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Abstract: Temperature is the basic factor that differentiates vegetation around the world. All field
experiments require the indication of the range of temperatures occurring in a given growing season.
Temperature is an important factor determining fruit plant production, both in the growing season
and in the winter dormant period. Various air temperature indicators were developed in a way that
allowed the best possible description of adaptations of species, cultivars, and regions of adaptations to
cultivation. They are based on experimentally obtained data and calculated optimal temperatures of
growth and development of plants in particular development stages. In horticulture, the description
of dependencies of the growth and development of plants on weather began to be accompanied with
the development of simulation models. The aim of this manuscript was a new review of fruit plant
temperature indices to predict abiotic and biotic hazards in fruit production for various selected types
of fruit crops in a seasonal temperate climate. This is especially important due to the growing risk of
climate change, which significantly alters local growing conditions. Therefore, it is very important
to evaluate and present a set of specific indicators for producers, which we have reviewed from
the current literature and presented as follows. Climatic conditions characteristic of a given region
should be of key importance for the selection of species for commercial cultivation and planning of
protection measures.

Keywords: sum of active temperatures (SAT); growing degree days (GDD); latitude temperature
index (LTI); phenological model; fruit species; plant development prediction; treatment against
pest optimization

1. Introduction

Temperature is the basic factor that differentiates vegetation around the globe [1,2].
Trees and shrubs with edible fruits are no exception in this regard. Temperature, serving
as a measure of the amount of heat, is one of the most important factors affecting the
growth and development of plants. For most plants in temperate climates, the tempera-
ture optimum for growth is 20–30 ◦C [3], but the temperature at night is also important
(Table 1). Particular species of fruit plants exist in a range from minimum to maximum
temperatures (Table 2) for their growth and development. Any excess results first in a
decrease in immunity causing disease, and then death [4]. Depending on the cultivar, “safe”
temperature for mango (Mangifera indica L.) at which no damage occurs to the fruits or
leaves varies from 10 to 12 ◦C [5]. On the other hand, there are plants that survive severe
frosts without or with minor damage [6]. Examples include plants growing in temperate
climates. According to Proebsting and Mills [7], the flowers of the trees in full bloom sur-
vive temperatures below zero degrees Celsius. It is estimated that temperatures between
−2.7 ◦C and −3.1 ◦C damage only 10% of flowers in full bloom in these species (Table 3).
Next to genetic predisposition [8], resistance to low, but also high temperatures depends
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on many factors, including chemical composition, structure, physiological adaptation, and
geographical location [9,10].

Temperature affects the basic processes that occur in plants, such as photosynthesis,
transpiration, and respiration. Moreover, it regulates the rate of transition of plants from
the vegetative to generative phase [11–13]. The significance of the effect of temperature on
yield quality is reported in most studies on fruit plants [14–22].

At temperatures specific for them, plants show characteristic growth and development
in particular physiological phases (Tables 1–3). Two temperature ranges are usually desig-
nated that affect plant development: low temperatures (chilling) and high temperatures
(forcing) [23]. The induction of vegetative growth in a given season occurs after the chilling
period, whereas growth and development depend on the range of higher temperatures. The
range of low temperatures refers to a prolonged accumulation of chilling at which the plant
is able to break winter dormancy. It ensures proper development of particular elements
in the flower bud, and then development of fruits when higher temperatures occur. After
the dormant period, the accumulation of heat forces their transition through subsequent
phenological phases of the plant, and leads to reaching the phase of fruit maturity.

The effect of temperature on the growth and development of plants differs depend-
ing on the species (Figure 1). The Cornelian cherry first blossoms and only then leaves
appear [24]. In apple trees, leaves develop together with the bursting of flower buds. Ac-
cording to the comparison presented, the Cornelian cherry was prolonged in time, because
the bursting of buds occurred already in mid-February and lasted until the end of April,
and the bursting of buds of apple trees was observed from mid-April to the first days of
May. Sum of actives temperatures until the full bloom of Cornelian cherry was 238 ◦C, and
for apple tree 587 (434 + 153) ◦C.

Table 1. Optimum temperature ranges for some fruit plants.

Crop The Range of Optimum Temperature Literature

Grapes
For optimum photosynthesis activity 25–30 ◦C;
A diurnal min./max temperature for sugar and organic acid content 25–30 ◦C;
Max night temperature for color and flavor 15/25 ◦C

[25]

Apple

For harvest fruit weight day/night temperatures from 10–40 DAFB
cv. ‘Braeburn’ 19/9 ◦C
‘Golden Delicious’, ‘Fuji’ 22/12 ◦C;
Optimal temperature for growth of leaf and floral initiation 18–21 ◦C
For apple tree growth 21–24 ◦C

[3]

[26]
[27]

Peach 26 ◦C [28]

Sweet cherry For shoot growth 12–21 ◦C;
For flowering 12–15 ◦C [29]

Strawberry
For leaf and petiole growth 25/12 ◦C
For roots growth 18/12 ◦C
For whole plant growth 25/12 ◦C

[30]

Raspberry
For production leaves before the terminal flower 15–17 ◦C;
For node production 22 ◦C;
For flowering the day/night temperature 29/24 ◦C

[31]

Table 2. Minimum and maximum temperature for some fruit plants.

Crop The Range of Minimum Temperature The Range of Maximum Temperature

Grapes −20 ◦C [32] 35–40 ◦C [32]

Apple −15 to −30 ◦C dependent of rootstocks [33] 30 ◦C [34]

Pear −27 ◦C [35] 32 ◦C [35]

Peach −20 to −30 ◦C [36] 25–30 ◦C during flowering [37]
34 ◦C [38]

Sweet cherry −25 to −30 ◦C [36] 33 to 37 ◦C during harvest [39]

Strawberry −10 to −20 ◦C at snowless late autumn [40] 30–45 ◦C [41]

Raspberry −27 to −30 ◦C [42] 40–55 ◦C [43]
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Table 3. Critical damage temperature (◦C) for some deciduous fruit trees, grapevines, and several
small fruits.

