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Abstract: As one of the physical quantities concerned in agricultural production, soil moisture can
effectively guide field irrigation and evaluate the distribution of water resources for crop growth in
various regions. However, the spatial variability of soil moisture is dramatic, and its time series data
are highly noisy, nonlinear, and nonstationary, and thus hard to predict accurately. In this study, taking
Jiangsu Province in China as an example, the data of 70 meteorological and soil moisture automatic
observation stations from 2014 to 2022 were used to establish prediction models of 0–10 cm soil relative
humidity (RHs10cm) via the extreme gradient boosting (XGBoost) algorithm. Before constructing the
model, according to the measured soil physical characteristics, the soil moisture observation data
were divided into three categories: sandy soil, loam soil, and clay soil. Based on the impacts of various
factors on the soil water budget balance, 14 predictors were chosen for constructing the model, among
which atmospheric and soil factors accounted for 10 and 4, respectively. Considering the differences in
soil physical characteristics and the lagged effects of environmental impacts, the best influence times
of the predictors for different soil types were determined through correlation analysis to improve the
rationality of the model construction. To better evaluate the importance of soil factors, two sets of
models (Model_soil&atmo and Model_atmo) were designed by taking soil factors as optional predictors
put into the XGBoost model. Meanwhile, the contributions of predictors to the prediction results
were analyzed with Shapley additive explanation (SHAP). Six prediction effect indicators, as well as
a typical drought process that happened in 2022, were analyzed to evaluate the prediction accuracy.
The results show that the time with the highest correlations between environmental predictors and
RHs10cm varied but was similar between soil types. Among these predictors, the contribution rates of
maximum air temperature (Tamax), cumulative precipitation (Psum), and air relative humidity (RHa)
in atmospheric factors, which functioned as a critical factor affecting the variation in soil moisture,
are relatively high in both models. In addition, adding soil factors could improve the accuracy of soil
moisture prediction. To a certain extent, the XGBoost model performed better when compared with
artificial neural networks (ANNs), random forests (RFs), and support vector machines (SVMs). The
values of the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE),
mean absolute relative error (MARE), Nash–Sutcliffe efficiency coefficient (NSE), and accuracy (ACC)
of Model_soil&atmo were 0.69, 11.11, 4.87, 0.12, 0.50, and 88%, respectively. This study verified that
the XGBoost model is applicable to the prediction of soil moisture at the provincial level, as it could
reasonably predict the development processes of the typical drought event.

Keywords: soil moisture; prediction; XGBoost algorithm; SHAP

1. Introduction

Soil moisture is a critical climate variable that regulates climate change by facilitating
the exchange and distribution of water and energy in land–air interaction. Additionally,
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soil moisture plays a significant role in agricultural production, as deficits or overflows of
soil moisture during critical periods can impact crop growth and yields [1]. Integrating
information on available soil moisture and crop water demands can help the development
of timely and appropriate irrigation schedules [2], which is particularly important in areas
with poor water conditions.

The variations and differences in soil moisture across regions are determined by its
budget balance, which is influenced by several factors. Soil moisture is sourced from
atmospheric precipitation and artificial irrigation, and its expenditure depends on physical
processes such as evapotranspiration and runoff, which are influenced by local weather
conditions, soil characteristics, land cover, and other factors [3]. Usually, soil moisture
can be expressed using physical variables such as relative humidity, weight water content,
and volume water content. Among these variables, relative humidity, calculated as the
percentage of soil water content and field capacity, can comprehensively reflect the soil
moisture status and surface hydrological processes [4,5]. Consequently, soil relative humid-
ity is an essential reference in irrigation, enabling an analysis of soil moisture differences
between regions. Soil moisture prediction based on relative humidity can enhance the
defense against waterlogging and drought in farmland.

Numerous studies have investigated soil moisture prediction using various methods.
Traditional approaches include the water balance method [6–8], statistical empirical for-
mula method [9], time series method [10,11], and physical models based on hydrological
processes [12]. These methods typically consider the soil water budget balance principle,
relationships between soil water and environmental factors, change characteristics of soil
water over time, and land–air interaction. They use model building or time series analysis
to forecast soil moisture. With advances in information technology, various applications of
machine learning (ML) in agricultural production have been widely developed, including
predictions of the crop growth period, yield, and soil moisture [13–16]. ML technologies
such as artificial neural networks (ANNs) [17], support vector machines (SVMs) [18], and
gradient boosting regression trees (GBRTs) [19] offer a novel perspective for soil moisture
prediction due to their advantages of having a low computational cost, strong self-learning
ability, high prediction accuracy, and wide suitability [20–22]. For instance, a GA-BP neural
network regression model was tested to perform well in predicting the soil moisture of high
side slopes [23]. A proposed novel encoder–decoder model with residual learning played
an excellent role in solving the nonlinear problem of soil moisture prediction, which was
tested using data from 13 FLUXNET sites with varying plant function types and climatic
characteristics [24].

