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Abstract: In recent years, eco-efficiency assessment has proven to be an effective tool to reduce
the environmental damages of agricultural activities while preserving their economic sustainability.
Hence, this paper aims to assess the eco-efficiency of a sample of 148 beef cattle farms operating in the
extensive livestock system of Central Italy. The analysis is based on Farm Accountancy Data Network
(FADN) economic data in the year 2020 and includes, as environmental pressures, farm expenditure
for the use of fuels, electricity and heating, and fertilizers. A two-stage approach was implemented:
in the first stage, an input-oriented DEA model including slack variables was used to quantify farm
eco-efficiency scores and determine the polluting inputs’ abatement potentials. In the second stage,
the influence of possible influencing factors on eco-efficiency scores was tested using a regression
model for truncated data. The analyzed farms were found to be highly eco-inefficient, as they could
abate their environmental pressures, on average, in a range from 56% to 60% while keeping the value
of their global production constant. Fertilizers and fuel consumption were identified as the least
efficiently operating inputs, with potential reductions in terms of the related expenditures fluctuating
between 9% and 42%. Farms showing a high-intensity livestock system, a low labor intensity, and
a larger farm area were recognized as the most eco-efficient. Environmental and animal welfare
subsidies were found to not affect eco-efficiency, while a negative influence was estimated for a single
farm payment, which does not seem to be an incentive mechanism for farms to operate efficiently.

Keywords: eco-efficiency; livestock farms; data envelopment analysis; model approaches in estimating
greenhouse gases (GHG); truncated regression

1. Introduction

Agricultural activities play a pivotal role in providing access to food, supporting farm-
ers’ incomes, and strengthening the resilience of many rural communities, while ensuring a
large part of ecosystem services, including biodiversity and landscape conservation.

Nevertheless, this sector is recognized as one of the most responsible for contributing
to the deterioration of human and natural ecosystems, as its negative impacts include
pollution and degradation of soil, water, and air.

Within the agricultural sector, livestock activities are definitely the ones most responsi-
ble for the production of greenhouse gases (GHG), as they contribute significantly to the
emissions of carbon dioxide (CO2), methane (CH4), and nitrogen oxide (N2O) [1–3]. In the
livestock sector, the largest share of polluting emissions relies on cattle production systems,
accounting for 65% [4]. In addition, cattle livestock farming contributes significantly to
environmental pollution by affecting water quality and is responsible for more than half of
the anthropogenic emissions of N and P [5].

Indeed, the enhancement of the sustainability of agricultural activities represents one
of the most crucial challenges identified by the policy agendas. For example, at the Euro-
pean level, the Common Agricultural Policy (CAP), accordingly to the European Green
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Deal strategy [6], has identified environmental and climate issues as a priority, seeking
to enhance the contribution of agriculture to the environmental and climate goals of the
European Union (EU), providing higher support to farms adopting improved environmen-
tal practices.

In this context, politicians and scientists have increasingly focused their attention
on assessing the undesirable outputs of agricultural and livestock systems, with a view
to quantifying the related reduction potential and identifying the main critical issues
affecting farms’ environmental management. In this regard, a large variety of methods,
indexes, and measures able to simultaneously consider both the technical efficiency and
the environmental performances of the production processes have been proposed. Among
these, the assessment of eco-efficiency has been successfully implemented in an increasing
number of studies focusing on the agricultural [7–9] and livestock sectors [10–12].

In particular, eco-efficiency assessment is particularly helpful in production contexts,
such as livestock farms, where the existence of conflicting economic and environmental
goals has been extensively proven [13].

In fact, due to its definition, the eco-efficiency concept is dealing with solutions from a
cost-effectiveness perspective, thus allowing the trade-offs between productivity and green
practices to be overcome [14]. From this perspective, such an approach seems to be the most
suitable to provide win–win solutions in the livestock sector, whose environmental impacts
are generally reduced in highly efficient production contexts [15,16]. Overall, two main
approaches for the efficiency estimation, calculated as the distance of the Decision Making
Units (DMUs) from the theoretically most efficient frontier, were found in the reviewed
literature: the parametric one, which entails differences related to the functional form of
the underlying distance function, and the non-parametric one, based on Data Envelopment
Analysis (DEA) [7].

The first one makes restrictive assumptions about the production function underlying
the distance function, thus allowing advantages to be obtained from the computational
point of view [17] and from the algebraic manipulation [18]. However, the imposition
of a predetermined functional form for the production technology may lead to biases in
efficiency score estimates if the technology is mis-specified.

The non-parametric techniques based on the DEA, however, do not provide for strong
assumptions concerning the functional form specification, allowing for a greater degree
of flexibility, resulting in more consistent and reliable efficiency estimation. Hence, DEA
seems to be the most suitable method to be implemented in the case of multiple-input or
multiple-output production process efficiency evaluation [19].

Overall, DEA is a methodology based on linear programming techniques that deter-
mine the relative efficiency of similar DMUs [20]. The method was first introduced in 1978
by Charnes et al. [21], and its basic formulation assumes a monotonous relationship of
linear proportionality between input and output [20], leading to efficiency scores ranging
from 0 to 1. The closer the score is to the maximum range, the more efficient the DMU is;
the closer it is to the minimum range, the more inefficient the DMU.

However, the monotonicity assumption is violated in the case of the joint production of
desired (good) outputs and undesirable (bad) outputs, including, for example, the polluting
emissions associated with livestock farming. In fact, an increase in polluting emissions is
associated with a decrease in efficiency scores and vice versa.