Crop Phenological Stage 10% Kill 100% Kill

Apple [7]

Silver top −11.9 −17.6

Full bloom −2.9 −4.7

Post bloom −1.9 −3.0

Apricot [44,45]

Tip silver −4.3 −14.1

Full bloom −2.9 −6.4

Post bloom −2.3 −3.3

Sweet cherry [45]

First swell −11.1 −17.2

Full bloom −2.4 −3.9

Post bloom −2.2 −3.6

Peach [7]

First swell −7.4 −17.9

Full bloom −2.7 −4.9

Post bloom −2.5 −3.9

Pear [7]

Scales separate −8.6 −17.7

Full bloom −2.7 −4.9

Post bloom −2.7 −4.0

Plum [7]

First swell −11.1 −17.2

Full bloom −3.1 −6.0

Post bloom −2.6 −4.3

Post bloom −1.0 −4.0

Grapes [7]

First swell −10.6 −19.4

Bud burst −3.9 −8.9

First leaf −2.8 −6.1

Second leaf −2.2 −5.6

Third leaf −2.2 −3.3

Four leaf −2.2 −2.8

Blackberry [46]
Swelled flower buds n.d −6.1

Fully opened buds n.d −0.6

Strawberry [47]

Tight bud n.d −5.6

Full bloom n.d −0.6

Immature fruit n.d −2.2
[nb]—literature; n.d—no data.
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Figure 1. Comparison of the effect of the sum of active temperatures (SAT) measured at a base
temperature of 0 ◦C on reaching particular physiological stages by plants of Cornelian cherry (Cornus
mas L.) cultivar ‘Bolestraszycki’ in 2020 and apple tree (Malus domestica Borksh.) cultivar ‘Ligol’ in
2012. Due to the prolonged winter in 2020, measurements commenced approximately 2 weeks later.

Humankind has recognised the importance of temperature for the development of
plants since ancient times. Already Pliny the Elder in his book Natural History wrote
that olive trees planted in cold regions produce scarce fruit, and oil made from them is
not tasty. In cultivation of grapevines, he also emphasised the importance of the site,
and recommended planting vineyards on southern slopes to ensure higher temperatures
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(Vitis amat colles—vines love slopes) [48]. In modern times, the first concepts regarding
temperatures were described in 1735 by Réaumur. He assumed that in order to transition
to subsequent development stages, plants require certain constant temperature—“forcing
units”. The introduction of the concept of “forcing units” led to its use in agricultural studies
in describing development stages of plants and their pathogens (Table 4). It was found
that individual development of many plants depends on so-called “physiological time”
that determines the total amount of heat that needs to be absorbed by a given organism in
order to reach subsequent development stages [49]. Already in 1878, Starchey, describing
the growth of agricultural crops, defined formulas for the determination of ‘accumulated
temperature’ above the base temperature of 5.6 ◦C (42.08 ◦F) at which plant vegetation
begins. Formulas by Starche were adopted by the London and Couties Coke Association in
1933 for the calculation of energy demand for heating buildings, depending on the number
of degree days of heating [49].

Table 4. Temperature thresholds for the most dangerous diseases and pests of selected fruit crops.

Crop The Most
Dangerous Diseases

Thermal
Threshold

The Most
Dangerous Pests

Thermal
Threshold

Grapes Grapevine powdery mildew
(Erysiphe necator)

For ascosporic infection:
5 ◦C and 31 ◦C [50]

Grape phylloxera
(Daktylosphaera vitifoliae)

For radicole development 6 ◦C,
For hatch of gallicole eggs 8.7 ◦C,
For post embryonic development
7.8 ◦C [51]

Apple Apple scab (Venturia
inaequalis) 0 ◦C [52] Codling moth

(Cydia pomonela)
For preoviposition period
11.4 ◦C [53]

Pear Pear rust
(Gymnosporangium sabinae) 10 ◦C [54] Pear sucker

(Cacopsylla pyrisuga) For adults acyivity 4.5–5.7 ◦C [55]

Peach Peach leaf curl
(Taphrina defgormans) 5 ◦C [56] Green peach aphid

(Myzus persicae) 6.5–37 ◦C [57]

Sweet cherry Spotted wing drosophila
(Drosophila suzukii) 5–35 ◦C [58] Cherry leaf spot

(Blumeriella jaapi) 8 ◦C [59]

Strawberry Gray mold (Botrytis cinerea) For conidium
germination 0 ◦C [60]

Vine weevil
(Otiorhynchus sulcatus)

For eggs 6.2 ◦C;
For larvae 6.0 ◦C;
For pre-pupae 12 ◦C [61]

Temperature indices can be useful in predicting the occurrence of dangerous diseases
and pests of fruit crops. The most dangerous apple disease is apple scab caused by
the fungus Venturia inaequalis. Seventy-five percent of pesticides applied to diseases are
fungicides, of which seventy percent are sprays against scab [62]. In 1944, after more than
20 years of research, Mills published his table predicting the possibility of occurrence of
infection with apple scab [63]. Spores of apple scab need a specific amount of forcing to
sprout and grow into the leaf tissue when infecting the plant. The basic criterion applied
by the author in his model was the temperature of the air. The duration of the period
of wetting the leaf at a given temperature determines the occurrence of infection. After
many modifications, the table still finds practical application [64]. Much research has
been devoted to predicting the onset and end of primary inoculum emergence, as well as
developing models to predict the dynamics of ascospore maturation and emergence based
on temperature [65]. One such model was the ‘New Hemshire’ (NH) model developed
by MacHardy and Gadoury [52]. The NH model was built by fitting a linear regression
equation to probit-transformed data on the percentage of mature ascospores plotted on a
thermal timescale based on degree-day accumulation (base = 0 ◦C) from the first appearance
of ascospores in spring.

The main postharvest pathogens of sweet cherry are Alternaria spp. and Botrytis cinerea.
Larrabee [66] assessed the role of increasing degree days (GDD) in pathogen abundance
using linear mixed effects models with multimodel inference and model averaging.