In the research of soil moisture prediction based on machine learning, besides finding
suitable prediction models [25], selecting the appropriate input factors for the prediction
model is crucial. Many studies have selected meteorological factors directly related to soil
moisture, such as precipitation, transpiration, sunshine, and surface temperature [26]. For
instance, Xu et al. (2010) developed and tested an integrated soil moisture prediction model
based on artificial neural networks (ANNs) with meteorological data in the semi-arid region
of eastern China, and the model performed well at basin scales [27]. Li et al. (2018) applied
the adaptive genetic ANN method to improve the quality of soil moisture prediction using
atmospheric forcing data, which include air temperature, relative humidity, wind speed,
radiation, and precipitation, as well as soil forcing data, such as soil temperature at 5
cm depth and lagged soil moisture at 0–10 cm [28]. Moreover, with the advancement of
remote sensing technology, remote sensing monitoring indexes based on multi-source data,
including optical, thermal infrared, microwave, and other data, have also been widely used
for soil moisture monitoring and prediction [29–31].

However, current research on soil moisture prediction has some limitations, including
discontinuity in remote sensing images, an inadequate use of data from automatic observa-
tion stations, and unclear influencing factors of soil moisture [24,32]. Therefore, this study
utilized the soil moisture data and corresponding meteorological data from 70 automatic
stations in Jiangsu Province, determined the optimal influence times of the input factors
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for prediction models using a correlation analysis method, and applied extreme gradient
boosting (XGBoost) to establish two sets of soil relative humidity prediction models (i.e.,
Model_soil&atmo and Model_atmo). To better interpret the influences of the input factors on
these two models and evaluate their performance, Shapley additive explanation (SHAP)
was applied, and six metrics were utilized as the predicting effect indicators to compare
the models’ (e.g., ANN, RF, and SVM) prediction accuracy. Furthermore, a typical drought
development process in August 2022 in Jiangsu Province was analyzed in depth. This
study aimed to establish a provincial-level and understandable soil moisture prediction
model by applying a machine learning algorithm, which could provide a case study for
other regions.

2. Materials and Methods
2.1. Study Area

Jiangsu Province (see Figure 1) is located on the east coast of China, in the mid-latitude
zone, with a geographical location between 30◦46′–35◦07′ N and 116◦22′–121◦55′ E. It
lies in the climate transition zone between the subtropical and warm temperate zones
and belongs to the East Asian monsoon climate zone. The average annual temperature,
precipitation, and sunshine hours in Jiangsu Province are between 13.6–16.1 ◦C, 704–1250
mm, and 1816–2503 h, respectively [33]. The terrain is generally flat, with the Taihu Plain,
Yanjiang, and Lixia River areas being low-lying and having dense water networks. The
low mountains and hills account for only 14.33% and are mainly distributed in the west
and north regions. There are various soil types in Jiangsu, including zonal soils such as
cinnamon, brown soil, yellow-brown soil, and yellow soil, and non-zonal soils such as
saline soil, meadow soil, and marsh soil. With a long history of agriculture, natural soil in
Jiangsu has evolved into various types of farming soil with different soil textures under the
influence of different farming systems and utilization methods [34].
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Figure 1. Overview of the study area of Jiangsu Province, China, and its geographical distribution
map of soil moisture observation stations.

2.2. Data Source

Automatic moisture observation instruments have been gradually incorporated into
the meteorological operational observation system since 2010, resulting in the availability
of high regional density and continuous soil moisture observation data across Chinese
provinces [35]. Consequently, daily 0–10 cm soil relative humidity data, measured by
70 automatic soil moisture observation stations in Jiangsu Province from 2014 to 2022, along
with meteorological data collected by automatic weather stations and soil temperature data
measured by soil temperature instruments at the corresponding 70 soil moisture station
locations, were used for predicting 0–10 cm soil relative humidity. These atmospheric and
soil observation data were obtained from the Jiangsu Meteorological Information Center.

Based on the principle of soil water budget balance and considering the influence of
various factors on the 0–10 cm soil relative humidity (RHs10cm, %), the predictive factors
were divided into two categories: atmospheric and soil factors. There are ten atmospheric
factors, including the mean air temperature (Ta, ◦C), minimum air temperature (Tamin, ◦C),
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maximum air temperature (Tamax, ◦C), air relative humidity (RHa, %), precipitation (P, mm),
sunshine hours (S, h), wind speed (W, ms−1), atmospheric pressure (Pr, hPa), water vapor
pressure (e, hPa), and potential evapotranspiration (ET0, mm). Additionally, there are
four soil factors, including the mean surface temperature (Ts, ◦C), maximum soil surface
temperature (Tsmax, ◦C), minimum soil surface temperature (Tsmin, ◦C), and 0–10 cm soil
temperature (Ts10cm, ◦C).