To take these aspects into account, and based on the growing interest in environmental
economics issues, extended DEA models have been developed to model environmental
damages able to measure environmental and technical efficiency [22].

According to the existing literature, the strategies for incorporating environmental
pollutants can be divided into two main categories: indirect approaches and direct ap-
proaches [23,24]. The former envisages that the undesirable outputs would be included
in the traditional CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and
Cooper) DEA models, through appropriate transformations. Among these, the inverse
additive approach requires that the bad outputs, with a change in sign, were algebraically
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added to the desired outputs [25]. In another case, bad outputs were considered as inputs in
the traditional DEA models [26–28], or, in the inverse multiplicative case, the bad output’s
reciprocal is treated as good output [29,30].

Several studies focusing on the technical efficiency of livestock farms, based on tradi-
tional radial DEA models, have been conducted [31–35]; however, few studies, limited to
the dairy sector, have taken into explicit consideration the energy management [36] and the
environmental performances [37–40].

Furthermore, indirect approaches are based on radial measures, not allowing the
quantification of the excesses at the level of single polluting inputs (input slacks) or the
deficiencies in the good output production (output slacks), thus failing to capture the
mix-inefficiency [41].

However, adding slack variables to traditional DEA models allows overcoming such
limitations, in order to separately discriminate the level of efficiency or inefficiency for each
of the output and input items included, as is in the case for the direct approaches.

Many studies focusing on the agricultural sector have recently used DEA models
with undesirable outputs, alone or combined in a second-stage framework, at both the
national [42–44] and the farm level [9,37,45–47]. In particular, the proposed DEA method-
ological frameworks have pursued the following two main purposes:

(1) Determination of the eco-efficiency level and the potential output increase (input
reduction) in inefficient Decision-Making Units (DMUs), under the hypothesis of
different returns to scale;

(2) Analysis of the effects on efficiency scores of structural and environmental factors
characterizing farm management.

Although these approaches have been widely adopted to estimate the eco-efficiency of
cattle farms [9,10,32–34,48], most of them have focused on the dairy sector and used indirect
approaches, without accounting for input and output slacks. Only a few of the existing
papers focus on the beef cattle sector [49,50]. In the former, life cycle assessment (LCA)
was combined with Slack-Based Measures–DEA to assess the eco-efficiency of 48 Austrian
multifunctional farms. However, a limited number of beef-producing cattle farms (8) were
taken into consideration; moreover, the use of the LCA impact categories values as DEA
inputs does not allow for a direct quantification of the excessive use of polluting inputs
(e.g., fertilizers, electricity, fuels, etc.).

The latter implemented a traditional two-stage DEA model, including GHG emissions
as a bad output, to assess the effects of EU agri-environmental schemes on the efficiency
performances of a sample of French beef cattle farms. In particular, to the best of our
knowledge, none of these studies has meant to estimate the eco-efficiency frontier and
quantify, at the same time, the potential to reduce GHG emissions and the use of fertilizers.
This research attempts to partially fill the gaps found in the existing literature by focusing
on the eco-efficiency assessment of a large farm sample representative of the entire central
Italy beef cattle sector, with the specific purpose of identifying the main institutional and
farm management drivers of eco-efficiency. In this regard, in this paper, a two-stage input-
oriented DEA model incorporating slack variables was implemented, based on the Farm
Accountancy Data Network (FADN) database, according to the following three objectives:
(i) to assess the eco-efficiency of 148 beef cattle farms located in central Italy through Data
Envelopment Analysis (DEA), by considering the use of fuels, electricity and heating, and
the use of fertilizers as environmental pressures; (ii) to quantify the abatement potential for
the considered environmental pressures; (iii) to test for the influence of possible explanatory
variables on the eco-efficiency, by implementing a regression model for truncated data, in
order to go in depth into the estimated differences in terms of environmental efficiencies
between farms.

Hence, our findings attempt to contribute to the growing stream of literature focusing
on eco-efficiency assessment in the livestock sector from a twofold perspective. First, our
research deepens the understanding of farm eco-efficiency performance by contributing to
the debate on the hypothesis that farms showing high level of productivity and technical
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efficiency are also better performing environmentally. To this end, to provide a compre-
hensive analysis framework of farms’ environmental performance, single pressure-specific
eco-efficiency indicators are computed. These results could represent valuable support for
producers to improve inappropriate production techniques that may result in excessive
input usage and environmental damage.

Secondly, this study is the first that, focusing on beef cattle, seeks to provide a com-
prehensive methodology framework to evaluate environmental efficiency and identify
the related farm-specific driving factors by using the Farm Accountancy Data Network
(FADN) data. Thus, this approach could provide useful support for other studies focus-
ing on different production contexts in the view of the EU’s environmental performance
benchmarking in the beef cattle sector [26]. The paper is structured into four sections: after
the introduction, Section 2 presents the adopted methodological framework, going into
the depth about the analytical foundations of the implemented two-stage DEA model. The
data processes are reported in the same section. The results are provided and discussed in
Section 3. In the last part, an overview and concluding remarks are reported, with particular
reference to the related policy implications, as well as suggestions for further research.