The applicability of total forcing units was also used in research on the biology of
insects. It is particularly important to forecast the occurrence of plant pests whose de-
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velopment is closely related to that of the host plant. Temperature values also permit
forecasting the occurrence of particular pests. Honĕk and Kocourek [67] evidenced that
temperature is an important factor that affects the development of juvenile forms of aphids.
They determined the base temperature (lower development threshold LDT) below which
the development of aphids is terminated. They also calculated the total of effective tem-
peratures, i.e., sum of day degrees above LDT necessary for completing the development
stages (Growing Degree Days). They emphasized that LDT and GDD values are typical of
particular stages of development, as well as of the species and sex. They showed that an
increase in temperature above the lower threshold value determines the faster development
of insects. Like plants, most insects also have an upper development threshold above
which their rate of development does not increase, but may be inhibited. Such methods are
used to calculate the first flight of the first generation of pests such as the plum fruit moth,
the cherry fruit fly [68] codling moth [53,69], the apple blossom weevil [70], and spotted
wing drosophila (Drosophila Suzuki) [71]. It is also possible to estimate the threat of the
occurrence of soil pests, particularly pathogenic nematodes [72].

Individual diseases and pests have temperature thresholds that affect their develop-
ment cycle (Table 4).

We provide a new review of temperature-based indices for fruit growing plants to
predict abiotic and biotic risks in fruit production for various selected types of fruit crops in
seasonal temperate climate. This is especially important due to the growing risk associated
with climate change, which significantly changes local growing conditions. Therefore, it is
very important to evaluate and provide a set of specific indicators for producers, which we
have reviewed from the latest to the current literature and presented as follows.

2. Temperature Indicators Used in Horticulture

Several indices have been developed based on the heat load (daily accumulated
temperatures above a threshold of 10 ◦C for a fixed period) and temperature requirements
of individual fruit plants. These methods were first commonly applied in colder regions
of the temperate zone for plants growing in areas with a temperature closer to the lower
development threshold (base temperature) [73].

The Sum of Active Temperatures (SAT)—sum of mean daily temperatures above the
base temperature (Tbase), during the growing period. Vegetation for a certain plant starts
when mean daily temperatures are above its base temperature for at least 6 consecutive
days (from the beginning of the year) and it ends when mean daily temperatures are below
the base temperature for at least 6 consecutive days (in the second half of the year). The
most common period is from 1 April–31 October [74]

The Sum of Active Temperatures is calculated from the following formula:

SAT =
n

∑
i−1

TD

where TD is mean daily air temperature [75].
i = 1,2,3..n—number of days with a mean value above the base temperature for a given

plant (Tbase), beginning the growing season (Table 5).
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Table 5. Estimated base temperatures (◦C) for particular fruit plant species.

Species Base Temperatures (Tbase) Literature

Peach

−1.0 to 0.0
0.5 to 4.5
2.2; 6.3

7.0
6.0 to 8.0

[76]
[77]
[78]

[79–82]

Sweet cherry 3.2 to 3.7
−2.0 to 7.0

[83]
[84]

Apple
0.0

−2.0 to 5.5
12.0

[85,86]
[78,84]

Blackberry 6.0 [75]

Pears 0.0
4.4; 8.2

[87]
[88]

Hazel 5.0 [89]

Raspberry 4.0 and 6.0 [90]

Walnut 5.0 [91]

Plum 2.2; 6.2
5.0 to 7.0 [28,78]

Strawberry 0.0; 6.0; 7.0; 10.0
4.0 [92,93]

Grapevine 2.1; 4.3
10.0 [73,78,94–96]

Sour cherry
2.5
4.0
5.5

[97,98]
[99]

The comparison of the SAT index requires taking into account factors that could
affect its calculation. Differences in the SAT value can result from, for example, different
ways of the calculation of mean daily air temperature [94]. Mean daily air temperature
values calculated based on meteorological observations and different formulas differ from
daily means determined from the automatic procedure covering 24 hourly measurements
(Table 6) [100,101].

Table 6. Methods of calculation of mean daily air temperature (based on the guidelines of World
Meteorological Organization (WMO 2012).

Average Air Temperature Calculation Formula Application

TD1 TD = (t00+t01+t02+...t23)
24

The average true 24-h temperature in UTC time

TD2 TD = Tmax+Tmin
2

Average used by the countries of North America and
Australia, in Europe in Spain and Great Britain

TD3 TD = (t00+t03+t06+t09+t12+t15+t18+t21)
8

Average used at IMGW synoptic stations from 1966
until today in UTC time

TD4 TD = (t00+t06+t12+t18)
4

Average used at IMGW climatic stations in the years
1971–1995 in UTC time

TD5 TD = (Tmax+Tmin+T06+T18)
4

Average used at climatological stations from 1996 until
today. Tmax and Tmin are measured from 6.00 p.m. on
day “N” to 12.00 p.m. on day 18 “N” = 1, in UTC time

According to Kowalski and Nawalany [94], depending on height above ground level,
differences in daily temperature may be significant for SAT. Based on measurements
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conducted at a height of 1 m in 2011, the SAT for the area of south Poland was 3800 degrees,
and 100 degrees more (3900) were recorded in the case of measurements on the ground
surface. Due to soil heating, SAT measurement in the same conditions in the surface soil
layer provided a value of 4300 ◦C, and SAT reached 4200 ◦C in the case of measurement at
a depth of 25 cm. The difference between the temperature of soil and air depends on the
physical properties of these two different states of matter and can be significant.

It was also determined that the SAT index is also not precise in the comparison of con-
ditions occurring at various latitudes [102]. In order to correct the divergencies and provide
for comparability of the result, it is supplemented with the so-called “LTI index” (latitude
temperature index). LTI was developed in New Zealand at Lincoln University [103]. It
indicates the potential for the development of plants taking into account the specifics re-
sulting from the location towards the equator. LTI is a product of mean temperature of the
warmest month in a year (expressed in ◦C) and the latitude degree of the study area [104].
The higher its values, the greater the potential of maturing of grapes in a given area.

LTI is calculated according to the following formula:
LTI = TC × (60− L)
TC—mean temperature of the warmest month in a year in ◦C,
L—latitude degree.
Another, similar unit based on temperature measurement is the sum of degree days

(Sum of Effective Temperatures—SET) or growing degree days (GDD). Calculating the
growing degree days (GDD) requires values of growth degree hours (GDH), calculated by
reducing the mean hourly temperature value by the base temperature value below which
the organism ceases to develop. Threshold temperature values are so-called physiological
zero temperatures (or thermal threshold) [105]. For cases of lack of availability of hourly
data, methods have been developed that permit the determination of degree days (GDD)
based on daily maximum and minimum temperature values [106]). The calculation of
degree days based on daily min/max values is based on the assumption that the daily
temperature distribution profile can be presented in a diagram by means of a sinusoidal
curve where a single symmetrical curve is fitted to minimum/maximum daily temperatures.
GDD is calculated from the following formula:

GDD =
m

∑
i=1

(TD− Tbase)

TD—mean air temperature
Tbase—base temperature,
i = 1,2,3..n—number of days with a mean value above the base temperature for a given

plant (Tbase), beginning the growing season.
When base temperature is 0 ◦C, SAT and GDD values (growing degree days) are the

same. The correlations between SATs and GDD (base 10 ◦C, are between 0.91 and 0.97 over
the growing season stages) [74].