2.3. Data Classification

Soil textures and hydrological constants varied significantly in Jiangsu Province. Even
when weather conditions are identical, different regions may exhibit distinct soil water
dynamics due to the differences in soil physical properties [36]. Therefore, it is necessary
to consider regional soil characteristics and hydrological constants when predicting soil
moisture. To this end, according to the soil hydrological and physical characteristics
measured by 70 automatic soil moisture observation stations in Jiangsu Province, the soil
moisture observation data were classified into three categories: sandy soil, loam soil, and
clay soil. The statistics of physical parameters corresponding to the different soil types are
shown in Table 1.

Table 1. Classification results and corresponding soil physical characteristics of soil moisture obser-
vation data.

Soil Type Soil Bulk Density
(g·cm−3)

Field Water Capacity
(%)

Withering Humidity
(%) Samples

Sand 1.43 25.46 4.04 40,880
Loam 1.40 26.50 5.29 75,920
Clay 1.36 26.62 5.72 87,600

2.4. Methodology Description
2.4.1. Selection of Predictive Factors

Soil relative humidity changes are mainly affected by previous and current weather
conditions and the state of the soil itself. By distinguishing different soil types, we correlated
RHs10cm with the averaged or accumulated value (including precipitation and sunshine
hours) of 14 predictor factors on the same day as the soil moisture observed, and 1–10 days
in the previous period, to determine the maximum impact time of each predictor (see
Table 2). We used the time with the largest correlation coefficient of each predictor as its
maximum impact time on RHs10cm. The corresponding sample numbers for each soil type
used to take correlation analysis are shown in Table 1.

Table 2. List of predictor factors of 0–10 days prior, which are used for correlation analysis
with RHs10cm.

Names Units Descriptions Range

Sunshine hours h Accumulated sunshine hours 0–128.6

Precipitation mm Cumulative precipitation 0–595.4

Evapotranspiration mm Averaged potential evapotranspiration 0.1–10.2

Wind speed ms−1 Averaged wind speed 0–15.9

Relative humidity % Averaged mean air relative humidity 19–100

Pressure hPa
Averaged water vapor pressure 0.6–42.0

Averaged atmospheric pressure 983.5–1042.4
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Table 2. Cont.

Names Units Descriptions Range

Temperature ◦C

Averaged mean air temperature −11.1–36.0

Averaged minimum air temperature −15.6–31.9

Averaged maximum air temperature −7.2–40.9

Averaged mean soil surface temperature −7.0–45.8

Averaged minimum soil surface temperature −14.7–31.2

Averaged maximum soil surface temperature −0.9–70.2

Averaged 0–10 cm mean soil temperature −2.7–39.0

2.4.2. XGBoost Model

The XGBoost is an ensemble learning method based on boosting [37]. The boosting
technique combines multiple decision trees and aggregates their predictions to obtain a
final prediction that is more accurate than any individual tree. XGBoost is designed to
prevent over-fitting. The XGBoost model builds multiple trees sequentially, with each
subsequent tree intended to reduce the errors of the previous tree. As the training proceeds
iteratively, new trees are added to predict the error of the prior tree. Such a fitting process is
repeated several times until a stopping criterion is met, such as when the root mean square
error (RMSE) reaches an asymptotic value. The ultimate prediction of the model is the sum
of the predictions from all of the trees. The formula for the prediction at the step t and site
location i can be defined as follows [37]:

ŷt
i = ∑t

k=1 fk(xi) = ŷ(t−1)
i + ft(xi) (1)

where ft(xi) is the tree model at step t, ŷt
i and ŷ(t−1)

i are the predictions at steps t and
t− 1, and xi are the predictor variables. The parameters of the model f (xi) are selected
by optimizing the objective function, and the objective function is defined by root mean
square error.

Additionally, XGBoost offers several other advanced features [37] that can further
enhance the model’s performance. For instance, early stopping allows the training process
to be stopped early if the performance on a validation set stops improving. This advanced
feature prevents the model from overfitting to the training data and can improve its ability
to generalize to new data. Cross-validation is another useful technique that can estimate
the model’s generalization performance and help to select the optimal hyperparameters. By
incorporating these and other advanced features, XGBoost has emerged as one of the most
popular and influential machine learning models. The flow chart depicting the XGBoost
model is presented in Figure 2.

2.4.3. The Key Parameters of XGBoost Model

In this study, we focused on optimizing several crucial parameters of the XGBoost
algorithm, including the number of boost rounds, maximum depth, minimum weight in a
child, and learning rate. The number of boost rounds determines the maximum number of
boosting iterations, while the maximum depth sets the maximum depth of an individual
tree. The minimum weight in a child parameter is utilized to prevent overfitting, and the
learning rate parameter controls the model’s shrinkage at every step (i.e., a lower learning
rate indicates more steps used to achieve the optimum) (see Figure 2).

