. [7] proposed an
artificial neural network-based method for identifying beet armyworms, which achieved
an average accuracy of 90%. YAO et al. [8] developed a handheld device for capturing rice
pests and used algorithms, such as AdaBoost, for identifying and automatically counting
rice planthoppers with a detection rate of 85.2%. In addition to the classifier-based methods,
Goclawski et al. [9] and Zhou et al. [10] achieved good results in plant disease classification
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using the unsupervised machine learning algorithm k-means. These machine learning-
based technologies for agricultural pest detection require high-quality images, but in
real-world field environments, the background of rice diseases and pests is complex and
subject to weather conditions, making it difficult to obtain high-quality images. Manual
methods are also ineffective in selecting color and shape features of rice pests from complex
backgrounds, such as similar rice leaves and other non-target insects. Therefore, it is
challenging to meet the demand for fully automated monitoring of rice pests using machine
learning methods.

Deep learning has the advantage of automatically extracting features layer by layer and
has its own feature generator, resulting in faster and more accurate recognition compared
to machine learning [11]. This is particularly advantageous for detecting targets in complex
backgrounds. TAN et al. [12] compared the recognition performance of deep learning and
machine learning algorithms on the PlantVillage dataset [13] for identifying tomato leaf
diseases. The results showed that deep learning algorithms had better precision, recall, and
F1 values compared to machine learning algorithms. Meanwhile, Karar et al. [14] compared
the accuracy of machine learning algorithms and CNN algorithms for pest detection on the
IP102 dataset [15] and found that the detection accuracy of CNN algorithms was higher
than machine learning algorithms. Sun et al. [16] incorporated an attention mechanism and
developed a convolutional neural network model based on the attention mechanism to
identify soybean aphids, achieving promising results. Overall, these studies demonstrate
the superior performance of deep learning algorithms in object detection tasks compared
to traditional machine learning algorithms.

Currently, research on the identification of rice pests and diseases is limited, with most
studies focusing solely on detecting rice leaves. Additionally, existing models often have
a high number of parameters, requiring powerful hardware and lacking practicality on
mobile devices. To address these limitations, this article introduces a novel approach for rice
pest and disease detection based on an improved YOLOvV?7 algorithm. The proposed method
utilizes YOLOV7 as the object detection framework and MobileNetV3 as the backbone
network. To fully extract spikelet features, the CA (coordinate attention) mechanism is
incorporated into the feature fusion part of YOLOv7. Moreover, the SIoU loss function is
employed to enhance convergence speed. By optimizing the YOLO algorithm, the proposed
method achieves efficient recognition of multiple objects with lower power consumption,
which is advantageous for mobile device applications. The contributions of this article can
be summarized as follows:

(1) To enable better integration with mobile devices, this experiment used different
lightweight networks to replace the YOLOv7 backbone network, reducing the number
of parameters and increasing the speed of the model, resulting in the most suitable
network structure for rice pest and disease detection.

(2) The coordinate attention (CA) module was used to focus on the channel number of
the feature map, enhancing the representation of the target and further improving the
accuracy of rice pest and disease recognition.

(3) To improve the model’s generalization ability and accelerate training convergence
speed, this experiment compared different loss functions and ultimately selected SloU
as the bounding box loss function.

(4) To ensure the model achieves the best performance in rice pest and disease recognition,
the “rice pest and disease” object detection dataset was created in our laboratory.

2. Materials and Methods
2.1. Dataset

Crop pests and diseases pose a serious threat to agriculture [17], and traditional
monitoring and diagnosis methods are time-consuming and prone to misdiagnosis. Deep
learning technology, particularly computer vision and image recognition algorithms, has
become a hot research topic for crop pest and disease identification [18]. However, training
deep learning models requires a large amount of data, making image datasets an important
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component. By collecting, annotating, and organizing large-scale crop pest and disease
image datasets, deep learning models can be trained with sufficient data and samples,
improving their accuracy and generalization ability. The establishment of these datasets
also helps accelerate the diagnosis and control of pests and diseases, providing effective
technical support for the agricultural industry.

In this experiment, most of the image data was obtained from the Baidu image library.
We collected three types of disease images and three types of pest images through internet
channels, which included rice blast, rice false smut, bacterial leaf blight, rice borer, rice
planthopper, and rice locust image data. The image data is shown in Figure 1.