3. Use of Temperature Data in Fruit Plant Cultivation
3.1. Phenological Models

In horticulture, with the development of technologies of meteorological data recorders,
the description of dependencies of the growth and development of plants on weather began
to be accompanied with the development of simulation models [107,108]. The application of
simulation intensified in the second half of the last century, with the emergence of the study
approach called the Monte Carlo method. It permitted mathematical modelling of actual
processes too complex for their results to be predicted by means of analytical solutions.
Simulation modelling is a set of model factors that affect the analyzed system. They
constitute a model of a simplified version of the system, and then allow for experimenting
in it for the purpose of investigating its structure and description of behavior [109].
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Growing Degree Days was first used for the development of phenological models in
the 1950s [110]. It started to be applied on a larger scale only at the end of the century;
however, when the development of computerization accelerated the calculations [111].
Phenological models consider the effect of temperature on obtaining particular pheno-
logical stages, e.g., break in dormancy, bursting of flower buds, full bloom, and maturity.
Depending on the complexity of the problem, different simulation models are used. If the
objective is to describe the effect of temperature, it is usually aimed at the understanding
of the functioning of the process resulting from the mutual dependencies of particular
phenological phases. Then, systemic-dynamic models are developed for forecasting the
term of occurrence of a given phase at a set range of temperatures. Functions describing
the process of temperature accumulation can be linear, non-linear, logarithmic, or other.
The determination of the phenological phase using forcing units also employs statistical
methods of determination of variability such as standard deviation, regression coefficient,
and variance coefficient [112]. Through the analysis of the aforementioned variables, the
model permits predicting when particular phenological phases will occur, and investigating
dependencies between selected variables [47,80,83,87,113–115].

3.2. Models Determining Winter Dormancy Duration

Most fruit plants require a dormancy period. Even in a humid tropical climate, plants
do not grow continuously. After a period of active growth, a period of rest occurs dur-
ing which the stem apex dies or develops a bud. Plants in the warm climate zone are
characterized by simultaneous occurrence of stems in the state of intensive growth and
at rest [116,117]. Due to the cold and short days in winter, fruit plants from the temper-
ate climate enter winter dormancy. Two types of dormancy are distinguished, namely
relative dormancy (ecodormancy), caused by unfavorable environmental conditions, and
endodormancy, determined by the effect of external mechanisms in plant organs [114].
Some researchers also distinguish “summer dormancy” [118]. However, Lang et al. [119],
taking into account physiology, attempted to formulate a new nomenclature for descriptive
communication. Based on one basic term, dormancy, with descriptive, specific, physiolog-
ical prefixes: endormancy, paradormancy, and ecodormancy. In response to a change in
the environmental conditions, plants launch mechanisms permitting their adaptation to
new conditions. In dormancy, the molecular activity is inhibited, and can only be renewed
after meeting appropriate conditions [120]. A sufficiently long period of low temperature
causes hormonal changes in buds, resulting in the termination of deep dormancy. The
requirements for low temperature vary from species to species (Table 7) and are defined as
the number of hours of chilling necessary to restore the development potential of the buds
of perennial plants in spring [121].

Table 7. Average chilling hour requirements for most commercial cultivars of some fruit crops.

Crop Chilling Hours Literature

Grapevine 90–800 [122,123]

Apple 400–2900 [124]

Pear 400–900 [125]

Peach 200–900 [126]

Sour cherry 700–1200 [125]

Sweet cherry 900–1500 [127]

Strawberry 200–400 [128]

Raspberry 1200–1700 [129]

In spring, prolonged photoperiod and increased temperature cause the plants’ tran-
sition from the dormancy state, as manifested in gradually increasing metabolic activity
that stimulates the development of buds, followed by the entire plant. The application of
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mathematical models allowed for calculating the chilling requirement of fruit tree buds
necessary for the transition through all stages of the dormant period [130].

The Chilling Hours Model is the oldest method determining the number of units
of low temperature necessary for terminating absolute dormancy of plants. The model
assumes that effective temperatures are in a range from 0 ◦C to 7.2 ◦C, while each hour at
temperatures between these thresholds constitutes one chilling hour. This way, chilling
hours are accumulated throughout the dormant period [131]. The number of Chilling
Hours at time t (CHt; t is measured in hours since the start of the dormancy season) can be
calculated as:

CHt =
t

∑
i=l

T7.2

where 1 h between 0 ◦C to 7.2 ◦C = 1.0 chill unit, else = 0.0 chill unit [132].
In the United States, the Utah model (Chill Units) has been developed. It assesses

the chilling efficiency with consideration of the unfavorable effect of excessively high
temperature. It assumes that temperatures from 0 ◦C to 16 ◦C promote the breaking of rest,
whereas temperatures >16 ◦C negate such effects [121]. The most effective for breaking
dormancy is 7 ◦C. Therefore, 1 h with a temperature of 7 ◦C is equal to 1 chilling unit, and
higher and lower temperatures in a range from 0 ◦C to 16 ◦C are less effective. The model
therefore assumes the accumulation of cold occurs in a range of temperatures from 2.5 ◦C
to 12.5 ◦C outside which the accumulation is at a zero or negative level. The algebraic
summation of the hourly values gave the daily total [133].

