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Abstract: Image datasets acquired from orchards are commonly characterized by intricate back-
grounds and an imbalanced distribution of disease categories, resulting in suboptimal recognition
outcomes when attempting to identify apple leaf diseases. In this regard, we propose a novel apple
leaf disease recognition model, named RFCA ResNet, equipped with a dual attention mechanism
and multi-scale feature extraction capacity, to more effectively tackle these issues. The dual attention
mechanism incorporated into RFCA ResNet is a potent tool for mitigating the detrimental effects of
complex backdrops on recognition outcomes. Additionally, by utilizing the class balance technique
in conjunction with focal loss, the adverse effects of an unbalanced dataset on classification accuracy
can be effectively minimized. The RFB module enables us to expand the receptive field and achieve
multi-scale feature extraction, both of which are critical for the superior performance of RFCA ResNet.
Experimental results demonstrate that RFCA ResNet significantly outperforms the standard CNN
network model, exhibiting marked improvements of 89.61%, 56.66%, 72.76%, and 58.77% in terms of
accuracy rate, precision rate, recall rate, and F1 score, respectively. It is better than other approaches,
performs well in generalization, and has some theoretical relevance and practical value.

Keywords: dual attention mechanism; multi-scale feature extraction; RFCA ResNet; classification

1. Introduction

China is the world’s leading apple grower and occupies a significant position in
the global apple market [1]. However, apple production is vulnerable to climate, pests,
and diseases, which can cause negative impacts on both the quantity and quality of the
fruit, as well as substantial financial losses [2]. In the early stages of apple disease, most
affected areas appear on the leaves, and visual observation is the primary method used
to identify these diseases. However, identifying the specific type of disease is challenging,
and misdiagnosis is common. Therefore, it is crucial to swiftly and accurately recognize the
various types and complexities of apple diseases.

In agriculture, computer vision has been widely utilized [3–8], particularly in the field
of plant disease detection [9]. This technology is a critical factor in productive agriculture
and economic growth. With advancements in machine learning, image processing tech-
niques can now be used to solve problems using morphological features such as color,
intensity, and size. Zhang Chuanlei et al. [10] initially employed image processing to
convert the color space of images, conduct background removal, and employ the region-
growing algorithm to segregate lesions. The evolutionary algorithm and correlation feature
selection method were then utilized to screen essential features, to improve the model’s
accuracy. Finally, the support vector machine (SVM) was used for automatic identifica-
tion, and the method accurately identified apple mosaic, rust, and other diseases with
an accuracy rate of over 90%. Nuruzzaman et al. [11] compared the results of machine
learning algorithms such as the random forest classifier, support vector machine, and
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logistic regression on 1200 potato images. Ultimately, the logistic regression algorithm
produced the best result. Similarly, Chakraborty et al. [12] employed the Otsu threshold
technique and histogram equalization to segregate diseased apple leaf sections, and then
utilized a multiclass SVM to detect these sections, with an accuracy rate of 96%.

The application of machine learning technologies in practical agricultural settings has
been challenging due to various constraints, such as the requirement for high-precision
image acquisition equipment, homogeneous illumination, and simple image backgrounds.
Recently, convolutional neural networks (CNNs) have emerged as a promising technique
for directly learning important features from data, with good performance on large datasets
and high adaptability. Consequently, CNNs have increasingly been applied to plant disease
recognition and identification with impressive results [13–18].

To overcome the issue of overfitting, Jiang Peng et al. [19] constructed datasets for five
common leaf diseases, including apple brown spots, by enhancing and annotating the data.
They utilized the VGG [20] network as the basic framework and introduced the Inception
module to extract multi-scale lesions, along with the feature pyramid’s context and fusion
features to enhance recognition performance. The model obtained a recognition accuracy of
78.8% mAP. Similarly, Liu Aoyu et al. [21] addressed the inadequacies of manual diagnosis
of corn diseases by constructing and training the ResNet50 network on the PlantVillage
dataset. They added data augmentation operations to the collected corn dataset and
incorporated the focal loss function to handle difficult-to-classify samples, resulting in an
average accuracy of 98.60%. Thapa Ranjita et al. [22] introduced the Plant Pathology 2021
Challenge dataset, which comprised images captured from various distances, angles, and
lighting conditions, to represent real-world scenarios of disease symptoms on cultivated
apple leaves. The dataset featured a complex background and an uneven distribution of
categories. The authors performed a multiclass classification task using ResNet34, and
the experimental results revealed that the performance was poor for the combination of
diseases such as apple scab and frog eye leaf spot, while the combination of snow apple
rust and gray spot, as well as the combination of snow apple rust and other diseases,
exhibited high accuracy. The corresponding rate scores were all above 0.75. Yan Qian et
al. [23] replaced the fully connected layer with the batch norm layer and the global average
pooling layer, and pre-trained the VGG16 network to recognize three apple leaf diseases:
scab, frost spot, and cedar rust. The model’s overall accuracy was 99.01%. Sardogan et
al. [24] employed Inceptionv2 to differentiate between healthy and diseased apple leaves in
images with complex backgrounds. They first used the Faster R-CNN method to locate and
mark various items and regions on the image and then achieved a typical accuracy rate of
84.5%. Finally, Li Xiaopeng et al. [25] combined convolution and transformer to extract both
global and local disease features. They utilized the self-attention mechanism and visual
transformer to direct the convolutional network to focus on effective features and applied
separable convolution and global average pooling operations to reduce model complexity.
Their approach achieved equivalent identification accuracy to the Swin Tiny [26] model,
while being lighter in weight.