To optimize these parameters, we applied a tuning technique called grid search [38].
This approach computes the optimal values of hyperparameters by exhaustively searching
over a range of possible parameter values. We utilized third-fold cross-validation [39]
to evaluate the performance of different parameter combinations. In total, we searched
through 1500 combinations of parameter values. Ultimately, our XGBoost model achieved
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the best performance with the maximum depth, minimum weight needed in a child, and
learning rate equal to 15, 10, and 0.02, respectively. In addition, we set the maximum
number of boosting rounds to 5000 during training and used the early stop technique to
stop the training. The final number of iterations was 4218 when the loss on the validation
set no longer decreased.
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2.4.4. Shapley Additive Explanations (SHAPs)

SHAP is a local attribution method that is based on the use of Shapley values. The
Shapley values originate from the field of cooperative game theory and represent each
play’s average expected marginal contribution in a cooperative game after all possible
combinations of players have been considered. It can be formulated as follows [40]:

φi = ∑
S⊆F\{i}

|S|!(F− |S| − 1)!
F!

[ fx(S ∪ {i})− fx(S)] (2)

where φi is the weighted average of all marginal contributions of the predictor i, F is the total
number of features, S is the subset of predictors from all predictors except for predictor i,
and |S|!(F−|S|−1)!

F! is the weighting factor counting the number of permutations of the subset
S. fx(S) is the expected output given the predictors subset S. [ fx(S ∪ {i})− fx(S)] is the
difference made by the predictor i.

2.4.5. Model Construction and Application

This study aimed to develop a soil moisture prediction model for different soil types
using relevant atmospheric and soil factors. To achieve this, 14 most related factors were
obtained by calculating the correlation. Additionally, to account for the different impacts of
soil types, the variable Stflag was included in the model, with values of 1, 2, and 3 repre-
senting sandy, loam, and clay soils, respectively.

To further evaluate the importance of soil factors in predicting 0–10 cm soil relative
humidity, two sets of data used as the model’s independent variables were constructed
using 14 optimal predictors (including atmospheric and soil variables) and 10 optimal
predictors (including atmospheric variables only) from 70 stations in Jiangsu Province
between 2014 and 2021. Before prediction, missing values in these two data sets were com-
pleted with the mean values, and the dataset was normalized. A tri-fold cross-validation
approach [39] was employed to train, validate, and evaluate the model. The data were
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randomly divided into three sets: 80% (163,520 samples) as the model training dataset,
10% (20,440 samples) as the model validation dataset for parameter optimization, and the
remaining 10% (20,440 samples) as the model prediction evaluating dataset.

2.4.6. Model Prediction Effect Interpretation and Verification

After building the prediction model, the SHAP method was applied to obtain each
predictive factor’s positive and negative effects separately for both Model_soil&atmo and
Model_atmo. In addition, six metrics were used on the evaluating dataset to evaluate the
performance of XGBoost and other state-of-the-art predictive models, including correlation
coefficient (R), root mean square error (RMSE), mean absolute error (MAE), mean absolute
relative error (MARE), Nash–Sutcliffe efficiency coefficient (NSE), and accuracy (ACC).
These indicators are calculated as follows [41]:

R =

n
∑

i=1
(yi − yi)(ŷi − ŷi)√

n
∑

i=1
(yi − yi)

2 n
∑

i=1
(ŷi − ŷi)

2
(3)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(4)

MAE =
1
n

n

∑
i=1
|(yi − ŷi)| (5)

MARE =
1
n

n

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ (6)

NSE = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(ŷi −

n
∑

i=1
yi

n )

2 (7)

ACC = 1− 1
n

n

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ ∗ 100% (8)

where yi is the observed value, ŷi is the predicted value, n is the number of samples, yi is
the mean of observations, and ŷi is the mean of the prediction.

To further verify the prediction capabilities of Model_soil&atmo and Model_atmo based
on XGBoost, we compared these models with three state-of-the-art machine learning
models (i.e., ANN [42], RF [43], and SVM [44]) for soil moisture prediction over 70 sites in
Jiangsu. The comparison was based on the values of these above metrics and the scatter
distributions of predicted and observed soil moisture values. Furthermore, we evaluated
the performance of Model_soil&atmo and Model_atmo during a typical drought in August
2022 in Jiangsu Province. The flow chart depicting the establishment, interpretation, and
evaluation of the prediction models for soil moisture is presented in Figure 3.
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3. Results
3.1. Correlation Analysis between Soil Moisture and Predictive Factors