(f)

Figure 1. Image samples in the dataset. (a) Rice borer; (b) rice planthopper; (c) rice locust; (d) rice

blast; (e) rice false smut; (f) bacterial leaf blight.

To ensure the diversity and quantity of the collected data, we utilized web crawlers to
collect the images from various sources. In addition, we selected images that contained a
clear and complete target through manual selection to ensure the quality of the data.

The rice plant disease and pest datasets, which are mainly used to train deep learning
models in our experiment, are challenging to obtain. The datasets are often limited and
expensive to collect and annotate. Therefore, we utilized a combination of internet-based
data collection methods and manual selection to compile a sufficient and diverse dataset to
improve the accuracy and robustness of our model.

In order to improve the quality and efficiency of data annotation, this study adopted
the Makesense Al platform for data annotation and processing. Makesense Al is an open-
source online annotation tool that can be directly operated on a webpage without the need
for download or installation. The platform supports multiple annotation types, such as
points, lines, and boxes, and also supports various label export formats, including YOLO,
VOC XML, VGG JSON, and CSV, among others. Additionally, Makesense Al also provides
a pre-trained object detection model, SSD, to assist in manual annotation and significantly
improve annotation efficiency and accuracy.

During the annotation process using the Makesense Al platform, the research team
established strict annotation standards and selected professional annotators from within the
team. Annotators were able to quickly and accurately annotate large amounts of rice image
data with Makesense Al’s image annotation tool while ensuring the quality of annotations.

2.1.1. Data Augmentation

Rice plant disease and pest datasets are characterized by their diversity, rotational
invariance, and symmetry, making them suitable for data augmentation [19]. Previous
studies have used online data augmentation to enhance the diversity of training images
and improve the generalization capability of the network for datasets with sufficient data
samples but uneven image distribution and single sample types. Online data augmentation
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involves applying image enhancement strategies to each image batch that inputs into
the network. Specifically, various function mappings are applied to each image in the
batch, which generates a series of enhanced images to be trained and then put into the
neural network. This image augmentation method is random in nature and can enhance
the model’s generalization ability. However, as this study was based on a small-scale
image dataset collected by the research team, we chose offline data augmentation to
prevent overfitting and low model generalization during model training. By applying
different forms of function mappings to limited data and storing the transformed data
in a local dataset, the dataset can be expanded. Content and geometric transformations
were used in our experiment to cater to rice plant disease and pest characteristics for
offline data augmentation. Geometric transformations were adopted to modify image
attributes without altering the image’s content, such as image cropping (Random Resize
Crop, RPC), image translation, and image rotation [20]. Content transformation includes
color jittering, adding noise, and so on. The combination of geometric transformations
and content transformations allows for a comprehensive modification of image attributes,
enhancing the robustness and generalization capability of the model. The specific process is
illustrated in Figure 2. In Table 1, we present the classification and corresponding quantities
of images in the enhanced dataset for rice pests and diseases.

1768x1200  1271x877  1768x1200 1768x1200 1768x1200 1768x1200

i e
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Figure 2. Image samples in the data augmentation. (a) Original image; (b) resize; (c) translation;
(d) rotation; (e) contrast ratio; (f) noising.

Table 1. Dataset information.

Classification Number of Images
Rice borer 630
Rice planthopper 634
Rice locust 630
Rice blast 622
Rice false smut 627
Bacterial leaf blight 630

2.1.2. Dataset Partitioning

In this study, we used the rice plant disease and pest dataset collected by our team as
the training and testing datasets for object detection. The dataset was randomly split into a
training set, a validation set, and a test set in an 8:1:1 ratio. The training set was utilized
to train the model parameters, the validation set was used to adjust hyperparameters and
prevent overfitting, and the test set was employed to evaluate the model’s performance [21].
To ensure an even distribution of samples within the split datasets, we randomly shuffled
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the order of the samples in the dataset. We analyzed the class and image size distributions
in the dataset after the shuffle, and then adjusted the split ratio to meet the experimental
requirements and obtain better model performance.