The number of Utah Chill Units at time t (UCUt) can be expressed as:

UCU t =
t

∑
i=1

TU

With TU =
1 h below 1.1 ◦C—0.0 chill units
1 h between 1.6–2.2 ◦C = 0.5 chill units
1 h between 2.7–8.8 ◦C = 1.0 chill units
1 h between 9.44–12.2 ◦C—0.5 chill units
1 h between 12.7–15.6 ◦C = 0.0 chill units
1 h above 18.3 ◦C = −1.0 chill units [134].
This model is useful in cold or temperate climate, and it is completely unsuitable in

subtropical climate. The duration of the vegetation cycle in the tropics is always shorter
than a year and usually lasts 6–8 months [23]. For plants cultivated in the subtropics, the
Positive Chilling Units model has been developed, omitting negative values ascribed to
high temperatures [134]. A variation in the Utah model was suggested in South Africa
by, among others, Linsley Noakes and Allan [135]. They suggest that negation of cold by
high temperatures should only be calculated in day mode and refer to “daily positive cold
units”. This led to a much improved model of their conditions.

A Dynamic Model (Chill Portions) was developed by Fishman et al. in Israel [136].
It calculates chilling in units called “chilling portions” based on hourly temperatures.
In this model, the optimum chilling temperature was adopted for 6 ◦C, and the range
of temperatures promoting discontinuation of dormancy is from −2 ◦C to 14 ◦C [113].
High temperatures offset previously accumulated chilling, and moderate temperatures can
intensify chilling accumulation. It is a model introducing the term of intermediate product,
developed under the influence of effective temperatures of winter chill. It can be destroyed
after exposure to high temperatures. However, after the accumulation of the threshold
chilling amount of such an intermediate product, it is irreversibly accumulated. Summing
up ‘chilling portions’ in the autumn–winter period allows for the accumulation of chill
necessary for the stop of winter dormancy. Similarly, temperatures at different times of the
season can have very different effects on chill accumulation. This complex model appears
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more accurate in the conditions of climate warming [123]. This model was successfully
applied by Erez et al. [113] to determine the dormancy of the peach bud.

The above models are an example of models with low realism, as they are based on
long-term observations in natural conditions, and not on physiological processes occur-
ring in plants. Thus, they fail under certain environmental conditions. The dormancy
state is a process that is influenced by various integrated elements and their interaction
determines the moment when the dormancy state is released. Therefore, Fuchigami and
Wisniewski [114] proposed the Degree Growth Stage (◦GA) model as an example of on-
togenetic development of temperate woody plants. The numerical system (0–360) used
in ◦GS divides bud development into numerical units, where 0◦ to 180◦GS = paradormancy,
180◦–315◦GS = endodormancy, 315◦–360◦GS = ecodormancy. Unlike many phenological
models that predict the timing of major point events, the ◦GS conceptual model lends itself
to creating realistic models that relate to physiological processes.

4. Practical Application of Temperature Indices in Horticulture
4.1. Grapevine (Vitis vinifera L.)

Grapevine is sensitive to the occurring air temperature at every stage of develop-
ment (during flowering, growth, and fruit ripening). The harvest yield, uniform ripening,
and consistent wine quality depend on temperature during flowering [137]. The proper
course of flowering occurs at minimum mean daily temperatures of 15 ◦C. Lower tempera-
tures prolong flowering, resulting in evident yielding reduction, and variable pollination
terms increase the share of small and slowly ripening fruits [138]. Cultivars originating
from Vitis vinifera have high thermal requirements, and need high temperatures already
before flowering. Moreover, variable temperatures during ripening disturb the accumu-
lation of reserve compounds: sugars and acids, strongly affecting the taste of the grapes
through the disturbance of proportions between them [25]. The production of aromatic
compounds is also affected, whereas the three aforementioned groups of compounds are
key in wine production [139].

According to White et al. [140], calculation the growing season base at 10 ◦C growing
degree day summation is of key importance in grape production. Its variability determines
the variability of growth and yielding of plants in particular growing seasons. Grapevine
cultivation has long employed the index of forcing accumulation during vegetation, i.e.,
SAT [74]. The criterion is particularly useful in the selection of the grapevine cultivar for
cultivation in a given region. Particular cultivars considerably differ in requirements in
terms of the SAT value until reaching full maturity (Table 8). SAT is calculated when daily
temperatures means are equal or higher than 10 ◦C from the period 1 April to 31 October.
SAT and GDD values precisely determine the ripening potential of particular grapevine
cultivars in a given region (Table 9). GDD in viticulture is call Winkler index, and it is
one among many indices that are used to describe temperature conditions adequate for
grape-growing [141].

Table 8. Optimal SAT values for particular classified cultivars, depending on the term of their ripening.

SAT Cultivars

2000–2200 ◦C Very early-ripening

2200–2500 ◦C Early-ripening

2500–2700 ◦C Mid-early ripening

2700–2900 ◦C Late-ripening

>2900 ◦C Very late-ripening
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Table 9. Classifications of suitability of regions for grapevine cultivation based on SAT and GDD.

SAT GDD The Suitability of the Region

<2500 ◦C <945 ◦C Appropriate suitability for cultivation of very
early and early ripening cultivars

2500–2900 ◦C 945–1164 ◦C Proper suitability for moderately early and late
ripening cultivars

>2900 ◦C >1164 ◦C Proper suitability for very late ripening cultivars

Several other indicators based on heat load (daily cumulative temperature above
the 10 ◦C threshold for a certain period of time) and the temperature requirements of the
vines were also developed [104]. One of them is the Heliothermal index of Huglin (HI).
The HI provides information regarding heliothermal and sugar potential. According to
Tonietto and Carbonneau [142], is more pertinent to the qualitative factors such as berry
sugar potential.

HI =
IX 30th

∑
IV 1st

(Tmax− 10 ◦C) + (TD− 10 ◦C)

2
d

TD—mean air temperature (according to the formula TD2 from Table 3).
d—length of day coefficient ranging from 1.02 to 1.06 between 40◦ and 50◦ of latitude.

The increase in day length during the growing season increases potentially relative to an
increase in latitude [143].

In order to improve the assessment of the quality potential of grapes, especially in
relation to secondary metabolites (polyphenols, aromas) in grapes, the cool night index (CI)
was introduced [142].

CI =
IX 30th

∑
IX 1st

T min
30

Gladstones [144] used Biologically Effective Degree Days (BEDD or E ◦C) to classify
grape varieties according to maturity. BEDD include heat accumulation that is defined by
maximum and minimum temperature thresholds (between 10 and 19 ◦C), and the BEDD
formula also modifies heat accumulation for diurnal ranges.