After analyzing the correlations between 0–10 cm soil relative humidity (RHs10cm) and
various predictors for different soil types with different advance days (See Figure 4), it was
observed that, among the atmospheric factors, RHs10cm had a high positive correlation with
the mean air relative humidity (RHa) and cumulative precipitation (Psum). The correlation
coefficients were between 0.17–0.33 and 0.13–0.26, respectively, and their absolute values
gradually increased with the leading time, peaking 8–10 days prior. Additionally, RHs10cm
had a high negative correlation with the mean water vapor pressure (e) and accumulated
sunshine hours (Ssum). The absolute correlation coefficients were between 0.24–0.33 and
0.15–0.33, respectively. The absolute values also increased with the leading time, reaching
the maximum at 8 and 10 days prior, respectively. Among the soil factors, RHs10cm had a
high negative correlation with the mean maximum surface temperature (Tsmax), with its
maximum absolute value appearing 4–5 days prior. The correlations between RHs10cm and
other factors were relatively low, but all passed the significance test of p = 0.01.
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Overall, the correlations between RHs10cm and various predictor factors, as well as
their change rules with the days advanced, were relatively consistent among different soil
types, with the times taken to reach the maximum value being similar (see Figure 4a–c).
The variabilities of positive–negative correlation with RHs10cm were mainly reflected in the
factors of the minimum surface temperature and wind speed. Thus, a fixed optimal impact
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time was set for each predictor factor as the model input, and its corresponding differences
in the impact times between different soil types were no longer distinguished.

3.2. Interpretability of Model

We analyzed the relationships between the predictor variables and the soil moisture
using the XGBoost model and presented the results through SHAP summary plots for
each variable. In Figure 3, for each predictor variable displayed on the y-axis, each colored
point represents a value of this variable in the dataset and the SHAP values displayed on
the x-axis denoting the contributions of that predictor variable, which can be a positive or
negative effect on the prediction of soil moisture. The gradient color of each point indicates
the value of the predictor variable, ranging from low (blue) to high (red), providing a visual
representation of the relationships between the predictors and soil moisture.

From the SHAP summary chart of Model_soil&atmo in Figure 5a, we observed that
Tsmax, Ts10cm, and Tamax had a significant negative contribution to the model prediction,
considering both atmospheric and soil variables. Conversely, the effects of other factors
on the prediction results were either opposite or insignificant. Among them, Psum had
the most considerable positive contribution to the model prediction, followed by RHa.
According to the importance of each predictor, the order of the top five predictors was
Tsmax > Psum > Ts10cm > RHa > Ts.
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From the SHAP summary chart of Model_atmo in Figure 5b, we found that the greater
value of Tamax, e, and W had a greater negative contribution to the model prediction, con-
sidering only atmospheric variables. In contrast, other factors have opposite effects on the
prediction results, or their positive–negative characteristics were insignificant. Among them,
Psum had the most significant positive contribution to the model prediction, followed by RHa,
which was consistent with the results of Model_soil&atm. According to the importance of each
predictor, the order of the top five predictors was Psum > Tamax > RHa > e > W.

3.3. Model Prediction Evaluation
3.3.1. Analysis of Model Prediction Accuracy

To further verify the prediction capabilities of Model_soil&atmo and Model_atmo based
on XGBoost, we compared them with three other state-of-the-art machine learning models
(i.e., ANN, RF, and SVM) based on the scatter distributions of the predicted and observed
values of soil moisture, and the values of six metrics (i.e., R, RMSE, MAE, MARE, MSE,
and ACC).

The scatter distributions of the model predictions based on XGBoost and the ac-
tual observations of the 0–10 cm soil relative humidity are presented in Figure 6a1,a2.
Model_soil&atmo and Model_atmo showed an even distribution of predicted and observed
values around the 1:1 diagonal, with Model_soil&atmo exhibiting a slightly more clustered
distribution. The mean and standard deviation of Model_soil&atmo ’s predictions (79.28% and
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10.32%, respectively) were similar to those of the observations (79.30% and 15.77%, respec-
tively). Model_atmo ’s prediction results were comparable to those of Model_soil&atmo, with
only minor differences. However, overall, the prediction performance of Model_soil&atmo
was slightly better than that of Model_atmo.
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After comparing the scatter distributions of observations with model predictions based
on XGBoost, ANN, RF, and SVM (see Figure 6), it was observed that the lines between the
predicted and observed soil moisture for XGBoost were much closer to the ideal line (y = x)
than those for the other predictive models. Additionally, the prediction results of the other
models presented a relatively smaller standard deviation.

Table 3 shows the comprehensive predictive performances of XGBoost, ANN, RF, and
SVM over 70 sites in Jiangsu Province. The values of R, RMSE, MAE, MARE, NSE, and
ACC for Model_soil&atmo and Model_atmo based on XGBoost were 0.69, 11.11, 4.87, 0.12,
0.50, and 88%, as well as 0.66, 11.49, 4.96, 0.14, 0.47, and 86%, respectively. Comparing the
values of the six evaluated indexes of other LM models, it was found that models based on
XGBoost always had the lowest RMSE, MAE, and MARE, as well as the highest R, NSE,
and ACC.