In real-world scenarios, the datasets collected for plant disease classification are often
imbalanced due to a low incidence rate of a specific disease or the presence of multiple
diseases simultaneously. However, using the conventional approach of classifying plant
diseases as mainstream, through a convolutional neural network and cross-entropy loss
function, does not yield satisfactory results on such datasets. In this research, we aim to
enhance the detection ability of convolutional neural networks on an unbalanced plant
disease dataset with complex backgrounds. Our primary contributions are:

• Extraction of multi-scale lesion features based on the RFB module and adjusting the
convolution kernel size to improve recognition accuracy.

• Construction of the RFCA ResNet network, which utilizes ResNet18 as the backbone
network, using focal loss in combination with the class balance approach to enhance
the detection performance on the imbalanced dataset.
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• Building a dual attention mechanism that incorporates both the coordinate atten-
tion mechanism and the frequency attention mechanism to improve lesion feature
extraction capabilities.

• Comparison and evaluation of our proposed approach with the conventional cross-
entropy loss function-based classification method, which has theoretical importance
and practical relevance in real-world applications.

The remainder of this research paper is structured as follows. Section 2 provides a
detailed description of the network structure and loss function. In Section 3, we introduce
the dataset source, preprocessing method, experimental apparatus, experimental design,
and evaluation indexes. The experimental results are presented and analyzed in Section 4.
In Section 5, we discuss and evaluate our work. Finally, we conclude the research in
Section 6 and provide directions for future work.

2. Methods
2.1. RFCA ResNet Design

The apple leaf disease dataset used in this research has a complex visual background,
which was collected under different lighting conditions and at different times. Due to
the dispersed and varying sizes of the disease spots and the uneven number of photos in
each category, model identification is challenging. Therefore, the aim of this research is to
design a model, with relatively low computational complexity, that can accurately classify
datasets with an uneven number of categories. To achieve this, we designed a convolutional
neural network model based on a dual attention mechanism, utilizing the ResNet topology
model. To limit computation and network complexity, we chose an 18-layer ResNet as the
fundamental network. As using a single-sized convolution kernel may result in the loss
of extracted feature information, we replaced the first convolutional layer in the ResNet
with the RFB module, which can improve the recognition of lesions of various sizes on
leaves by adjusting the receptive field’s size using parallel expansion convolution kernels
of various sizes. The attention mechanism helps the model focus on relevant information
while ignoring irrelevant information. Therefore, to enhance the ability to retrieve lesion
features, we included the intended attention module in each residual structure. The precise
structure of the RFCA ResNet model is shown in Figure 1. The model mainly comprises the
FCCA attention mechanism module and the enhanced ResNet18, designed to accurately
classify complex datasets with an uneven number of categories while having relatively low
computational complexity.

In the task of identifying plant diseases, some categories of images may have a very
low probability of occurrence, or there may be multiple diseases coexisting on the leaves,
resulting in certain categories having a significantly higher number of images than others.
This can lead to overfitting of the network during training, where the model becomes
biased towards the categories with a higher number of images. To address this issue, we
employ focal loss in combination with the class balance approach in our model, to update
the network parameters and mitigate the effects of the imbalanced dataset. The following
are the specific steps in the implementation:

First, the probability of predicting each category is calculated:

pi = o(zi =
1

1 + ezi
) (1)

where zi denotes the predicted output of the i category, and o represents the sigmoid function.
Next, the loss function is computed using focal loss in combination with the class

balance approach. This is achieved by adjusting the standard focal loss function to include
a weight factor for each category based on its proportion in the training dataset. The class
balance loss function can be expressed as:

LCBFL = − 1
N

N

∑
i=1

αi(1− pi)
γ log(pi) (2)
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where N is the number of samples in the batch, αi is the weight factor for the i-th category,
calculated using the class balance approach, pi is the predicted probability of the i-th
category, and γ is the focusing parameter. The class balance weight factor for each category
is computed as the inverse of its frequency in the training dataset, raised to a power β. Thus,
categories with low frequency will have a higher weight factor to balance their influence
on the training process.
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Figure 1. Overall framework of RFCA ResNet.