2.2. MobileNet-CA-YOLO
2.2.1. MobileNetV3 Module

MobileNetV3 [22] is a deep neural network architecture that was obtained through a
network architecture search (NAS). It inherits the depthwise separable convolution from
MobileNetV1 and the linear bottleneck residual structure from MobileNetV2 [23]. The most
impressive improvement of MobileNetV3 is the addition of the Squeeze-and-Excitation
(SE) structure to the bottlenet structure, as well as the substitution of swish with h-swish.
The swish and h-swish formulas are shown below. Due to the long computation time of
sigmoid, especially on mobile devices, h-swish was used to approximate sigmoid. ReLU
has several benefits, including the ability to perform calculations on any hardware or
software platform, eliminating potential accuracy loss during quantization, and being more
pronounced in deep networks. MobileNetV3 is designed for efficient image classification
and object detection tasks in computer vision. It is designed to be efficient, meaning it
requires fewer computing resources compared to other architectures while still maintaining
high precision. The switch formula is shown in Equation (1), and the h-swish formula is
shown in Equation (2). The main network structure of MobileNetV3 is shown in Figure 3,
with detailed parameter information shown in Table 2.

swish x = x - 8(x), (1)

h-swish = x - [ReLU6(x + 3)/6], )

Equation (1) represents the swish activation function, which applies the element-wise
multiplication of the input “x” with the sigmoid function 5(x). It amplifies positive values
and diminishes negative values, introducing non-linearity to the computation.

Equation (2) represents the h-swish activation function, a more computationally effi-
cient version of swish. It applies the element-wise multiplication of the input “x” with the
result of the ReLU6 function applied to the sum of “x” and 3, divided by 6.

For our experiment, we have selected MobileNetV3-small as the backbone network for
feature extraction in YOLOV7. By using MobileNetV3-small, which is specifically designed
for resource-constrained environments, we aim to efficiently extract important features
from the input data.

In this approach, we utilize the feature extraction layer of MobileNetV3-small, which
includes the layers before the pooling layer mentioned in the table. By focusing on the
feature extraction layer, we can effectively capture relevant and discriminative features
from the input data.

MobileNetV3 block

Figure 3. MobileNetV3 principal network architecture.
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Table 2. MobileNet V3 network parameter information.

Input Operator Exp Size #out SE NL S
2242 x 3 conv2d, 3 x 3 - 16 - HS 2
1122 x 16 bneck, 3 x 3 16 16 Vv RE 2
56% x 16 bneck, 3 x 3 72 24 - RE 2
282 x 24 bneck, 3 x 3 88 24 - RE 1
282 x 24 bneck, 5 x 5 96 40 Vv HS 2
142 x 40 bneck, 5 x 5 240 40 v HS 1
142 x 40 bneck, 5 x 5 240 40 Vv HS 1
142 x 40 bneck, 5 x 5 120 48 Vv HS 1
142 x 48 bneck, 5 x 5 144 48 v HS 1
142 x 48 bneck, 5 x 5 288 96 Vv HS 2
72 x 96 bneck, 5 x 5 576 9% v HS 1
72 x 96 bneck, 5 x 5 576 96 Vv HS 1
72 x 96 conv2d, 1 x 1 - 576 Vv HS 1
72 x 576 pool, 7 x 7 - - - - 1
12 x 576 conv2d 1 x 1, NBN - 1024 - HS 1
12 x 1024 conv2d 1 x 1, NBN - k - - 1

This approach aligns with our experimental design, where the primary objective is
to detect and identify rice pests and diseases in real-world scenarios. By leveraging the
efficient architecture of MobileNetV3-small, we can extract essential features that are crucial
for accurate detection.

By utilizing the feature extraction layer of MobileNetV3-small, we can benefit from its
inherent ability to capture rich representations without the need for additional training or
transfer learning. This ensures that our model is specifically tailored to the task of rice pest
and disease detection.

2.2.2. Add the CA Attention Module

Adding attention mechanisms to neural networks is an efficient method for improving
their feature extraction capabilities. One such mechanism is the coordinate attention
(CA) module proposed by Hou et al. [24]. This module is highly flexible and can be
easily integrated with various classic network structures to improve the feature extraction
capabilities of the network.

The CA module relies on channel information and divides attention into two 1D
feature encodings, which aggregate features separately along two independent spatial
directions. Integrating the CA attention mechanism into the model can enhance the model’s
perception of different spatial positions and targets. This method not only captures de-
pendency relationships along one spatial direction but also preserves accurate position
information along the other spatial direction [25]. The introduction of the coordinate at-
tention mechanism enables the model to focus on more semantic information [26], thus
improving its generalization ability. The structure of the CA module is illustrated in
Figure 4.