The GDD formula has also been used for the determination of the values of base
temperatures of important phenological phases for grapevines, namely bursting of buds
and flowering. Oliviera [112] applied several statistical methods based on GDD, and found
that the determination of the base temperature of the aforementioned phases is the most
precise in the case of application of standard deviation, where GDD is calculated based on
mean air temperature. According to the author, the base temperature of bud bursting is
8.7 ◦C, and flowering 10.7 ◦C.

According to Jones et al. [139], due to global warming, regions of production of high
quality grapes are on their climatic range boundaries. Koźmiński et al. [95], analyzing
SAT, found that 60% of the territory of Poland has conditions favorable for intensive grape
cultivation. Progress in global warming has resulted in a change in the current limit of
intensive grapevine cultivation in the north of Poland (approximately 150 km). The greatest
increase in the SAT value has been recorded in the south-west and west of Poland. A
considerably lower increase has been observed in the south-east and east, probably due to
the fact that it is an area of continental climate, with a boundary that runs through the center
of Poland [145]. Kryza et al. [73] observed that in the south-western part of Poland in the
period 1971–2010, considerable changes occurred in the values of the SAT and GDD indices
that describe the accumulation of forcing necessary for grapevine cultivation. Szyga-Pluta
had similar observations when determining GDD, LTI, and SAT in the period 1966–2020.
The study period showed an increase in the values of all agroclimatic indices and air
temperature during the growing season, suggesting an increase in the thermal resources
in the territory of Poland. [146]. As a result of changes in climate, the region is currently
suitable for cultivation of more demanding cultivars. Based on historical climatic data and
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model simulation of future climate conditions, Jones et al. [139] determined that the region
of optimal cultivation in the south of Europe will continue to shrink. In some regions,
warming may exceed the maximum temperature threshold specific for a given cultivar.

The length of the growing season is very dependent on latitude. This was found to
be a better indicator of climate suitability than the GDD system. Jackson [147] found that
the LTI is better for comparing the suitability of a region for grape ripening than the use of
degree days, especially for areas with cool climates.

4.2. Apple (Malus Domestica Borkh.)

Processes considered in the cultivation of apple trees are extended over time, due to
the period from setting flower buds to yielding. The intensity of flowering is determined
by the number of produced flower buds, and that process occurs in the preceding year,
hence temperature conditions are of importance already at that time. Temperature affects
the initiation of flower buds, and in the following year the date and intensity of flowering,
pollination, and fruit setting. In addition, it determines the growth of fruits, their ripening,
and the quality of the harvest.

Many studies conducted under field conditions [148–150], as well as under controlled
temperature [3], point to a strong positive correlation between temperature and the period
from flowering to harvest. Stanley et al. [151], conducting research on ‘Royal Gala’ apple
cultivar in New Zealand, evidenced that GDD at a base temperature of 10 ◦C (GDD 10),
determined from the moment of pollination over the following 50 days, was strongly
correlated with the weight of apples 50 days after pollination. This confirms the hypothesis
that potential maximum size of apples is determined up to 50 days after flowering. It
depends on the number of cells, the division of which is affected by temperature and tree
nutrition. The authors also evidenced that in the period from 10 to 30 days after full bloom,
GDD was strongly correlated with the duration of the period from pollination to harvest.

According to Łysiak [85], the term of harvest of apples of the ‘Šampion’ and ‘Ligol’
cultivars can be determined by means of SAT. It only requires precise determination of the
term of full bloom and continuous measurement of mean daily temperatures. He proposed
0 ◦C as the base temperature in the conditions of central-west Poland. For higher base
temperatures, the standard deviation increased. SAT necessary for obtaining collective
ripening of apples from the ‘Ligol’ cultivar was 2600 ◦C, and for ‘Šampion’ 2550 ◦C. This
method, however, may not be as effective in another location, because the phenophases of
particular cultivars may respond differently to environmental conditions [152].

Viškelis et al. [153], analyzing SAT, found the index to be strongly correlated with the
ability to accumulate polyphenols in apples. The analysis of the content of polyphenolic
compounds in fruit from the ‘Auksis’ and ‘Ligol’ cultivars showed that an increase in
the content of these substances is inversely proportional to SAT. The index gradually
decreased with a reduction in the growing period duration. According to research, greater
accumulation of polyphenolic compounds occurs in stress conditions such as drought,
diseases, and pest infestations, or lack of nutrients [145,154,155]. Estonia has less favorable
conditions for apple tree cultivation than Poland, located approximately 400 km to the
south. Due to the more difficult growth conditions, fruit of the ‘Auksis’ and ‘Ligol’ cultivars
in Estonia accumulated 139% and 77% more phenolic compounds, respectively, than those
grown in Poland [153]. This confirms the effect of temperature on changes in the patterns
of accumulation of bioactive compounds.

Another important feature related to temperature is the duration of the dormant
period in apple trees (Figure 1). Dormancy of trees in temperate climate ends in spring,
after the tree was subjected to appropriately long chilling during winter. It is determined by
the minimum sum of chilling hours required to break the dormancy of vegetative buds of
the apple tree [156]. The optimal chilling temperature depends on the cultivar, the location,
and the intensity of dormancy [86,157]. Putti et al. [158] also report differences in base
temperatures between apple tree cultivars. According to the authors, apple cultivars differ
in the duration of the necessary low temperature period that initiates breaking dormancy.
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They identified cultivars with low requirements regarding chilling, where the range of low
effective temperatures was from 3 to 12 ◦C, and cultivars with high chilling requirements,
with a range of low effective temperatures from 3 to 6 ◦C.

4.3. Pear (Pyrus communis L., Pyrus Pyrifolia Nakai)

Pear trees grow and yield well in temperate climate. Pear cultivation at a larger scale
has developed in regions where temperature in winter does not fall below −27 ◦C, and in
summer does not exceed 32 ◦C. Despite the thermophilic character of the species, proper
development and fruiting of popular pear cultivars (originating from P. communis) requires
approximately 400–800 chilling hours (temperature below 7 ◦C). Some cultivars, however,
require more than 1050 chilling hours, e.g., ‘Bartlett’ [35], whereas others (originating from
P. pyrifolia), e.g., ‘Patharnakh’ and ‘Punjab Beauty’ only need 150–200 h [159].