2. Materials and Methods
2.1. Data Collection

The final sample population consists of 148 meat-producing cattle farms from Central
Italy (Abruzzo, Lazio, Marche and Umbria regions). Farm-level data, referring to the year
2020, were obtained from Farm Accountancy Data Network (FADN), representing the
wider EU database concerning the agricultural sector. Hence, the obtained data could be
considered representative of the entire cattle livestock sector in central Italy, as a stratified
and weighted FADN sample was used. Since the FADN database mainly contains economic
and financial data, most of the technical variables included in the analysis were proxied in
terms of related expenditures. This approach has already been adopted in several other
studies focusing on eco-efficiency assessment [10,11,42,45], for its ease of implementation
and ability to provide detailed and reliable information from representative farm samples,
besides allowing for comparison between EU countries. In addition, the usage of monetary
units avoids possible miscalculations due to the use of physical units, which does not allow
accounting for differences in the environmental impacts associated with different inputs
(e.g., heating from renewable energies or fossil ones) [51]. In fact, the usage of these inputs,
in the same amount, could have the same effect in terms of DEA results.

On the other hand, due to its features, the use of the FADN database entails limitations
relating to the availability of some relevant information for the purposes of environmental
evaluations, as in this case. For this reason, only GHG emissions that were strictly related
to the purchase of inputs were taken into consideration in the analysis. Consequently,
emissions coming directly from livestock activities, such as those associated with enteric
fermentation, manure management, and disposal, were not considered, nor were the
potential emission savings due to the carbon sequestration of grazing and pasture fields.

In this regard, considering a time horizon of one year, the following items have been
considered as polluting inputs: fuel costs, electricity, and heating costs as proxies for the
contribution in terms of global warming, as well as fertilizer expenditure, which was taken
into consideration as a proxy for the use of nutrients. These latter result in environmental
damages in terms of water and soil pollution and indirect GHG emissions associated with
the production processes of fertilizers. These same environmental pressures’ categories
were also considered by [9,12] in their eco-efficiency studies, focusing on cattle dairy farms,
under the assumption that the higher the expenditures for those inputs, the higher the
environmental impacts in terms of contribution to global warming and usage of nutrients.

In addition, livestock units were included in the DEA analysis as technical input. From
the output side, the global production value was considered.
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2.2. Two-Stage DEA Framework

This paper aims to assess the environmental efficiency of beef cattle farms by imple-
menting an input-oriented DEA model, which includes, as technical inputs, undesirable
outputs, according to [27].

The choice of the DEA methodology is justified based on the literature discussed in the
previous section, which has extensively used this approach to estimate the eco-efficiency
frontiers in different agri-food sectors.

In this regard, this study adopted the following two-stage approach [52,53]: in the
first stage, the eco-efficiency scores and the abatement potentials of polluting inputs were
estimated via CCR and BCC DEA models, including slack variables [27]. As DEA focuses
on the efficiency, this approach does not allow for insights about the factors that determine
inefficiency; thus, in the second stage, a Tobit regression model [54] for censored data
was implemented, including, as a dependent variable, the efficiency scores calculated in
the first stage. Structural and management farm parameters related to the farm area, the
intensity of the production process, the labor-intensity, and the level of public subsidies are
included as covariates, in order to evaluate their influence on eco-efficiency. The deepened
understanding of these relationships will provide a concrete and decisive contribution
to the growing debate, in terms of both public and scientific discussion, regarding the
need to improve the social and economic sustainability of the livestock sector in the
European Union.

2.2.1. First Stage: DEA Method

In recent decades, a large stream of DEA models has been proposed, showing dif-
ferences mainly related to assumptions regarding the functional form, constraints, and
nature of the inputs and outputs considered. However, two traditional DEA models have
been found to be the most widely adopted in the existing literature, namely (1) the CCR
model, which assumes constant returns to scale (CRS), thus providing an evaluation of
total eco-efficiency (CRS); (2) the BCC model, which assumes constant returns to scale
(CRS), allowing one to estimate the “pure” technical eco-efficiency, as the operating scale
factor is not accounted for. Both models can be implemented with their output-oriented
or input-oriented version, which are, respectively, aimed at maximizing the output (while
keeping constant the input level) or at minimizing the inputs (while keeping the output
level). Considering that this paper deals with eco-efficiency estimation with the specific
purpose of quantifying the reduction potentials of the considered environmental pressures,
the input orientation was chosen and implemented in this study.

Let k = {1, 2, . . . , K} represent the DMU set, I = {1, 2, . . . , I} the input set, and j the
output, where the k-th DMU produces yjk units of output by using xik units of i-th inputs.
Introducing an intensity variable indicated with λk, the CCR input-oriented model for
the DMUo under evaluation can be expressed, in mathematical terms, with the following
maximization problem [21]:

Min
θo ,λk

θo

s.t.
K
∑

k=1
λkxik ≤ θoxio, ∀ i = 1, 2, . . . , I;

K
∑

k=1
λkyjk − yjo ≥ 0 ∀ j = 1;

λk ≥ 0 , k = 1, 2, . . . , K;

(1)

where θ∗o is the optimal value, calculated as the ratio between the input level achievable
by DMUo, by keeping constant the actual output level and the actual input level, and
λk is an intensity variable, measuring the extent to which an activity it is used in the
production process.

However, model 1 assumes a constant return to scale (CRS), under the hypothesis
that all farms would have been operating at their optimal scale; thus, it is not possible for
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them to obtain any potential eco-efficiency increase by modifying their production scale.
However, DMUs often cannot operate at their optimal scale due to several factors such as
imperfect market conditions or other internal organization aspects.

To account for this fact, it is possible to relax this hypothesis and estimate the BCC
input-oriented model with variable returns to scale (VRS) [55] by adding the convexity
constraint (2) to model 1:

K

∑
k=1

λk = 1; (2)

The DMUo reaches radial efficiency when θ∗o = 1, λ∗o = 0, and λ∗k = 0 ∀ k 6= o, where
* indicates the optimal value of each variable. Instead, radial inefficient farms ( θ∗o < 1)
may proportionally decrease their use of input, while maintaining their actual output
production, by an amount equal to complement to unity of the θ∗o value.