Incorporating the coordinate attention mechanism (CA) can provide more semantic in-
formation for the YOLOV7 object detection model, thereby improving its detection accuracy
and efficiency. Specifically, the CA can assist the model in more accurately locating regions
of interest and identifying properties, such as the shape and size of the detected objects [27].
In addition, introducing the CA can reduce unnecessary computational complexity, thereby
improving the efficiency of the detection algorithm. Therefore, the attention mechanism is
an effective means of optimizing the YOLOv7 model.
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i Input

Residual
CxH x|l X Avg Pool Y Avg Pool Cx1xW
Clr x 1 x(W+H)
BatchNorm + Non-linear Clr x 1 x(W+H)
v split v
CxHx|1 Conv2d Conv2d Cx1xW
CxHx|1 Sigmoid sigmoid Cx1xW
Y
Re-weight CxHxW
l Output

Figure 4. The structure of the CA attention module.

2.2.3. SIoU Loss Function

Object detection is one of the core problems in computer vision, and its effectiveness
largely depends on the loss function used [28]. Traditional object detection loss functions
are typically based on the aggregation of bounding box regression metrics, such as the
distance, overlapping area, and aspect ratio (e.g., GloU, CloU, ICIoU, etc.) between the
predicted and ground truth boxes [29]. However, existing methods often overlook the
problem of direction mismatch between the ground truth and predicted boxes, which leads
to drifting of the predicted boxes during the training process, resulting in slow convergence
and poor performance of the model. To address this issue, Gevorgyan [30] proposed an
SIoU loss function. This method redefines the loss function in object detection tasks, which
consists of four parts: angle loss, distance loss, shape loss, and IoU loss. Specifically, the
angle loss considers the angle between the vectors of the ground truth and predicted boxes,
the distance loss considers the distance between the ground truth and predicted boxes, the
shape loss considers the shape difference between the ground truth and predicted boxes,
and the IoU loss calculates the intersection over union between the predicted and ground
truth boxes to evaluate the accuracy of the predicted boxes. By introducing these four
loss functions, the accuracy and robustness of the object detection model can be improved
while avoiding overfitting issues. The calculation of angle contribution cost in the SloU loss
function is shown in Figure 5, and the final definition of the SIoU loss function is shown in
Equation (3).
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In Equation (3), A is the angle loss function, where o represents the center point
distance between the predicted box and the ground truth box, bcht and b%;, are the center
point coordinates of the ground truth box, and b, and b, are the center point coordinates
of the predicted box. A is the distance loss function, in which Cy; and Cy; represent
the width and height of the bounding box that encompasses both the ground truth and
predicted boxes. () denotes the shape loss function, where w$ t 8t w, and h denote the
width and height of the ground truth and predicted boxes, respectively.

2.2.4. Improved YOLOv7 Network Architecture

YOLO is a fast, accurate, and high-quality one-stage object detection algorithm that is
often chosen as the preferred option for object detection. Based on deep learning, YOLOv?7
performs object detection on images by simultaneously detecting multiple objects and
providing their precise bounding boxes in a single forward pass. YOLOv7 outperforms
most detectors in terms of speed and accuracy and has become the preferred model for
many real-time applications [31].

Combining YOLOvV7 with MobileNetV3 enables the advantages of both algorithms to
be fully utilized, achieving fast and accurate object detection. YOLOV?7 provides an efficient
object detection algorithm, while MobileNetV3 has efficient computational speed and low
memory consumption, making the combined model suitable for real-time applications
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and enabling deep models to be better ported to embedded devices. By introducing a
coordinate attention mechanism (CA) to the YOLOvV? object detection model based on the
MobileNetV3 architecture, more semantic information can be provided, thereby improving
the precision and efficiency of detection. The network architecture of MobileNet-CA-YOLO
is shown in Figure 6.
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1.Input

640*640*3

- o

deploy

Figure 6. MobileNet-CA-YOLO network structure.