According to Łysiak [87], SAT can be useful for the determination of the term of
pear harvest. The author evidenced that measurements are the most precise at a base
temperature of 0 ◦C. The duration of the harvest window is minimum 5 days. Twelve years
of research showed that pear of the ‘Conference’ cultivar in the conditions of west Poland
was ready for harvest when the SAT value in the period from full bloom to harvest was
2469 ◦C, and the standard deviation was only 20◦.

Drapper et al. [160] defined the period of winter dormancy as chilling (in autumn),
full dormancy (in winter) and forcing (in spring). In the study, they used the selected
and dynamic + growing degree hour (GDH) phenological models and their sensitivity to
parameter optimization. They noted that the acceleration of flowering under the influence
of higher temperatures during winter dormancy was greater for pear cv. ‘Conference’ than
for apple trees cv. ‘Jonagold’.

4.4. Peach (Prunus persica L.)

Despite its sensitivity to frost damage in winter, peach grows well in temperate
climate, and the differences in thermal requirements between cultivars are substantial.
Peach cultivars that require a short chilling period (50–300 h) at a temperature below
7.2 ◦C prefer low temperature in winter and high temperature (30 ◦C) in summer to obtain
appropriately ripe fruit [38]. Cultivars with moderate chilling requirements need from 300
to 525 chilling hours, and those with high requirements from 525 to 1390 h [116,161]. In
comparison to other stone fruits, peach is tolerant of higher temperatures in summer, and
its fruit ripening requires temperatures of more than 24 ◦C. Climate changes involving an
increase in temperatures in winter may result in shrinking of regions suitable for peach
cultivation. In the south-eastern part of the USA, in the state of Georgia in 2017, drastic
twice-lower yielding of peach was recorded in comparison to the preceding year due to
the shortening of the chilling period necessary for appropriate development of the fruit
by 200 h.

Peaches respond with weaker resistance of buds to frost in winter, if in the period
from 15 October to 31 December the maximum air temperature exceeds 18 ◦C. It also
results in disturbances in entering the dormancy period. The resistance of cells to frost
is directly determined by the accumulation of reserve substances in the vacuoles. Their
high concentration decreases the freezing point of plant tissues [9]. A properly prepared
peach tree for winter dormancy can survive temperature declines in winter of up to −25 ◦C.
A warm winter caused early development of buds, making them more susceptible to
spring damage. The assessment of the risk of excessively early development employed the
GDD formula. It was determined that if from 15 February to the last day with a critical
temperature of −1.7 ◦C the GDD value exceeds 335, the risk of damage of excessively
developed buds or flowers is very high [82].

In the Czech Republic, Litschmann et al. [80] observed that the term of start of par-
ticular phenological phases in peaches is strongly dependent on temperature above 7 ◦C,
measured from 1 January. This dependency was even observed in years with exceptionally
high temperatures. The dependency between SAT 7 and bursting of flower buds (start
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of phenophase 01 according to BBCH) permits planning and scheduled spraying against
peach leaf curl, even in seasons with different weather conditions. The authors emphasized
a close correlation between the value of SAT 7 counted for 2 months from the onset of
flowering, and the number of days from flowering to fruit harvest. This allows for precise
determination of the term of peach harvest.

4.5. Sour (Prunus cerasus L.) and Sweet Cherry (Prunus avium L.)

Like other fruit trees in temperate climate, sour and sweet cherries require an appro-
priate amount of “chilling units” in autumn and winter to break winter dormancy. After
meeting the chilling condition, the trees enter the period of relative dormancy during which
dormancy is only determined by unfavorable environmental conditions (temperature,
duration of the day, etc.). In that period, higher temperatures break winter dormancy and
promote the development and growth of trees [115]. Guak and Neilsen [84] analyzed the
effect of temperature in controlled and natural conditions on the end of the dormancy
period in sweet cherry of the ‘Sweetheart’ cultivar. Shoots for the experiment were collected
before the dormancy period, and subjected to a constant effect of 7 temperatures in a range
from −2 to 16.8 ◦C. The study showed that the optimum chilling temperature for the
analyzed sweet cherry cultivar is within the range from −2 to 7 ◦C, and temperature above
13 ◦C has no chilling effect. For all processes required for the dormancy period to occur in
the plant, the value of chilling units needs to reach 740.

Zavalloni et al. [97] developed a simulation model based only on temperature data
that can be useful for producers in increasing the accuracy of decision making regarding
pest control, fertilization, or irrigation. They developed formulas based on GDD values at
a base temperature of 4 ◦C, permitting the determination of terms of particular stages of
development of flower buds and fruits of sour cherry of the ‘Montmorency’ cultivar. The
differences between the predicted and observed dates varied in a maximum of 4 days.

Persely et al. [98] developed a similar simulation model for three Hungarian sour
cherry cultivars, namely ‘Debreceni Bőtermő’, ‘Újfehértói Fürtös’, and ‘Kántorjánosi 3′.
They employed the GDD formula at a base temperature of 2.5 or 5 ◦C. The analyzed
cultivars in the study years did not differ in GDD values determined for bursting of flower
buds, but significant differences occurred between years. In one of the seasons, bursting
of flower buds occurred at GDD equal to 17.5 ◦C, and in another at 39.7 ◦C. Responses to
a given temperature were determined to depend on the physiological stage of the tissues
and previously occurring environmental conditions [162,163].

4.6. Strawberry (Fragaria x Ananassa Duchesne)

The yielding potential of particular strawberry cultivars strongly depends on the
mutual effect of day duration and temperature. Strawberry cultivars show high genetic
variability, and therefore different responses to the shortening of day duration and course
of temperature. Temperature has a strong and variable effect of the generative processes in
strawberries. At low temperatures (below 10 ◦C), the short day genotypes and those neutral
towards day duration show no response to the photoperiod, and at higher temperatures, a
reduction in day duration below 14 h induces the onset of flowering. Everbearing cultivars
induce flowering in the conditions of a long day, i.e., throughout summer. In the conditions
of a short day, at an increase in temperature to 24 ◦C, strawberries respond with intensified
production of flower buds. The range of the inducing temperatures is from 12 to 22 ◦C.
Below and above that range, the effectiveness of the inducive effect of a short day on the
production of inflorescences in strawberries decreases. In the case of everbearing cultivars,
inflorescences are initiated irrespective of day duration in a range of temperatures from 10
to 28 ◦C [164].