In addition, for XGBoost, compared with Model_atmo having an average prediction
accuracy of 86%, Model_soil&atmo had better precision, with an average accuracy of 88%.
Notably, Model_soil&atmo’s prediction effects were always slightly better than those of
Model_atmo, which was also evident from the prediction results of other models, whether
from the scatter charts or metrics.
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Table 3. Comparison of XGBoost, ANN, RF, and SVM performances in soil moisture prediction using
two data sets as the model’s input.

ML Models R RMSE MAE MARE NSE ACC (%)

XGBoost
Model_soil&atmo 0.69 11.11 4.87 0.12 0.50 88%
Model_atmo 0.66 11.49 4.96 0.14 0.47 86%

ANN
Model_soil&atmo 0.59 12.85 6.55 0.16 0.27 84%
Model_atmo 0.56 13.19 6.71 0.17 0.23 83%

RF
Model_soil&atmo 0.64 12.08 6.07 0.15 0.36 85%
Model_atmo 0.63 12.25 6.19 0.16 0.34 84%

SVM
Model_soil&atmo 0.54 13.68 7.56 0.17 0.19 83%
Model_atmo 0.51 13.58 6.86 0.18 0.18 82%

Furthermore, the spatial distribution map of the model evaluation indexes (i.e., R
and MAE) showed that both Model_soil&atmo and Model_atmo based on XGBoost had a
high accuracy in soil moisture prediction, and their spatial distribution patterns were
very similar, with differences only at individual stations (see Figure 7). Stations with
relatively small correlation coefficients and large average absolute errors of predictions
and observations of both models were mainly concentrated along the northern area of the
Yangtze River and in the northeastern area of Jiangsu Province.
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In addition, we found that the prediction accuracy of both models varied greatly
between sites from the spatial distribution maps. According to the statistical analysis, for
Model_soil&atmo, the R between the predicted and measured values ranged from 0.34 to
0.87, with a mean value of 0.69, and the MAE ranged from 0.12% to 14.52%, with a mean
value of 4.87%. The number of sites with R > 0.60 reached 58, accounting for more than
82%, and the number of sites with MAE < 5% reached 40, accounting for more than 57%.
For Model_atmo, the R between the predicted and measured values ranged from 0.34 to 0.85,
with an average value of 0.66, and the MAE ranged from 0.05% to 13.96%, with an average
value of 5.04%. The number of sites with R > 0.60 reached 53, accounting for more than
75%, and the number of sites with MAE < 5% reached 38, accounting for more than 50%.

3.3.2. Analysis of Typical Drought Process

During 2–23 August 2022, a third round of persistent high temperature occurred
in Jiangsu Province, with the first two rounds taking place on 16–22 June and 8–15 July,
respectively. The south of Huaihe region experienced 14–19 days of a maximum tempera-
ture ≥ 37 ◦C, with the average temperature between 32–33.7 ◦C. Compared to the same
period in a normal year, the temperature in 2022 was approximately 4 ◦C higher and the
precipitation was less than 90%. In particular, southern Jiangsu faced widespread high
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temperatures above 40 ◦C from 12–15 August, resulting in a rapid expansion of drought
across the province. By 15 August, most of the southern Huaihe Basin experienced mod-
erate or above meteorological drought, with some areas suffering from severe drought.
However, the high temperature gradually receded from 24 August, and the precipitation
gradually increased, mainly in the Huaibei and Sunan areas. As a result, the moisture
conditions across the province improved effectively, and the moisture content reached an
appropriate level.

According to the distribution of a 0–10 cm soil relative humidity on 1, 15, and 30 Au-
gust, which was interpolated from the measurement of the automatic soil moisture station
(see Figure 8a1–a3), we found on 1 August, affected by antecedent precipitation, the soil
moisture in most areas of northern Jiangsu was saturated, and the field humidity was
relatively high, while the 0–10 cm soil relative humidity in some areas of southern Jiangsu
was less than 60%. By 15th August, there was a severe soil water shortage in most of
the southern Huaihe Basin. The 0–10 cm soil relative humidity was only 40% to 50%,
which had reached moderate drought, and was even less than 40% in some regions, reach-
ing severe drought. Affected by precipitation, by 30 August, the field soil humidity in
some areas of Huaibei was relatively high, and the 0–10 cm soil relative humidity in most
southern Huaihe Basin had generally improved to more than 60%, with only sporadic
areas still suffering from the drought. Thus, it can be seen that the variation in farmland
drought perfectly corresponds with the beginning, aggravation, and extinction of the entire
high-temperature process.
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The spatial distribution patterns of the corresponding prediction results of the models
agreed with the observation results. The prediction results reflected not only the devel-
opment process of drought but also the distribution areas of different levels of farmland
drought. However, the predicted drought situation was relatively weak compared to
the observation results. Overall, the differences in the distribution pattern and numeric
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value between the predictions and observations of Model_soil&atmo were less than those of
Model_atmo (see Figure 8b1–b3 and Figure 8c1–c3, respectively).