2.3. Model Evaluation Criteria

In order to evaluate the effectiveness of the MobileNet-CA-YOLO network model in
rice disease and pest detection, this study selects precision (P), recall (R), F1 score, and
mean average precision (mAP) as evaluation metrics [32]. In the mAP evaluation metric,
the experiment uses mAP@.5 with an IoU threshold of 0.5 as the evaluation metric. The
calculation formula for precision is shown in Equation (4), the formula for recall is shown
in Equation (5), the formula for F1 score is shown in Equation (6), and the formula for mAP
is shown in Equation (7).

.. TP
Precision = TP+ FP 4)
TP
recall = TP—}——FI\I (5)
2TP
F1 (6)

~ 2TP + FN + FP
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n

mAP = ()

In Equations (4)—(7), TP represents the number of regions of rice disease and pests
correctly detected, FP represents the number of regions of rice disease and pests that were
not correctly detected, and FN represents the number of regions of rice disease and pests
incorrectly detected. The AP value is the area under the curve formed by the combination
of different precision (P) and recall (R) points, with n representing the number of classes.

3. Results and Analysis
3.1. Experimental Platform and Parameter Settings

The model training was conducted on a Linux operating system using the PyTorch
training and testing framework. The server was equipped with an Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30 GHz processor, 64 GB of RAM, and an NVIDIA TITAN Xp 12 GB
graphics card, and was installed with the CUDA 11.2 parallel computing framework and
the CUDNN 8.2 deep neural network acceleration library. The input image size was
set to 640 pixels x 640 pixels, the batch size was set to 12, the training steps were set to
200, the learning rate was 0.01, the momentum was set to 0.937, and random stochastic
gradient descent (SGD) optimization with a weight decay of 0.005 was used. The model
was trained on the server to save time and was subsequently validated locally, with detailed
environment configurations provided in Table 3. The training parameter settings are shown
in Table 4.

Table 3. Environment configuration.

Configuration Local Configuration Server Configuration
CPU Inter Core i3 12100 Inter Core E5-2650
Hardware GPU GeForce GTX 3060-12G GeForce RTX 3080ti-12G
RAM 16 GB 64 GB
Soft System Win 11 Ubuntu 22.04
ottware Python 38 3.8
Pytorch 1.8 1.8
Environment CUDA 11.2 11.2
Cudnn 8.2 8.2

Table 4. Parameter Settings.

Parameter Values
Base learning rate 0.01
End learning rate 0.1

Momentum 0.937

Batch size 12

Learning rate policy SGD
Droupout 0.0005
Epoch 200

3.2. Evaluation of the MobileNet-CA-YOLO Experimental Results
3.2.1. Comparison of the Results of Different Models

In order to demonstrate the superior application of the MobileNet-CA-YOLO network on
mobile devices, with higher computational efficiency and better performance in rice disease
and pest detection, we conducted comparative experiments on parameters, GPU consumption,
and mAP values between the original YOLOv7 and YOLOv7-MobileNetV3, MobileNet-CA-
YOLO, YOLOv7-tiny, YOLOv7-shuffleNetV2-CA, and YOLOv-MobileNetV2-CA. The results
are shown in Table 5, and the model performance comparison is presented in Figure 7.
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Table 5. Analysis of the experimental effects of the different models.
Model Parameters GPU/% mAP@.5/% mAP@.5:.95/%  FPS
YOLOv7 37.223M 72.3 94.6 78.14 52.08
YOLOv7-MobileNet V3 6.596M 23.25 91.3 63.2 71.42
YOLOvV7-shuffleNetV2-CA 6.999M 22 86.5 56.5 85.47
YOLOv7-MobileNetV2-CA 6.604M 325 90.8 63 78.13
MobileNet-CA-YOLO 6.956M 28 93.7 67 84.74
YOLOvV7-tiny 6.2M 20.8 88 51.5 87.7
b T 96
3
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better

Figure 7. Compared with other models, the model in this experiment can achieve better performance
in detecting rice pests and diseases.