However, by adding slack variables to the models specified above, non-radial levels
of single-input (or -output) reduction (or increase) that are achievable by those inefficient
farms can be estimated. Hence, according to [56], the input slack s−i and output slack s+j
can be estimated by converting inequality constraints to equality ones, as in the following
maximization model:

Max
θo ,λk

θo

s.t.
K
∑

k=1
λkxik + s−i = xio, ∀ i = 1, 2, . . . , I;

K
∑

k=1
λkyjk − s+j = θoyo, ∀ j = 1;

λk,≥ 0, k = 1, 2, . . . , K

s−i ≥ 0, i = 1, 2, . . . , I

s+j ≥ 0, j = 1

(3)

where s−i and s+j represent an excess use of the i-th input or a deficiency in the production
of the output j, respectively.

Whereas the assumption of CRS or VRS for the eco-efficiency assessment is still a
matter of debate [45], to account for the effect that the scale to which the DMUs are operating
has on their eco-efficiency, both CCR and BCC models were implemented in this study.

The optimal solution to the CCR and BCC model represents, respectively, the technical
eco-efficiency (TEEo) and the “pure” technical efficiency (PTEEo) of the DMUo, with PTEEo
and TEEo varying in the range of [0, 1].

SEEo =
TEEo

PEEo
(4)

By taking the ratio between TEEo and PTEEo, it is possible to compute the scale
efficiency, with SEEo = 1 indicating that the DMUo operates at the optimal scale, given that
the two efficiency scores are equivalent. In the case that SEEo < 1, the DMUo operates at
increasing returns to scale (IRS), and potential efficiency gains are therefore possible from
increasing the production scale; however, SEEo > 1 indicates that the DMU is operating at
decreasing returns to scale (DRS), and thus efficiency improvements would be achievable
if DMU reduced its production scale.

2.2.2. Estimation Environmental Pressure Abatement Potentials

With respect to the polluting input fuel expenditure, electricity and heating costs, and
fertilizers expenditure, in the case of the eco-inefficiency of the DMUo, positive values of
the associated slacks variables s−i can be estimated, representing the excess use of inputs
that the DMUo could reduce to become eco-efficient, while preserving its global production.
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Indeed, this value could be also considered as the abatement potential (PAo) of the i-th
inputs achievable by the DMU:

PAo = s−i (5)

Hence, according to Hu and Wang [57], the efficiency of single polluting inputs (IEEo)
can be calculated as the ratio between the level of input to be achieved and the current
level:

IEEo =
xlo − s∗i

xlo
(6)

The IEEo values range from 0 to 1. The higher the value, the higher the level of
efficiency and, consequently, the lower the reduction potential. All the models illustrated
above were solved in General Algebraic Modeling System (GAMS) environment.

2.2.3. Second Stage: Censored Regression Analysis

To quantify the effect of possible influencing factors on farms’ eco-efficiency, a re-
gression model was implemented by considering the scores obtained from the first-stage
models as the dependent variable.

Although a variety of econometric modeling strategies have been proposed in this
regard, a large stream of literature has shown that the Ordinary Least Squares (OLS) model
results in biased and inconsistent parameter estimates when the dependent variable is
censored [58]. In addition, the range of the observed dependent variable could be different
from that of the predicted eco-efficiency scores. To overcome these limitations, Simar
and Wilson [59] proposed a method based on a two-stage double-bootstrapped truncated
regression that is able to account for the problems of serial correlations arising when DEA
scores are treated as independent observations when they are generated from the same
process. However, this approach has been questioned on several grounds, particularly
the excessive complexity of its implementation and the lack of robustness compared to
other methods [60].

In general, the most common approach used for the second stage is represented by
implementing a censored normal regression analysis such as the Tobit model [61–63],
assuming censoring at 0 and 1 values. The underlying assumption is that the dependent
variables (i.e., TEEo and PTEEo) are linear, additive, and separable functions of the observed
influencing factors.

Hence, the two estimated models could be analytically formalized with the follow-
ing equation [54]:

y∗k = XkZ + q + εk (7)

where y∗k represents the DEA scores obtained from the first stage, observed for values
ranging from 0 to 1, and censored otherwise; Xk is the vector of explanatory variables; β is a
vector of parameters; q is the unknown intercept; and εk~iidN (0, σ2) is the statistical noise.

The maximum likelihood procedure with the White estimator to obtain consistent
standard errors was used to implement the two Tobit models, respectively, considering
TEEo and PTEEo as dependent variables. A backward selection approach was used as
an elimination criterion with a p-value > 0.1 to remove the insignificant factors from
the full model. A partial correlation analysis between the DEA variables and the final
models’ covariates has been carried out in the pre-estimation phase to obtain unbiased and
consistent Tobit estimates [64].

After the estimation, a Link test was carried out to verify the correct model specifi-
cation [50], and variance inflation factors (VIFs) were used to detect the degree of multi-
collinearity between regressors.

Given that Z parameters estimates could not be directly interpreted as the marginal
effects on the mean value of the observed yk with respect to a change in Xk [65], two
non-linear marginal effects were estimated:

(1) the marginal effects for the expected value of yk conditional on being uncensored,
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(2) the marginal effects for the unconditional expected value of yk [66]. Such an approach
allows us to account for differences, between inefficient and efficient farms, in the
effects of the covariates on the efficiency scores. The Stata 12 package was used to
carry out all the statistical analyses.