Incorporating class balance with focal loss helps to mitigate the negative effects of
imbalanced categories during training and improves the model’s ability to accurately
classify plant disease images.

2.2. Topology Fusion

As the number of layers in deep convolutional neural networks increases, the problem
of gradient vanishing becomes more pronounced, leading to a decrease in network perfor-
mance. The ResNet series of networks address this issue by utilizing residual structures
that enable the stacking of layers without a loss in performance. The ResNet architecture is
widely used in classification tasks due to its effectiveness.

The residual structure adds the input to the output of a layer through a shortcut
connection, resulting in a straightforward addition operation that speeds up training
without increasing model complexity or the number of required parameters. The precise
calculation procedure for the residual is shown in Equation (3):

xi+1 = xi + H(xi, ωi) (3)

where xi represents the input of the i-th layer, ωi represents the parameters of the i-th layer,
H(xi, ωi) represents the output of the i-th layer convolution operation, and xi+1 represents
the residual mapping of the input.

By stacking residual structures, ResNet increases the effectiveness of network training
without degradation. To improve the network’s ability to extract feature information and
enhance the receptive field, the RFB module borrows the structure of the Inception module
and adds dilated convolution to the original foundation. The RFB module can extract
feature information of different scales by using convolution kernels of different sizes in
parallel, making it suitable for the characteristics of lesion features in this experimental
dataset. The RFB module’s structure is illustrated in Figure 2.
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Figure 2. Adjusted RFB module structure.

We present the mathematical reasoning for the receptive field block (RFB) module as
follows: Let the input feature map be denoted by x, with dimensions H ×W × C, where
H, W, and C represent the height, width, and number of channels, respectively. The
output feature map is denoted by Y, with dimensions H ×W × N, where N is the output
dimension. The RFB module consists of three parallel branches.

For the first branch, a 3× 3 convolution operation, with kernel size K1, is performed.
The output feature map of this branch, denoted as F1, can be expressed as:

F1 = Conv(x, K1) (4)

where Conv denotes a 3× 3 convolution operation.
The second branch includes two consecutive operations: a 3× 3 convolution with

kernel size K2, followed by a 3× 3 dilated convolution with kernel size K2 and dilation
rate of 2, to capture multi-scale contextual information. The output feature map of this
branch, denoted as F2, can be expressed as:

F2 = Conv(Conv(x, K2), K2) (5)

where Conv denotes the convolution operation.
In the third branch, three consecutive operations are performed: two successive 3× 3

convolutions with kernel size K3, followed by a 3× 3 dilated convolution with kernel size
K3 and dilation rate of 3, to capture multi-scale context information. The output feature
map of this branch, denoted as F3, can be expressed as:

F3 = Conv(Conv(Conv(x, K3), K3), K3) (6)

where Conv denotes the convolution operation.
After computing the feature maps for all three branches, a 1× 1 convolution is applied

to adjust the number of channels. The feature maps are then concatenated along the channel
dimension to obtain the final output feature map Y:

Y = Concat(F1, F2, F3) (7)

where Concat represents the concatenation operation along the channel dimension.
To leverage the benefits of each module, we replace the ResNet’s convolutional layer

with the RFB convolution module to extract low-level feature information. This replacement
allows our fused network to accomplish multi-scale extraction of image feature information
more effectively than ResNet. As a result, our model’s generalization performance and
feature discriminability are significantly improved.

2.3. FCCA Attention Module

Images of apple leaf diseases captured in natural settings often feature non-uniformly
arranged leaves and complex backgrounds. Accurately identifying these diseases requires
incorporating coordinated information on apple disease features present in the image.
Existing channel attention approaches do not leverage global pooling to express adequate
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information. To address this, we propose integrating coordinate attention with frequency
attention to creating a dual attention mechanism, as shown in Figure 3.
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w

c

Figure 3. Module structure of FCCA attention mechanism.

The FCCA attention module utilizes input feature maps to simultaneously compute
frequency and coordinate attention, employing two softmax multiplications and one addi-
tional operation. The mathematical operation of this module can be expressed as shown in
Equation (4):

FCCA(x) = CA(x) + FA(x) (8)

where FCCA(x) denotes the feature map obtained through the dual attention module,
FA(x) denotes the frequency feature map, and CA(x) represents the coordinate position
feature map.

The FCCA attention module expands the amount of feature information introduced
through channels and captures feature information across channels, effectively enhancing
the attention of feature channel and position information. This results in increased accuracy
in identifying apple leaf diseases.