4. Discussion

Based on the observation, soil types, and meteorological data, this study adopted XG-
Boost to predict soil moisture variations. Different atmospheric and soil factor combinations
were selected as input variables to establish two sets of prediction models (Model_soil&atmo
and Model_atmo) for RHs10cm. At the same time, the contributions of the predictive factors
were discussed using SHAP. The prediction accuracy was evaluated by comparing six
evaluated indexes with other popular ML methods and analyzing a typical drought process
in 2022.

The variation in soil moisture is a complex coupling system that exhibits high noise,
nonlinearity, and unstable random time series data [22]. Compared to traditional statistical
models, machine learning algorithms use multiple processing layers consisting of complex
structures or multiple nonlinear transformations to highly abstract data, which could
overcome the influence of white noise on the prediction accuracy and effectively improve
the simulation accuracy [25]. However, different ML methods have different applicabilities
for the same dataset. For example, in a study predicting soil moisture based on three
different datasets, machine learning techniques such as multiple linear regression (MLR),
support vector regression (SVR), and recurrent neural networks (RNNs) were compared,
and MLR was found to have a better performance than the others. Our study used
automatic soil moisture observations to compare the prediction accuracies of two models
based on XGBoost with ANN, RF, and SVM. It showed that Model_soil&atm based on
XGBoost was superior, providing the lowest RMSE (11.11), MAE (4.87), and MARE (0.12),
and highest R (0.69), NSE (0.50), and ACC (88%). Due to different research and application
purposes, the dataset applied in soil moisture prediction studies based on machine learning
algorithms is varied, including in situ sites [45], remote sensing [46], reanalysis [47], and
flux stations [24]. These datasets usually belong to diverse regions with different spatial
and temporal resolutions, so it is still challenging to make direct comparisons even if the
same method is applied.

The analysis of a typical drought process showed that the XGBoost model based on site
data had a good performance and was a feasible method for soil water content prediction,
as it could capture a reasonable spatial distribution of the soil moisture. In addition,
several advantages were considered for choosing the data observed from the automatic
observation stations. Firstly, for a specific site, the data of the automatic observation station
have lower errors than the data obtained by remote sensing instruments and reanalysis
data, where the problems of insufficient time resolution and delayed acquisition also
exist [47]. Hence, we can more accurately explore the relationship between soil moisture
and environmental parameters. Secondly, soil moisture and its related meteorological or
soil data are commonly available with the exact temporal resolution, so abundant data
could be provided for training the predictive model. It is important to note that the
predictivity of soil moisture depends on the data’s time steps and spatial resolutions due to
their different distribution and variation [24,48]. Moreover, the wideness of the application
of soil moisture prediction usually depends on its spatial representativeness. Therefore,
as more automatic weather stations are installed, the proposed model based on site data
could be helpful for the operational studies on soil moisture prediction over larger regions
and could provide information for timely and optimal irrigation scheduling. However,
considering the spatial variability of soil moisture, in-depth future research is still needed,
using situ data, remote sensing, and reanalysis data.

The appropriate selection of model input factors could promote the accuracy of the
prediction model [49]. In this research, we correlated the RHs10cm with 14 predictors
1–10 days before to determine each predictor’s maximum impact time. The selected
predictors were taken as inputs for the model, which would make the model establishment
more reasonable, but still needs to be tested in the future. In addition, the contributions of
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each predictor on the modeling results of two sets of models were discussed via SHAP. The
analysis revealed that soil factors in Model_soil&atmo played a positive role in the prediction
of soil moisture. Overall, the prediction accuracy of Model_soil&atmo was higher than that of
Model_atmo. Therefore, introducing soil factors such as Tsmax, Ts, and Ts10cm could improve
the prediction accuracy of soil moisture to some extent. For atmospheric factors, Tamax,
Psum, and RHa are crucial for improving the soil moisture prediction accuracy. These
results are consistent with the view that temperature and precipitation are the main factors
affecting the variations in soil moisture by adjusting the water budget balance [50,51].