3. Results and Discussions
3.1. Descriptive Statistics of the First- and Second-Stage Variables

Table 1 shows the descriptive statistics relating to the output and input variables
included in the first-stage model.

Table 1. Descriptive statistics of the input/output variables (n = 148).

Outputs/Inputs Variable Unit Mean Standard
Deviation Min Max

Output Global Production Euro 55,639 133,138 980.00 1,138,400
Input Expenditure on fuels Euro 2512 6479 0.00 57,683
Input Expenditure on electricity and heating Euro 5479 8021 0.00 85,142
Input Expenditure on fertilizers Euro 1837 2719.22 0.00 20,186.00
Input Livestock Unit LSU 27.52 42.72 1.30 344.20

With respect to the output, an average value of global production equal to 55,639 Euros
was estimated for the considered sample; in this regard, a large degree of heterogeneity
was found between the sample farms, as evidenced by the width of the min–max range
and the high standard deviation values. Focusing on the polluting inputs, the involved
farms showed average expenditures of 2512 Euros and 5479 Euros, respectively, for fuels
and electricity and heating, with differences related to the size of the herd, the stable man-
agement, and crop cultivation techniques. On average, the sample farms spent 1837 Euros
for fertilizers. The average herd size was 27.52 Livestock Units (LSUs), varying in a range
between 1.3 LSU and 344.2 LSU.

Table 2 reports the descriptive statistics relating to the variables identified, on the basis
of the literature and the availability of data from the FADN database, as eco-efficiency
determinants. Specifically, the following farm structural factors were considered according
to García-Gudiño et al. [67], Martinsson and Hansson [10], Gomez-Limon et al. [68], and
Picazo-Tadeo et al. [45]: farm size, in terms of surface area dedicated to livestock activities;
intensity of the livestock production system, in terms of both the value of Global production
and labor employment; and the amount of Common Agricultural Policy (CAP) subsidies,
by explicitly considering those for animal welfare and environmental aspects.

Table 2. Descriptive statistics of the eco-efficiency determinants (n = 148).

Farm Area Intensity of
Farming

Labor Hours per
Livestock Unit Farm Payment Animal Welfare

Subsidy
Environmental

Subsidy

MEAN 27.66 3875 82.62 7604 1280 3925
DV. ST. 42.98 11,386 131.47 10,626 4692 5560

MIN 0.30 76.92 0.56 0.00 0.00 0.00
MAX 344.20 113,032 1000 107,012 33,100 56,417

3.2. First Stage: DEA Results
3.2.1. Eco-Efficiency Estimation

The results from the DEA-BCC and CCR models illustrated above are reported below.
Table 3 reports the main summary statistical indices, as well as the relative frequency
distributions of farm eco-efficiency (TEE), pure technical eco-efficiency (PTEE), and scale
eco-efficiency (SEE), which are also displayed in Figure 1. Focusing on Technical Eco-
Efficiency, the sample farms showed a quite low performance level, with an average value
of TTE of 0.40, varying from a minimum of 0.05 to a maximum score of 1.
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Table 3. Technical, “pure” technical, and scale eco-efficiency (n = 148).

Technical Eco-Efficiency
(TEE)

“Pure” Technical Eco-
Efficiency (PTEE) Scale Eco-Efficiency (SEE)

Eco-Efficiency Range Mean n. % Mean n. % Mean n. %

0.00–0.19 0.095 59 40% 0.098 50 34% 0.111 5 3%
0.20–0.39 0.285 40 27% 0.399 35 23% 0.271 1 1%
0.40–0.59 0.486 20 13% 0.641 17 11% 0.444 10 7%
0.60–0.79 0.678 11 7% 0.839 12 8% 0.680 13 9%
0.80–0.99 0.929 8 5% 0.987 7 5% 0.929 105 70%

1 1.000 11 7% 1.000 28 19% 1.000 15 10%
Total 0.396 148 100% 0.439 148 100% 0.850 148 100%

No. of farms with Constant Returns to Scale (CRS) 15 10%
No. of farms with Increasing Returns to Scale (IRS) 133 90%

From the frequency distribution, it is possible to notice that the largest part of the farms
was located in the lower part of the distribution, with the lowest score range of 0–0.19 being
the most numerous class, accounting for 59 farms. Moreover, if the two lower classes
are considered together, a TEE-value of <0.4 of two-thirds of the entire sample emerges,
highlighting the high level of sample heterogeneity in their eco-efficiency performances. In
fact, only 30 farms (19%) exhibit a score greater than 0.6, with the fully technical eco-efficient
ones accounting for 7% of the total; the remaining 19 farms were almost equally distributed
between the classes, ranging from 0.60 to 0.79 and from 0.80 to 0.99, accounting for 11 and
8 farms, respectively. Focusing on VRS (pure technical eco-efficiency), and thus without
considering the effect of the production scale, an higher average PTEE value of 0.44 was
estimated. Although one-third of the sample farm is still located in the lowest eco-efficiency
class, a translation of the farm distribution towards the upper classes emerges: 28 farms
out of the 148 (18.7%) become fully “pure” technically eco-efficient, with 47 farms having a
PTEE greater than 0.6.

These results imply that the livestock farms involved could abate their environmental
pressures, on average, by 60% and 56%, respectively, assuming CRS and VRS, while keeping
the value of their global production constant.

Our findings are in line with those shown in Grassauer et al. [49], who reported a high
level of eco-inefficiency for the Austrian beef cattle sector, as they estimated eco-efficiency
scores ranging from 0.17 to 0.44.