2.3.1. Coordinate Attention Module

In recent times, several researchers have utilized the SE module proposed by Hu, Jie
et al. [27] in their research. This module initially employs global pooling to compress the
global spatial information before learning the significance of each channel in the channel
dimension. However, it overlooks the importance of position pairs in creating a spatial
map. CBAM [28] attempts to incorporate location information using global pooling, but it
only considers local range information and cannot establish long-distance relationships.
On the other hand, the coordinate attention module provided by Hou Q et al. [29] is a
lightweight and effective method, that enhances the expressiveness of learned features
by integrating spatial coordinate information into attention maps and capturing the long-
distance dependencies of input feature maps.

As illustrated in Figure 4, the process of generating coordinate attention involves two
crucial steps: embedding coordinate information and generating attention.
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Figure 4. Structure of the coordinate attention mechanism module.

To generate coordinated attention, one-dimensional average pooling is utilized to
encode position information in the horizontal and vertical spatial directions and to generate
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long-distance dependencies, as global pooling can result in the loss of position information.
Specifically, size average pooling kernels of sizes (H, 1) and (1, W) are employed to encode
the channels in the two directions, respectively. Thus, the output feature map for the c-th
channel and height h is given by:

zh
c (h) =

1
W

W

∑
i=0

xc(h, i), (9)

where zh
c represents the output of the c-th channel in the overall height directions, xc represents

the input of the c-th channel, and W represents the width of the c-th channel input.
The output feature map for the c-th channel and width w is given by:

zw
c (w) =

1
H

H

∑
i=0

xc(i, w), (10)

where zw
c represents the output of the c-th channel in the overall width directions, xc represents

the input of the c-th channel, and H represents the height of the c-th channel input.
To create an attention map, the horizontal and vertical feature maps are transformed

using a shared 1×1 convolution kernel. The resulting attention map is then split along the
spatial axis and the number of channels is adjusted to match the number of input channels
using two 1×1 convolutions. The sigmoid function is applied to normalize the weight, and
the coordinated attention module (CA) is expressed as:

f = δ(F(
[
zh, zw

]
)), (11)

gh = o(Fh( f h)), (12)

gw = o(Fw( f w)), (13)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j), (14)

where [·, ·] denotes the concatenation operation along the spatial dimension, δ is a non-
linear activation function, f h ∈ RC/r×H and f w ∈ RC/r×W , o is the sigmoid function, and
xc(i, j) represents the output of the c-th channel at position (i, j) in the input image.

2.3.2. Frequency Attention Module

In order to enhance the feature representation ability, the channel attention module is
utilized to focus on channels that contain important information by assigning weights to
each channel. Typically, the channel relationship is extracted using global average pooling,
and the weighted attention map is obtained by applying a fully connected layer and a
sigmoid function, which can be expressed as:

Attnchannel = o( f c(gap(X))) (15)

where o is the sigmoid function, f c denotes a fully connected layer, and gap is global
average pooling.

Qin Z et al. [30] demonstrated that global average pooling is a special case of discrete
cosine transform (DCT), which can result in limited diversity in the features obtained and
insufficient representation of information between different channels. To address this issue,
they proposed a multi-spectral channel attention (MSCA) module, which first divides the
input feature map into multiple groups and applies a two-dimensional DCT (2DDCT)
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operation to each group. The resulting frequency feature set is then weighted and fused
using a fully connected layer and a sigmoid function, as follows:

X = [X0, X1, · · ·, Xn−1] (16)

Freq = cat([2DDCT(X0), 2DDCT(X1), · · ·, 2DDCT(Xn−1)]) (17)

Attn f ca = o( f c(Freq)) · X (18)

where X ∈ RC×H×W , o is the sigmoid function, f c denotes a fully connected layer, Freq
represents the frequency feature set of input features after 2DDCT operation, and n is a
constant indicating that the input features are divided into several parts.

3. Experiments
3.1. Dataset Source

This research employed a publicly available dataset, plant-pathology-fpgv8 [22],
sourced from the Kaggle website. The dataset comprises 18,632 high-quality photographs
classified into 12 categories based on the complexity and diversity of the leaf diseases.
Figure 5 depicts the twelve categories in the dataset, and their corresponding names and
counts are presented in Table 1.

Table 1. Category name and quantity of apple leaf disease dataset.

Categories Number of
Original Pictures

Number of Pictures
after Enhancement

Complex 1441 8356
Frog eye leaf spot 2862 16,794

Frog eye leaf spot complex 148 864
Healthy 4161 23,938

Powdery mildew 1065 6142
Powdery mildew complex 78 446

Rust 1674 9660
Rust complex 87 488

Rust frog eye leaf spot 108 626
Scab 4343 25,136

Scab frog eye leaf spot 617 3606
Scab frog eye leaf spot complex 180 1006

The dataset used in this research exhibits a background of complex disease leaves, a
high number of images depicting a single disease, a limited number of images displaying
multiple diseases, and an unequal distribution of categories, as illustrated in Figure 5 and
Table 1. These characteristics pose significant challenges to accurate disease identification
and increase the likelihood of model overfitting.
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Complex

Frog eye leaf spot

Frog eye leaf spot complex

Powdery mildew complex

Powdery mildew

Healthy

Rust

Rust complex

Rust frog eye leaf spot

Scab frog eye leaf spot complex

Scab frog eye leaf spot

Scab

Figure 5. Apple leaf disease dataset category.