This study aimed to predict the 0–10cm soil relative humidity, which is a crucial
parameter for drought and waterlogging prevention, as well as farmland fertilization and
irrigation. Generally, the cultivation layer of crops is 0–20 cm, and the water condition
of this layer has a good characterization of crop drought. However, compared with the
deep soil layer, the 0–10 cm soil layer is more directly affected by meteorological conditions
such as precipitation and temperature. When the temperature is high and the amount
of evapotranspiration increases, the lack of moisture in crop fields appears gradually
from top to bottom. The moisture deficit in surface soil is easily detected and can serve
as the evaluation index for preventing and controlling crop drought. In addition, there
is an excellent linear correlation between the soil relative moisture at different levels of
depth [52], and hence the surface soil moisture condition is a good indicator of deep soil
moisture conditions.

This study deeply integrated the XGBoost with meteorological data to establish a
provincial-level soil moisture prediction model, which can provide a reference for soil
moisture prediction research in other regions. The model can be used to analyze historical
soil water change rules and typical drought and flood cases during the period lacking soil
moisture observation while high-density meteorological observation is available (mainly
from the 1960s to 2010s). However, there are some deficiencies and uncertainties in this
study. For instance, only four frequently used machine learning algorithms were used in
the study. In the future, multiple machine learning algorithms or other methods [53–55]
could be used to conduct soil moisture prediction research to analyze the advantages
and disadvantages of different methods and applicable conditions. Based on the XGBoost
algorithm, the positive and negative contributions of most factors in the Model_soil&atmo and
Model_atmo for soil moisture prediction analyzed by SHAP were consistent and conformed
to the actual physical meaning. However, there were some cases where the same factor had
the opposite contribution to the prediction results, which needs further investigation.

5. Conclusions

Soil moisture is the characterization of farmland drought and flood and the basis
for irrigation schemes. The prediction of soil relative humidity was achieved based on
the XGBoost model using continuous daily atmospheric and soil observation data from
automatic stations. The methods of correlation analysis and SHAP were applied to select
model predictors and evaluate the contribution of model factors. In addition, six effect
indicators and a typical drought process were analyzed to compare the predictive accuracy
of the XGBoost model with the other three machine learning models (i.e., ANN, RF, and
SVM) to assess the predictive power of the model.

Through correlative analysis, we found that the time with the highest correlations
between environmental predictors and RHs10cm varied but was similar between soil types.
Among atmospheric factors, the mean RHa and Psum exhibited strong positive correlations
with RHs10cm, with correlation coefficients ranging from 0.17 to 0.33 and 0.13 to 0.26. The
correlation gradually increased over time, reaching the maximum 8~10 days ago. On the
other hand, the mean e and Ssum displayed strong negative correlations with RHs10cm,
with correlation coefficients ranging from −0.24 to −0.33 and from −0.15 to −0.33. Their
absolute values also gradually increased over time, peaking at the time of 8 days ago
and 10 days ago, respectively. Among the soil factors, the mean Tsmax showed a strong
negative correlation with RHs10cm, and its maximum absolute value appeared 4~5 days
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ago. Furthermore, via SHAP analysis, it showed that the contributions and impacts of
the predictors on the modeling results for Model_soil&atmo and Model_atmo were different.
According to the importance of each predictor, the orders of the top five predictors of
these two models were Tsmax > Psum > Ts10cm > RHa > Ts and Psum > Tamax > RHa > e > W,
respectively. Overall, among the predictors, the contribution rates of Tamax, Psum, and RHa
in atmospheric factors, which functioned as a critical factor affecting the variation in soil
moisture, were relatively high in both models.

The overall performances of Model_soil&atmo and Model_atmo based on XGBoost ex-
hibited lower error values when compared to ANN, RF, and SVM, thereby verifying the
prediction capabilities of the XGBoost model. The values of R, RMSE, MAE, MARE, NSE,
and ACC for Model_soil&atmo and Model_atmo based on XGBoost were 0.69, 11.11, 4.87, 0.12,
0.50, and 88%, and 0.66, 11.49, 4.96, 0.14, 0.47, and 86%, respectively. Both Model_soil&atmo
and Model_atmo using XGBoost outperformed the other machine learning models in the
scatter distribution of the predicted and measured values. In addition, by integrating the re-
sults of SHAP analysis and comparisons of Model_soil&atmo and Model_atmo, it showed that
Model_soil&atmo’s prediction effects were always slightly better than those of Model_atmo.
Hence, it is worth noting that introducing soil factors (e.g., Tsmax, Ts, and Ts10cm) can
positively improve the soil moisture prediction accuracy.

Furthermore, the XGBoost model was applicable for provincial-level soil moisture
prediction as it captured the spatial distribution characteristics of different levels of drought
and effectively predicted the dynamic change process of the “occurrence–development–
termination” of a specific drought event. Therefore, the excellent establishment of a soil
moisture prediction model based on automatic observation stations, which effectively
overcomes the temporary discontinuity of remote sensing inversion and the problem of
a low prediction accuracy, could not only effectively guide farmland irrigation but also
validly compensate for the insufficient historical observation of soil moisture stations.
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