Based on the analysis results in Table 5, our proposed MobileNet-CA-YOLO model
exhibits a significant reduction in parameter size, accounting for only 18.69% of the original
YOLOvV7 model. Compared to the YOLOv7-MobileNetV3 model with MobileNetV3 as the
backbone network, the MobileNet-CA-YOLO model only increases the parameter size by
0.36M. When considering the same batch size setting, the GPU memory consumption of the
MobileNet-CA-YOLO model is merely 28%, while the YOLOv7 model consumes 72.3% of
GPU memory. In terms of mAP evaluation, the MobileNet-CA-YOLO model outperforms
the YOLOvV7-MobileNetV3 model by 2.4 percentage points and surpasses the YOLOv7-tiny
model by 5.7 percentage points. Additionally, regarding the FPS evaluation metric, the
MobileNet-CA-YOLO model demonstrates a 32.66 FPS improvement over the YOLOvV7
model and a 13.45 FPS improvement over the YOLOv7-MobileNetV3 model, with only
a marginal 2.96 FPS reduction compared to the YOLOv7-tiny model. Figure 7 illustrates
the superior performance of our proposed model in rice disease and pest detection. It
is worth noting that the YOLOv7-tiny model achieves the fastest recognition speed but
at the expense of lower accuracy. On the other hand, the YOLOv7 model exhibits the
highest recognition accuracy but lags behind in terms of recognition speed compared
to the other models. These findings highlight that the MobileNet-CA-YOLO model not
only advances parameter reduction but also significantly improves recognition speed and
reduces hardware requirements, making it more suitable for rice disease and pest detection.

3.2.2. Comparison of the Results of Different IoU Loss Functions

In this experiment of training the MobileNet-CA-YOLO network for rice disease and
pest detection, we compared the SloU, CloU, and WIoU loss functions, and the results are
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shown in Table 6. The comparison of precision and recall under different loss functions is
shown in Figure 8.

Table 6. Comparison of the recognition effects of the different loss functions.

IoU Loss Function P/% mAP@.5/% mAP@.5:.95/% FPS
CloU 89.7 91.4 65 75.1
WIoU 91.6 91.7 63.2 76.9
SloU 92.3 93.7 67 84.74
93
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92 ,-—__ e -
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91 .a"
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'/
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/
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Figure 8. Comparison of precision and recall under the different loss functions.

According to the analysis in Table 6, the MobileNet-CA-YOLO model using the SloU
loss function achieves the highest precision, which is 1.3 percentage points higher than the
WIoU loss function and 2.6 percentage points higher than the default CloU loss function. In
addition, the MobileNet-CA-YOLO model using the SIoU loss function is also faster than
the other two loss functions. As shown in Figure 8, the model using the SloU loss function
performs better in both precision and recall than the other two loss functions. Therefore,

we believe that selecting the SloU loss function as the bounding box loss function for the
MobileNet-CA-YOLO model is the best choice.

3.2.3. MobileNet-CA-YOLO Experimental Results Analysis

The confusion matrix is a vital tool in machine learning and is used to compare
classification results with actual predictions. It allows us to display each classification
result of the model training process clearly and conveniently. In this experiment, the
confusion matrix is mainly used to evaluate the performance of the MobileNet-CA-YOLO
detection algorithm. It is a two-dimensional table-shaped matrix where rows represent
the actual categories and columns represent the predicted categories. By counting the
prediction results between different categories, various metrics such as accuracy, recall, and
misidentification rate can be determined. The confusion matrix is shown in Figure 9, and
the recognition results of each category are shown in Table 7.
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Figure 9. Confusion matrix.
Table 7. Identification effect of various rice diseases and pests.
Classification P/% mAP@.5/% mAP@.5:.95/%
Rice borer 95.8 97.8 734
Rice planthopper 78.2 78.8 42.5
Rice locust 98.3 99.1 83.1
Rice blast 86.9 89.5 56
Rice false smut 93.7 98.4 71.3
Bacterial leaf blight 93.1 98 75.4

Based on the analysis of the confusion matrix, in this experiment, rice diseases and
pests were divided into six categories, including three pests: rice borer, rice planthopper,
and rice locust, and three diseases: rice blast, rice false smut, and bacterial leaf blight.
Taking rice blast as an example, it can be observed that the model achieved a classification
accuracy of 89% for rice blast. The false negative rate, which represents the rate at which
rice blast was incorrectly predicted as the background, was 11%. The false positive rate,
indicating the rate at which the background was mistakenly identified as rice blast, was
19%. Analyzing Table 6, it can be seen that the model performed best in identifying rice
borer and rice locust, with accuracies of 95.8% and 98.3%, respectively. However, the
recognition accuracy for rice planthopper was slightly lower at 78.2%.