3.2. Image Preprocessing and Enhancement

If the pixels of the dataset’s images are excessively large and the number of samples is
small, both the training infrastructure and the classification network will face significant
challenges. The original dataset contains images with resolutions of 4000 × 2760 and
4000 × 3000 pixels. To increase the training set’s size and diversity, we cropped the images
to 512 × 512 and performed the following three operations: (1) applied color dithering to
the image to change saturation, brightness, contrast, and sharpness; (2) randomly rotated
the image angle; and (3) added Gaussian noise. Figure 6 shows the exact results of these
operations. On the one hand, this process can expand the dataset’s diversity and the
model’s ability to generalize. On the other hand, changing the image’s saturation can help
to emphasize the lesion. Table 1 shows the number of distinct categories in the dataset.

Random color dithering Random rotation Add Gaussian noise randomly

Figure 6. Image display after data enhancement.

3.3. Equipment

All experiments were conducted on a host CPU with 10 cores, to ensure fairness.
Table 2 presents the network model’s architecture and other configuration options.
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Table 2. Training environment parameter configuration.

Hardware Software

CPU: NVIDIA GeForce RTX 3060 Windows 11
RAM: 16GB DDR5 Cuda11.1 + Cudnn

CPU:12th Gen Intel Core i5-12600KF Pytorch1.8.1 + Python 3.8

3.4. Experiment Settings

In this experiment, the original dataset was partitioned into three sets, namely the
training set, the validation set, and the test set, using a Python script. The training and
validation sets were divided in an 8:1 ratio, with the test set alone consisting of 1868 images.

For the purpose of network training and validation, the images were cropped to 224
× 224 pixels using the center cropping approach, while images of size 512 × 512 pixels
were used for testing during the testing phase. To facilitate training, all image data were
standardized using Equation (15):

Xout =
Xin − x̄

σ
(19)

where Xout represents the normalized output result, Xin represents the original image input
data, x represents the mean values of Xin, which are (0.485, 0.456, 0.406), and σ represents
the standard deviations, which are (0.229, 0.224, 0.225).

During training, the focal loss function, in combination with the class balance approach,
was employed, and the network parameters were optimized using the AdamW optimizer.
A batch size of eight was used, with an initial learning rate set at 3× e−4. The cosine
annealing strategy was utilized, and the model was trained for 100 epochs. Finally, the
predictions were tested, and the optimal training parameters were recorded. It is worth
noting that all experiments were executed on a host CPU containing 10 cores, to ensure
fairness, and the framework of the network model and other configuration options can be
found in Table 2.

3.5. Evaluation Indexes

In evaluating the performance of the classification model on the apple leaf diseases
dataset, it is important to note that the dataset has imbalanced data, rendering the accuracy
performance index insufficient. To address this limitation, this study employs additional
evaluation metrics, such as precision rate, recall rate, and F1 score. The precision rate
measures the proportion of properly predicted samples, while the recall rate relates to
the proportion of projected positive samples among real positive samples. The F1 score
considers both the recall and precision rates, thereby achieving a balanced and optimal
outcome. Prior to computing these metrics, one must understand the concept of a confusion
matrix, which consists of four components: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), as depicted in Figure 7.

Accuracy =
TP + TN

TP + FP + TN + FN
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2× Precision× Recall

Precision + Recall
(23)
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True False

TP FP

FNTN

True Value

Positive

Negative

Predict Value

Confusion Matrix

Figure 7. Confusion matrix.

4. Results

The experimental design comprises four distinct sections. Firstly, the impact of varying
learning rates on the network model’s accuracy is compared. Secondly, the effectiveness of
employing data augmentation techniques in identifying apple leaf diseases is evaluated.
Thirdly, a comparison is made between the performance of the proposed network model
and classical network models. Lastly, an ablation experiment is conducted utilizing the
RFCA ResNet network model.

4.1. Comparative Experiments with Different Learning Rates

To investigate the effect of learning rates on image recognition, we employ the control
variable method. The initial learning rate is set to 0.01, 0.001, 0.0001, 0.0002, 0.0003, and
0.0004, in order to ensure experiment comparability and increase recognition accuracy. The
experiment uses the RFCA ResNet model and trains and tests the original dataset. The
learning rate decay strategy, batch size, and training epoch all follow the same guidelines.
Table 3 presents the specific training parameters and test results. The highest test accuracy,
of 89.61%, is achieved when the learning rate is set to 3× e−4.

Table 3. Parameter configuration and test accuracy of different learning rates.