Although no other direct comparisons of our results could be made, since no existing
studies focusing on the beef cattle sector and implementing the same methodological
approach were found, several useful points emerge from the comparison with eco-efficiency
analysis concerning the dairy cattle sector.

The involved farms were highly eco-inefficient, exhibiting a potential abatement
of environmental pressures significantly higher than those quantified in other previous
studies concerning the livestock sector. In particular, by focusing on the German dairy
sector, Wettemann and Latacz-Lohmann [33] estimated a GHG abatement potential varying
from 4.5% to 11.9%. Similarly, in Iribarren et al. [26], a potential reduction of Global
Warming Potential (GWP) of 23% was quantified for Spanish dairy farms, by means of the
Slacks-Based Measures–DEA model.

These differences could be attributable to the fact that the dairy sector, compared to
the beef-producing one, is a more intensive and technically efficient productive system that
is at an advanced stage in the transition towards low-polluting input use. In addition, the
two mentioned articles used smaller samples, which could make them appear relatively
more efficient for the involved farms [69].

Nevertheless, our results are more consistent with those reported in Urdiales et al. [12]
and Picazo-Tadeo et al. [45] and, to an even larger extent, to those estimated in Martinsson
and Hansson [10]. In the first two cases, both focusing on the Spanish dairy sector, an
average potential radial reduction in several environmental pressures of 36.8% and 44% was
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found, respectively. Martinsson and Hansson [10], by using FADN data and considering
the same environmental pressures as in this study, reported an average eco-efficiency score
of 0.29 for Swedish dairy farms, corresponding to a potential reduction in environmental
pressures equal to 71%.

From the comparison of the efficiency scores obtained assuming CRS and VRS, it is
possible to notice that 15 farms (10%) were operating at the optimal production scale, as a
scale efficiency of 1 was estimated. Overall, a relatively high performance was detected for
the entire farm sample, since 120 farms (80%) were located in the two upper classes of the
SEE distribution (SEE > 0.8), with only 16 farms (11%) exhibiting a SEE score < 0.6.

However, the SEE quantification revealed that 134 farms (90%) showed IRS, thus
highlighting how potential eco-efficiency gains from increasing their production scale
would be achievable.

In general, SEE was found to be equal to 0.85, on average, varying within a minimum
of 0.07 and a maximum of 1.
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Figure 1. Frequency distributions of technical, “pure” technical, and scale eco−efficiency (n = 148).

3.2.2. Polluting Inputs Potential Reductions

Table 4 shows the most relevant data concerning the estimated input slacks, consider-
ing both the CCR and BCC models.

Overall, the number of farms showing CCR input slacks is higher than those estimated
from the BCC model, since this latter does not account for the part of eco-inefficiency due
to the operating scale. In particular, the largest number of slacks occurred in the case
of fuel expenditure (86 farms assuming CRS and 64 farms assuming VRS). On average,
these farms could decrease their fuel use by 28,501 (CRS) and 2411 Euros (VRS). In the
two assumptions of returns to scale, 63 and 57 farms, respectively were found to have
slacks in their expenditure for fertilizers, which could be reduced by 4824 and 3224 Euros,
respectively. Concerning electricity and heating expenditure, for approximately 20% of
the farms (considering both CRS and VRS), a positive slack was detected, accounting for
an average value of 415 and 401, which was quantified considering the entire sample.
However, when only the farms with slack are considered, these values increase to 1803
and 1177, respectively. Livestock Units were found to be the input showing the smallest
number of farms with a slack (10 assuming CRS), which could decrease their LSU number,
on average, by 29 unit. The average value of LSU slack considering the entire sample was
1.95, which is consistent with those estimated by Stępień et al. [9].

Only in two cases was an eco-efficient farm found to have a positive slack, thus
revealing that almost all farms with a DEA score equal to one reached strong efficiency.



Agriculture 2023, 13, 1107 11 of 18

Table 4. Descriptive statistics of input slacks (n = 148).

Fuels Expenditure Fertilizers
Expenditure

Electricity and
Heating Expenditure Livestock Units

VRS CRS VRS CRS VRS CRS VRS CRS

Farms with slacks 64 86 57 63 27 31 10 0
% of farms with slacks 43% 58% 38% 42% 18% 21% 7% 0%

Average value of slack (entire sample) 1753 1984 2267 1794 415 401 1.95 0.00
Average value of slack (farms with slack) 2411 2851 4824 3224 1803 1177 28.95 0.00

Full eco-efficient farms with slack 1 0 1 0 0 0 0 0
% of Full eco-efficient farms with slack 0.67% 0% 0.67% 0% 0% 0% 0% 0%

The slacks quantification provides useful insights regarding the main sources of
eco-inefficiency, allowing the calculation of single-input eco-efficiency (IEE) (Table 5).
In this regard, it is possible to notice that the considered farms perform quite well in
terms of LSU (0.97 assuming VRS and 1 assuming CRS) and the use of electricity and
heating (0.93 assuming VRS and 0.91 assuming CRS), thus showing that farm size and
electricity management do not seem to represent critical points for increasing the sector’s
competitiveness. Conversely, on average, significantly lower efficiency levels were detected
relating to the use of fertilizers (0.82 assuming VRS and 0.80 assuming CRS) and, to a larger
extent, to the fuel consumption (0.86 assuming VRS and 0.58 assuming CRS).