According to Tanino and Wang [165], flowering term is correlated with the accumu-
lation of chilling hours, and fruit yield is correlated with cumulative chilling units. The
authors concluded that strawberry may be affected by more complex environmental factors
than its flowering. The effect of temperature during the chilling period on yielding is
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indirect, because it depends on the term of flowering, nutrition of the plants, and growth
rate of the vegetative parts [166]. Moreover, different optimum chilling temperatures apply
to the vegetative development, yielding, and fruit quality [47].

The subject of the study was also the determination of the dependencies of vegetative
growth of strawberry on temperature. Description of the development of strawberry leaves
applies the terms phyllochron and plastochron. According to Bonhomme [111], phyl-
lochron is duration of time (usually in days) between the appearance of two subsequent
leaves. Plastochron stands for the time duration between the initiation of two subsequent
leaves. Mendonça at al. [164], using a model of linear regression between GDD at a base
temperature of 7 ◦C and number of leaves in the crown of the strawberry, introduced
the term phyllotherm expressed in ◦day−1 (degree day). The studied cultivars varied in
terms of the phyllotherm values from 60.38◦day−1 (cv. ‘Ventana’) to 199.96◦day−1 (cv. ‘Al-
bion’). Based on GDD, Bethere et al. [93] developed a phenological model for strawberries.
They then used it to predict the timing of phenological processes in strawberries in the
period 1951–2099. The results of their research show that an acceleration of physiological
processes can be expected in the future, contributing to a change in regionalization of
strawberry cultivation.

4.7. Raspberry (Rubus idaeus L.) and Blackberry (Rubus fruticosus L.)

Raspberry and blackberry show an active response to temperature in adjusting the
term of flowering and fruit ripening. American research has shown that the northern
range of cultivation of primocane fruiting raspberries was closely correlated with the
accumulation of forcing units at a base temperature of 5 ◦C [167]. Privé et al. [168] analyzed
the effect of climatic conditions on the development and growth of the vegetative and
generative parts of primocane-fruiting raspberries. The effect of climatic factors, such as
insolation, duration of the day, availability of water, GDD, and soil and air temperature,
were estimated based on the analysis of multiple regression coefficients. The effect of air
temperature and insolation was the strongest during initiation of flower development, i.e.,
in June and July, and day duration was the most significant from June to October. Climatic
conditions to the greatest degree determined parameters such as the number of fruits, their
weight, and harvest yield, whereas the total number of nodes on a stem and term of harvest
proved the least dependent. Particular raspberry cultivars showed different responses
to climatic conditions. The ‘Autumn Bliss’ cultivar proved less sensitive than ‘Heritage’
or ‘Redwing’.

The blackberry growing in the zone of temperate climate enters the dormant phase
due to the shortening of the day and the low temperatures in autumn, and the phase ends
after the completion of the necessary winter chilling [169]. Bursting of buds of floricane-
fruiting blackberries occurs at the turn of March and April. Fruiting shoots grow out of the
auxiliary buds on two-year shoots and lateral shoots. Over the following 4–5 weeks, the
inflorescences develop on the fruiting lateral shoots, and flower buds on the inflorescence
open from mid-May to mid-June. Jennings [75] compared the terms of flowering and
fruit ripening of several genetically variable blackberries. The accumulated forcing units
(temperature above 6 ◦C) proved strongly correlated with the term of fruit ripening.

Based on phenological observations, Black et al. [90] tested linear and curve prediction
models with the application of the range of cardinal temperatures. They determined that
the flowering term under field conditions is best predicted by a linear model with a base
and an optimal temperature [89] of 6 and 25 ◦C, and curve model with a base and an
optimal temperature of 4 and 27 ◦C. Based on the linear increase in degree days (GDH), the
authors determined that from the moment of flowering, the ‘Chicksaw’ cultivar needs 9200
GDH, and ‘Merton Thornless 18,900 GDH.

4.8. Other Species

Temperature indices can be useful in the introduction of new species and cultivars to
cultivation. Ishchuk et al. [91] used GDD and SAT to describe the biorhythm of six species
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from genus Juglans, namely J. nigra, J. cinerea, J. rupestris, J. major, J. californica, and J. hindsii.
Based on GDD, they compared the terms of flower bud swelling and bursting. SAT
was applied in the comparison of term of onset and end of flowering, fruit setting, and
fruit ripening. In combination with observations of resistance to frosts depending on
the degree of winter dormancy, they determined the usefulness of the aforementioned
species for plantings in the Ukrainian Right-bank Forest-Steppe. Based on SAT above 5 ◦C,
Mirotadze et al. [89] divided cultivars of hazel (Corylus avellana) cultivated in Georgia into
early ripening—SAT from 1800 to 2200 ◦C, medium early ripening—SAT from 2200 to
2600 ◦C, and late ripening—SAT from 2600 to 3000 ◦C.

5. Conclusions

Temperature is an important factor determining fruit plant production, both in the
growing season and in the winter dormant period. Dependencies on temperature are ob-
served in pathogens and pests of fruit plants. This factor determines the time of occurrence
of fungi and insects that poses a potential threat to the health condition of the quality of the
cultivated plants and the obtained fruits.

The close correlation of this parameter with processes occurring in living organisms
permitted the development of methods used for the description and prediction of the occur-
rence of particular phenological phases of fruit plants. Various air temperature indicators
were developed in a way that allowed the best possible description of adaptations of species,
cultivars, and region of cultivation adaptations. Among the indicators described, Growing
Degree Days is the most frequently used in research. They are based on experimentally
obtained data and calculated optimum temperatures of growth and development of plants
at particular development stages. Proper interpretation of the effect of temperature on the
development of the analyzed plants requires detailed determination of all elements used
for the calculation of the index. The limitation of the use of temperature indicators is also
the fact that particular fruit species, and even cultivars, show different responses to the
occurring range of temperatures by entering particular phenological phases.

Temperature conditions of a given region should be of key importance for the selection
of species for commercial cultivation and planning of protection measures. Climate change
is clearly observed in many parts of the world. The developed models can be used to
simulate conditions in the context of the progressing climate warming. Changes in the
distribution of temperatures also translate into increased expansion of many diseases and
pests, as well as invasive species. Therefore, the presented review, evaluating and providing
a set of specific indicators, is important for producers.
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