Learning Rate Batch Size Epoch Training Time Test Accuracy

0.01 8 100 7 h 57 m 30 s 88.49%
0.001 8 100 8 h 1 m 12 s 89.08%

0.0001 8 100 7 h 52 m 18 s 89.03%
0.0002 8 100 7 h 29 m 5 s 89.13%
0.0003 8 100 7 h 28 m 36 s 89.61%
0.0004 8 100 7 h 56 m 50 s 89.45%

The graph of the model accuracy corresponding to the test learning rate is presented
in Figure 8. The results indicate that the model converges slowly and the curve is volatile
when the learning rate is high. When the learning rate is set to the e−4 level, the curve has
iterated nearly 30 epochs and stabilized at an accuracy rate of about 85%.

Figure 8. Accuracy of test set under different learning rates.



Agriculture 2023, 13, 940 12 of 19

4.2. Impact of Data Augmentation Methods on Models

A comparative experiment was conducted on the RFCA ResNet network model
to verify the effectiveness of the data augmentation strategy in improving the model’s
accuracy. The recognition accuracy and overall training time on the apple disease test
set are presented in Table 4. The results indicate that the model can converge faster and
achieve better recognition performance during the same training epoch when the data
augmentation strategy is employed, as illustrated in Figure 9.

Table 4. Performance index results without and after enhancement.

Strategy Accuracy Precision Recall F1 Score

Without
enhancement 89.61% 56.66% 72.76% 58.77%

Enhanced 90.58% 55.75% 67.23% 59.44%

Figure 9. Accuracy of the test set without enhancement and after enhancement.

According to the results presented in Table 4, we observe an improvement of 0.97 and
0.67 percentage points in precision and F1 score, although this requires sacrificing precision
and recall for each class. In addition, as shown in Figure 9, the performance of the model
converges faster after adopting the data augmentation strategy.

First, the improvements in accuracy and F1 score mean that our method outperforms
the state of the art in overall performance. However, sacrificing precision and recall may
result in less accurate predictions for some classes. These differences may originate from
the imbalance of the dataset and the effect of the adopted data augmentation strategies on
different classes to different degrees.

Second, the fast convergence of the model performance demonstrates that our method
can utilize limited training data more efficiently, by using data augmentation strategies.
This is of great significance for improving model performance under limited resources,
especially in large-scale datasets or real-time application scenarios.

4.3. Comparative Experiments of Different Network Models

To demonstrate the superior performance of the RFCA ResNet network model, we
conducted a comparative experiment with a commonly used CNN model. As presented
in Table 5, RFCA ResNet achieved an average classification accuracy rate, precision rate,
recall rate, and F1 score of 89.61%, 56.66%, 72.76%, and 58.77%, respectively, outperforming
other CNN methods. Moreover, as depicted in Figure 10, while the loss of the Res2Net net-
work remained nearly constant, the proposed RFCA ResNet achieved faster convergence,
indicating that the Res2Net network may not be suitable for this dataset, and the method
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suggested in our research is more generalizable. The Densenet121 method connects all
channels for feature reuse, which impacts the model’s classification accuracy, making it
simpler for the model to maintain background noise information in complex contexts. In
contrast, the Shufflenet, RegNet, Res2Net, and ConvNeXt neural network architectures may
face difficulties in capturing fine-grained details in complex images, potentially hindering
their ability to learn sufficiently representative features for all possible variations in apple
leaves and complex backgrounds. Therefore, without additional modifications or prepro-
cessing techniques, these networks may not be the most suitable choice for recognizing
apple leaves with complex backgrounds.

Table 5. Evaluation index results of different network model training test sets.

Model Batch Size Epoch Params Size Accuracy Precision Recall F1 score

ResNet34 [31] 8 100 81.22 M 87.58% 49.79% 55.32% 50.22%
ResNet50 [31] 8 100 89.77 M 88.38% 50.54% 60.28% 51.74%

MobilNetV3L [32] 8 100 16.09 M 86.94% 48.29% 52.21% 48.76%
MobilNetV3S [32] 8 100 5.84 M 86.83% 52.90% 66.49% 54.64%
DenseNet121 [33] 8 100 6.54 M 87.79% 49.90% 60.94% 51.04%

RegNet [34] 8 100 8.85 M 83.62% 43.68% 51.24% 44.06%
ShuffleNet [35] 8 100 4.83 M 86.35% 46.13% 48.80% 44.81%

Res2Net [36] 8 100 33.92 M 81.58% 40.93% 40.32% 40.29%
ConvNeXt [37] 8 100 334.02 M 85.70% 45.13% 52.88% 44.69%
RFCA ResNet 8 100 46.38 M 89.61% 56.66% 72.76% 58.77%

Figure 10. Loss curve of the test set on the training set, and accuracy curve of the test set.