In this experiment of training rice diseases and pests using the MobileNet-CA-YOLO
network, the F1_curve, PR_curve, P_curve, and R_curve during the model training process
are shown in Figure 10.

These curves provide insights into the model’s learning performance for the six
different types of rice diseases and pests. The F1_curve reflects the accuracy of the model’s
identification of different rice diseases and pests. The PR_curve can clearly show the
mAP®@.5 value for different rice diseases and pests, where the larger the area enclosed by
the curve on the x-axis and y-axis, the better the performance.



Agriculture 2023, 13, 1285

14 0f 18

F1

Precision

1.0 e — 1.0 -
/ —— m,\,\ —— Rice borer i —— Rice borer 0.978
N e BY Rice planthopper Rice planthopper 0.792
7 \ —— Rice locust | —— Rice locust 0.992
4 —— rice blast —— rice blast 0.890
0.89/// —— Rice false smut 0.8 —— Rice false smut 0.988
/ —— Bacterial leaf blight —— Bacterial leaf blight 0.982
/ = all classes 0.91 at 0.394 = all classes 0.937 mMAP@0.5
0.6 0.6
c
l\ ]
=
[ o
o
| I
0.4 0.4
0.2 0.2
\
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Recall
(a) (b)
1.0 —
—— Rice borer — —— Rice borer
Rice planthopper \ S Rice planthopper
—— Rice locust —— Rice locust
—— rice blast —— rice blast
Rice false smut 0.8 Rice false smut
—— Bacterial leaf blight —— Bacterial leaf blight
= all classes 1.00 at 0.888 = all classes 0.98 at 0.000
0.6
T
]
4
0.4 |
\
\
0.2
‘\
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
(c) (d)

Figure 10. (a) F1_curve; (b) PR_curve; (c) P_curve; (d) R_curve.

In this experiment, a batch size of 12 was used, so 12 images were taken for training
each time. The YOLO algorithm provides good visualization effects. After training starts,
train*.jpg images can be viewed to observe the training images, labels, and augmentation
effects. After each epoch of training, test_batch*_gt.jpg can be used to see the ground
truth bounding boxes on the validation set, and test_batch*_pred.jpg can be used to see
the predicted bounding boxes for each epoch. An example of the predicted results on the
validation set during model training is shown in Figure 11.

Based on the analysis in Figure 11, it can be concluded that the model performed
well on the validation set after multiple epochs of training. Specifically, the model learned
more easily when the target object was larger and there were fewer targets in the image,
such as rice borer and rice locust. However, it was more difficult for the model to learn
in situations where the target object was smaller and there were too many targets in
the image, such as rice planthopper, rice blast, and bacterial leaf blight, especially for
diseases with few and similar features, such as rice blast and bacterial leaf blight. Through
multiple iterations of training, the MobileNet-CA-YOLO model demonstrated significant
improvements, achieving impressive accuracy metrics. Specifically, the model achieved an
F1 score of 91%, a precision of 92.3%, and an mAP@.5 of 93.7%. It is worth noting that the
model’s performance varied across different classes, with the lowest precision observed in
the rice planthopper class at 78.2% and the rice blast class at 86.9%. This comprehensive
evaluation underscores the model’s effectiveness while acknowledging the variability in
accuracy rates among different categories.
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3.2.4. Analysis of MobileNet-CA-YOLO Test Results

rice biast
rice brice blast

rice blast

During the inference testing process, the highest accuracy model saved from the
training process was used for testing. In this experiment, three models, YOLOvZ7, YOLOV7-
MobileNet V3, and MobileNet-CA-YOLO, were used to identify rice diseases and pests in
the test images. The recognition results are shown in Figure 12.
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Figure 12. Recognition result. (a) YOLOvV7; (b) YOLOv7-MobileNet V3; (c) MobileNet-CA-YOLO.

The comparison results of the YOLOvV7, YOLOv7-MobileNet V3, and MobileNet-CA-
YOLO models are shown in Figure 12 for rice blast disease (disease) and rice planthopper
(pest) detection. It can be clearly observed that the detection performance of YOLOv-
MobileNet V3 is relatively poor, while MobileNet-CA-YOLO exhibits the best detection
performance. In the rice blast disease test, MobileNet-CA-YOLO used six detection boxes
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and recognized almost all the rice blast disease targets in the image; in the rice planthopper
test, MobileNet-CA-YOLO used sixteen detection boxes to identify a large number of visible
rice planthopper targets in the image. Overall, MobileNet-CA-YOLO can detect a variety
of diseases and pests quickly, accurately, and comprehensively, providing strong technical
support for crop protection.