Hence, concerning these inputs, the sample farms showed remarkable margins of
efficiency improvement, with potential reductions in terms of the related expenditures
ranging from 9% to 42%, in the case the inefficient farms would reach level of “fully”
efficient ones.

Similarly, Grassauer et al. [49] estimated the highest input slack, among those included
in their analysis, for Global Warming Potential (GWP), with related potential abatements
ranging from 53% to 94%. These findings provide important and timely support in orienting
strategic business choices, both technical and economic, in the medium and long terms.
In fact, the exact quantification of the potential of polluting inputs reduction, in terms
of the related farm cost savings, is a prime source of information available to livestock
management.

Table 5. Input eco-efficiency (IEE) of the involved farms (n = 148).

Variable
Min Max Mean Standard

Deviation

VRS CRS VRS CRS VRS CRS VRS CRS

Expenditure on fuels 0.00 0.01 1.00 1 0.65 0.58 0.37 0.35
Expenditure on fertilizers 0.00 0.10 1.00 1 0.82 0.80 0.28 0.29

Expenditure on electricity and heating 0.04 0.11 1.00 1 0.93 0.91 0.21 0.21
Livestock Unit 0.33 1.00 1.00 1 0.97 1.00 0.09 0.00

In view of deriving some practical indications to help farmers adopt the most ap-
propriate improvement measures, Table 6 reports the input abatement potentials (PAos)
across five farm size classes. In line with Balezentis et al. [70], the obtained results do not
allow clear and precise patterns to be identified for all the considered inputs. Focusing on
“pure” technical input management (VRS), regardless of the operational scale, a negative
relationship between reduction potential and herd size was detected in regard to fuel
consumption. In particular, the highest reduction margin (40.95%) was observed for the
farms rearing less than nine LSUs, thus implying that smaller farms could benefit more
than larger ones from investment in m machinery. Conversely, further improvements in
fertilizers use as well as electricity and heating management should be implemented by
farms with more than 100 LSUs, which showed the highest abatement potential among the
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classes (40.1% and 21.45%, respectively). This class also shows the lowest input efficiency
level in terms of LSU, as a 30.31% related abatement potential was estimated. These latter
findings highlight how enhancing the productivity level also still represents an open issue
also for large-scale operating farms.

Table 6. Mean input abatement potentials for farm size classes (%).

Expenditure
on Fuels

Expenditure
on Fertilizers

Expenditure
on Electricity and Heating Livestock Units

Farm Size
Classes (LSU) VRS CRS VRS CRS VRS CRS VRS CRS

<9 40.95 52.65 15.40 28.62 6.78 10.41 0.00 0.00
9–19.9 29.26 37.14 14.20 13.57 3.40 10.76 0.00 0.00
20–49.9 30.22 32.96 19.84 13.11 6.85 7.33 1.10 0.00
50–99.9 54.96 31.90 11.10 6.70 4.55 4.63 8.86 0.00
≥100 18.00 37.13 40.10 24.63 21.45 0.00 30.31 0.00

3.2.3. Second Stage: Eco-Efficiency Determinants

The results from Tobit regression models implemented in the second stage are dis-
cussed below. Before considering the model estimates, a brief description of the results
obtained from statistical tests carried out in the pre- and post-estimation phases is provided.

A non-collinearity between the covariates was detected from the VIFs test, which
resulted in average values of 1.04 and 1.11 when TEE and PTEE were included as dependent
variables, respectively. No variable showing VIF > 1.18 was found. No issue of model-
uncorrected specification for both the Tobit models was detected by implementing the Link
test, as the linear predicted value-squared was found to have no explanatory power.

The estimates from the two backward stepwise Tobit regression models including
technical eco-efficiency (TEE), and pure technical eco-efficiency (PTEE) scores as dependent
variables are reported in Table 7. The related conditional and unconditional marginal effects
are presented in Table 8.

Table 7. Tobit regression models estimates.

Variable
Technical Eco-Efficiency (TEE) Pure Technical Eco-Efficiency

(PTEE)
Coef. p-Value Coef. p-Value

Intensity of livestock system
(Global production per LU) 0.0034 *** 0.000 0.0036 *** 0.000

Farm payment −0.00063 ** 0.012 −0.00064 ** 0.038
Farm area 0.024 *** 0.000 0.036 *** 0.000

Labor intensity (Hours per LU) −0.0012 *** 0.006
_cons 0.242 *** 0.000 0.165 *** 0.003

Log pseudolikelihood −15.362 −57.562
Number of obs 148 148

F-statistics 12.52 12.49
Prob > F 0.000 0.000

Number of censored observations 11 right-censored observations 28 right-censored observations
Pseudo R2 0.7161 0.4142

** p < 0.050, *** p < 0.01.

Overall, the implemented models performed quite well in terms of statistical signif-
icance, as four and three of the six considered predictors for the TEE and PTEE models,
respectively, were found to significantly affect eco-efficiency, specifically, the intensity of
the livestock system, farm payment, farm area, and labor intensity (this latter factor became
insignificant when TEE is considered).
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Table 8. Marginal effects (MEs) of significant variables from the Tobit regression models.

Variables

Technical Eco-Efficiency (TEE) Pure Technical Efficiency (PTEE)
MEs for the

Expected Value of TEE
Conditional on

Being Uncensored

MEs for the
Unconditional

Expected Value of TEE

MEs for the
Expected Value of PTEE

Conditional on Being
Uncensored

MEs for the
Unconditional

Expected Value of
TEE

Intensity of livestock
system (Global

production per LU)
0.00317 0.00328 0.00537 0.00611

Farm payment −0.00058 −0.00060 −0.00050 −0.00057
Farm area 0.022 0.023 0.028 0.032

Labour intensity
(Hours per LU) - - 0.009 0.010

However, the effects of the explanatory variables were found to be similar between the
two models, implying that scale efficiency does not seem to have any role in influencing
the postulated relationship.