To compare the performance of different models, we plotted the precision–recall (P–R)
curve for each model. This approach provides a better evaluation of the performance of
each model. Figure 11 shows the P–R curves for each model, represented by different
colors. The area covered by the blue curve is the largest, indicating the model has the best
classification performance.

4.4. Ablation Experiment

To assess the effectiveness of various modifications made to the ResNet18 network
model in improving its performance, we utilized accuracy, precision, recall, and F1 score as
evaluation metrics, and the original dataset was used for training and testing. In particular,
we replaced the first convolutional layer in the original network when using only the
RFB module, incorporated it into the residual module when using only the attention
method, and changed the cross-entropy loss function when replacing it with the focal loss
in combination with the class balance approach alone. Table 6 presents a comparison of the
performance evaluation indicators of the network when adding RFB, class balance with
focal loss, embedding the attention module, not adding any module, and the RFCA ResNet
model. Additionally, Figure 12 displays the loss changes of the RFCA ResNet network on
the training set and the test accuracy change curve of the set.
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Figure 11. P–R curves of different models.

4.5. Ablation Experiment

To assess the effectiveness of various modifications made to the ResNet18 network
model in improving its performance, we utilized accuracy, precision, recall, and F1 score as
evaluation metrics, and the original dataset was used for training and testing. In particular,
we replaced the first convolutional layer in the original network when using only the
RFB module, incorporated it into the residual module when using only the attention
method, and changed the cross-entropy loss function when replacing it with the focal loss
in combination with the class balance approach alone. Table 6 presents a comparison of the
performance evaluation indicators of the network when adding RFB, class balance with
focal loss, embedding the attention module, not adding any module, and the RFCA ResNet
model. Additionally, Figure 12 displays the loss changes of the RFCA ResNet network on
the training set and the test accuracy change curve of the set.

Table 6. Results of ablation experiment performance evaluation index.

Model RFB Attention Class
Balance Loss Accuracy Precision Recall F1 Score

ResNet18

- - - 87.95% 40.82% 55.83% 48.60%
X - - 89.07% 51.67% 56.18% 50.59%
- X - 88.65% 50.99% 63.64% 52.21%
- - X 88.44% 52.70% 62.64% 54.40%

RFCA ResNet X X X 89.61% 56.66% 72.76% 58.77%

- indicates absence of the template, while X indicates presence of the template.

Figure 12. Loss curve of test set on training set, and accuracy curve of test set.

To improve the performance of the ResNet18 network model, a series of enhancements
were incorporated. Table 6 presents the evaluation indicators of accuracy, precision, recall,
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and F1 score, using the original dataset for both training and testing. The first convolutional
layer in the original network was replaced with the RFB module when only the RFB module
was used, while the FCCA module was incorporated into the residual module when only
the attention method was utilized. When focal loss was used in combination with the class
balance approach alone, the cross-entropy loss function was modified. The results showed
that adding the attention mechanism to ResNet18 increased the accuracy, precision, recall,
and F1 score by 0.7, 10.17, 7.81, and 3.61 percentage points, respectively. The RFB structure
was found to broaden the model’s receptive field, extract feature information at various
scales, and improve its capacity for information representation. This resulted in an increase
in accuracy of 1.12 percentage points and in F1 score of 1.99 percentage points. Altering
the loss function to account for the effect of an unbalanced dataset on model performance
improved all parts of the model’s performance evaluation indicators. Finally, the accuracy
and F1 score of the RFFA ResNet model on the apple leaf disease dataset were found to
be 89.16% and 58.77%, respectively, which were 1.83 and 9.31 percentage points higher
than ResNet18. This was achieved by replacing the RFB module, embedding the attention
mechanism, and using focal loss in combination with the class balance strategy. Figure 12
shows that the recognition accuracy of the model on the test set was initially unstable but
tended to stabilize and perform well afterward, when the focal loss in combination with
the class balance approach was employed as the loss function. The training loss value
decreased as more iterations were completed after adding the aforementioned modules to
ResNet18, and the accuracy rate on the test set increased. This demonstrated the enhanced
model’s strong generalization capabilities and the value of the several enhancements made
to ResNet18 in this research.

5. Discussion

In our research, we propose a novel method for the classification and identification of
apple leaf diseases based on a dual attention mechanism and multi-scale feature extraction.
Our method is evaluated on a dataset that exhibits common challenges in plant disease
classification, including complex backgrounds and class imbalance.