4. Discussion

Although the proposed model for rice disease and pest detection in this study has
achieved good results in terms of accuracy and lightweight design, there are still some key
issues that deserve further discussion and research.

Firstly, the dataset plays a crucial role in the accuracy of the model. Despite using
images collected from various online resources and annotated using Makesense Al, there
may still be biases and incompleteness in the dataset. Failure to cover all potential disease
and pest samples can result in a performance decrease in the model in unknown scenarios.
Additionally, manual annotation of the dataset introduces subjectivity, such as emotions,
fatigue, or personal biases, which can lead to misclassification or incorrect labeling. In
future research, it is important to consider using computer algorithms and machine learning
techniques to assist in human classification and annotation, improving accuracy and
consistency. For example, combining image recognition algorithms or semi-supervised
learning algorithms can yield more reliable results by integrating algorithmic outputs with
human classifications and annotations.

Secondly, computational efficiency and memory consumption are important consid-
erations for deploying the model on mobile devices. Although replacing YOLOv7 with
MobileNetV3 as the backbone network reduced the number of model parameters, there is
still room to explore more lightweight model structures and algorithms to further improve
computational efficiency while maintaining high accuracy. Techniques such as model quan-
tization and pruning can be employed to further reduce the model’s size and inference time.
Additionally, adopting knowledge distillation by designing a complex model as the teacher
model and a lightweight model as the student model can ensure that the lightweight model
achieves higher performance.

Lastly, while the experiments employed data augmentation techniques to enhance the
model’s robustness by expanding the dataset, these simple methods may not adequately
address complex environmental variations such as occlusions, shadows, and poor lighting
conditions. Therefore, further research is warranted to improve the model’s adaptability to
diverse environments and scenarios, ultimately enhancing the feasibility and reliability of
practical applications.

In our future work, we plan to apply the developed digital farmland display system,
created in the laboratory, to rice fields and deploy sensor devices in real-world environ-
ments. This will enable the collection of more authentic rice field image data and facilitate
the expansion of the dataset to enhance its quality. Additionally, we will actively con-
sider aspects, such as crop recognition and weed identification under field conditions,
with a particular emphasis on incorporating images of healthy crops. These supplemen-
tary research efforts will contribute to improving the reliability and adaptability of the
model in real-world applications. By integrating the digital farmland display system into
actual rice fields and incorporating sensor devices, we will obtain more accurate and
comprehensive data, while simultaneously refining the algorithm for effective practical
implementation. These endeavors will enhance the model’s versatility and accuracy in
adapting to diverse scenarios.

5. Conclusions

(1) A dataset for rice disease and insect pest detection was created by collecting images
from various online sources, such as Baidu Image Search and Zhihu, and labeling
the images using the free data labeling application, Makesense Al To improve the
robustness of the model and the efficiency of detection in complex environments,
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image augmentation was applied during dataset creation. The final dataset included
three types of insect pests (rice borer, rice planthopper, and rice locust) and three types
of diseases (rice blast, rice false smut, and bacterial leaf blight).

(2) MobileNetV3 was used to replace the backbone network of the original YOLOV? algo-
rithm. YOLOV? provides an efficient object detection algorithm, while MobileNetV3
has high computation speed and low memory consumption, resulting in a signifi-
cant reduction in the number of model parameters. Combining YOLOv7 with Mo-
bileNetV3 makes it possible to deploy the rice disease and insect pest detection model
on mobile devices.

(3) The coordinate attention (CA) module was added to the feature fusion layer of
YOLOV? to provide more semantic information for the detection model, thereby
improving the accuracy and efficiency of detection. The CloU loss function was
replaced with SIoU to enhance the precision and robustness of the detection model
while avoiding overfitting. Ultimately, MobileNet-CA-YOLO achieved good results
in testing.

Opverall, the proposed rice disease and insect pest detection model is effective, efficient,
and suitable for mobile deployment, providing strong technical support for crop protection.
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