Owing to their effectiveness, attention mechanisms have been widely employed in
the field of plant disease recognition. Zhu et al. [38] combined the convolutional block
attention module (CBAM) and EfficientNet-B4 to construct the EfficientNet-B4-CBAM
model, which improved the ability to express regional information of camellia oleifera
fruit and achieved a final model accuracy rate of 97.02%. Lin et al. [39] employed a naive
metric few-shot learning network as a baseline learning method, and embedded attention
modules of channel, space, and mixed attention types. The experimental results revealed
that the incorporation of these attention modules led to varying degrees of improvement in
accuracy. In this research, we introduced the FCCA module and evaluated its impact on the
baseline accuracy through ablation experiments (refer to Table 6). Our findings indicated
that the inclusion of the FCCA module enhanced the baseline accuracy by 0.7%. However,
as disease complexity increases, the limitations of attention mechanisms can hinder their
effectiveness, necessitating the exploration of models with enhanced feature extraction
capabilities. To address this issue, we adopted a multi-scale feature extraction approach
inspired by GoogleNet and ResNet, replacing the low-level feature extraction module of
ResNet with the RFB module. Our experimental results demonstrated that our approach
improved accuracy by 1.12%, making it an innovative and superior method for feature
extraction.

In addition, in existing studies on plant disease identification, datasets almost always
exhibit a balanced distribution, while studies on datasets exhibiting long-tailed distribu-
tions are rare. To address this problem, Hsiao et al. [40] proposed the MTSbag method,
which combines MTS with a bagging-based ensemble learning method to enhance the
ability of traditional MTS to deal with imbalanced data. Min et al. [41] developed a data
augmentation technique that utilizes an image-to-image translation model to address the
issue of category number bias by generating additional diseased leaf images to supplement
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the insufficient dataset. In this research, we adopted focal loss and class balancing strategies
to optimize the model’s handling of imbalanced data. With these optimization strategies,
our method exhibits significant advantages in handling imbalanced data. Data augmenta-
tion is a common method to improve the generalization ability of models. In this paper,
we improved the model’s accuracy and F1 score by adding Gaussian noise and random
rotation, but at the expense of precision and recall. We believe that these evaluation metrics
may not fully reflect the model’s performance in real-world applications. Future research
can design more comprehensive evaluation methods to explore the model’s performance
in different scenarios and further optimize the model and data augmentation strategies.

In summary, our proposed method for crop disease recognition in complex back-
grounds has significant advantages. We adopt a multi-scale feature extraction and attention
mechanism, as well as focal loss and class balancing methods to deal with unbalanced data,
achieve significant performance improvement, and provide a new approach and method
for plant disease recognition.

6. Conclusions

We proposed a novel apple leaf disease classification and recognition method based
on multi-scale feature extraction and a dual attention mechanism. Current apple orchard
disease diagnosis relies heavily on manual inspection, which consumes significant human
and material resources. These factors inspired us to explore deep learning methods for
the classification of apple leaf diseases. In our experiments, we evaluated various metrics,
including accuracy, precision, F1 score, and recall, and analyzed the following four aspects:

First, we investigated the impact of different learning rates on the network model’s
accuracy. We found that the highest accuracy, reaching 89.61%, was achieved when the
learning rate was 0.0003. In contrast, the accuracy decreased to 88.49% when the learning
rate was 0.01. This highlights the importance of selecting an appropriate learning rate
during model training.

Second, we studied the effects of data augmentation. By applying random rotation,
color balance, and Gaussian noise to the training data, we found that data augmentation
could improve the model’s performance in terms of accuracy and F1 score by 0.97% and
0.67%, respectively. However, the performance in precision and recall dropped by 0.91%
and 5.53%, respectively. Specifically, before using data augmentation techniques, the
model’s accuracy, precision, recall, and F1 score were 89.61%, 56.66%, 72.76%, and 58.77%,
respectively. After applying data augmentation, these metrics changed to 90.58%, 55.75%,
67.23%, and 59.44%, respectively.

Third, we compared the performance of our proposed network model with traditional
network models. We found that our model outperformed conventional convolutional neu-
ral networks in all considered metrics, including accuracy, precision, F1 score, and recall.

Last, we conducted ablation experiments using the RFCA ResNet network model.
We found that each component in our proposed method played a crucial role in the
model’s performance. Specifically, employing multi-scale feature extraction modules and
dual attention mechanisms improved the model’s performance, while using the focal loss
function and class balancing methods addressed imbalanced data issues. Moreover, the
RFCA ResNet network model enhanced the model’s robustness.

In summary, we have proposed a method that incorporates multi-scale feature ex-
traction modules and dual attention mechanisms, and applied the focal loss function and
class balancing methods to handle imbalanced data for diagnosing apple leaf diseases.
Our experimental results have demonstrated that this approach significantly improves
the model’s performance, outperforming traditional convolutional neural networks. Our
research findings have important implications for apple leaf disease diagnosis. However,
the model’s parameters and computational complexity currently prevent it from being
deployed on mobile devices. In the future, we plan to adopt lightweight methods, such as
knowledge distillation, to reduce the model’s parameter size and computational complexity
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while considering resource limitations and processing capabilities on mobile devices, in
order to achieve better performance and user experience in mobile deployment.
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