As no significant differences between the two estimated marginal effects emerged, the
discussion from here on will focus only on the ME for the unconditional expected value.

Our estimates highlight that the intensity of the livestock production system is posi-
tively and significantly associated with eco-efficiency, as the associated increases in terms
of the unconditional expected values equal 0.36 and 0.34, respectively, for PTEE and TEE
models, as pointed out above.

This result is consistent with those estimated by Soteriades et al. [11] and Martinsson
and Hansson [10], who, although focusing, respectively, on UK and Swedish cattle dairy
sectors, found that an intensive and well-structured production process could positively
impact eco-efficiency. This would seem to suggest that policy measures aimed at improving
the eco-efficiency of the Italian beef cattle sector should be targeted to increase its productiv-
ity performances, which suffer in most cases from a lack of adequate management systems
compared with dairy farming.

The estimated negative marginal effects of −0.00060 (TEE) and −0.00057 (PTEE) for
farm single payment imply that the greater the subsidy amount, the lower the eco-efficiency
score. In addition, both environmental subsidies and animal welfare subsidies seemed to
have no significant effects on TEE and PTEE. Until this point, no homogenous results have
been reported in the reviewed literature. In particular, in contrast with our study, many
authors found that both direct CAP payments and environmental subsidies positively and
significantly affect eco-efficiency [45,68,71], as they promote farm investments in better-
performing facilities and equipment. However, since these subsides represent direct income
support, small and medium-sized farms, which are those mostly characterizing the central
Italy beef cattle sector, spent them as current expenditure, with no benefits in terms of
environmental performances [9]. In this regard, this type of support does not seem to be an
incentive mechanism for farms to improve their production processes, as it promotes the
conservation of the status quo concerning farm management, thus promoting investments
in other assets [72].

As a matter of fact, many studies have reported a negative relationship between subsi-
dies and farm efficiency, focusing on different research areas and livestock systems [10,73].
This is mainly due to the fact that in many cases, higher direct payments are associated
with extensive farms with relatively low productivity and, consequently, low eco-efficiency.

According to other studies, farm area positively influenced farm eco-efficiency, since
larger land availability allows farms to more easily afford investments for environmental
efficiency improvement and obtain advantages from scale economies.

The estimated marginal effect for variables concerning the labor intensity was signifi-
cant and negative in the PTEE model, thus confirming that the farms that use less of this
input per LSU resulted in higher eco-efficiency scores. This finding is in line with previous
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studies by [10,74] focusing on dairy farms, remarking that the introduction of labor-saving
procedures and technologies could represent an effective strategy to improve both technical
and environmental efficiency.

4. Conclusions

Eco-efficiency analysis could valuably support the livestock sector in improving its
environmental performances, as it could contribute to an effective design of targeted
policy measures enhancing farm sustainability. In the present study, a two-stage DEA
model, including environmental pressures (GHGs and nutrients) as technical inputs, was
implemented to assess the eco-efficiency and identify its main determinants, focusing on a
representative sample of 148 beef cattle farms located in central Italy. Our results found
that the average eco-efficiency of the involved farms was quite low, ranging from 0.40 to
0.44, when CRS and VRS were assumed, respectively. These results imply that the sample
farms could radially abate their environmental pressures, on average, by 60% (CRS) and
56% (VRS), while keeping the value of their global production constant.

To this point, the operation scale does not seem to be a strong source of eco-inefficiency,
as only a 15% potential decrease in polluting inputs could be obtained if all the farms were
operating at the optimal scale.

However, remarkable differences were found among environmental pressures, as the
single polluting inputs’ efficiency indicated: farms were found to perform in the most
eco-inefficient manner corresponding to the pressures associated with the consumption
o fuel and fertilizers, with the potential reduction ranging, respectively, from 35% (VRS)
to 42% (CRS) and from 18% (VRS) to 20% (CRS). In this sense, the exact quantification
of the impact-reduction potentials represents valuable information for farmers, who may
implement targeted and costless improvement actions in terms of global production value.

The analysis of the eco-efficiency determinants revealed that a high intensity of a
livestock system, a low labor intensity, and a larger farm area resulted in increasing eco-
efficiency, while an insignificant or negative effect was associated with public subsidies.

Hence, productivity was identified as the main factor affecting eco-inefficiency, thus
implying that eco-inefficient farms should focus firstly on improving their management
and production processes and optimizing their use of labor and polluting inputs.

In terms of policy implications, these findings highlight the need to provide for specific
investment measures aimed at fostering the introduction of technologies and techniques to
reduce environmental damages, to be combined with a single payment scheme, rather than
provide environmental subsidies based on the farm area.

More specifically, the increase in co-efficiency performances in central Italy may be
achieved according to a three-track policy: (i) by promoting support for investment actions
and environmentally friendly technologies tailored to raise farms’ productivity and improve
their input management, from which both economic and environmental performances can
benefit; (ii) by improving agro-environmental payment schemes, as they could represent
a real incentive for farmers to adopt the best practices observed for the fully technically
efficient farms; and (iii) finally, by providing training and advisory programs with the
purpose of heightening farmers’ awareness of environmental issues, while fostering their
knowledge and expertise about production techniques aimed at preventing environmental
damages and enhancing animal welfare conditions.

The limitations of using FADN data represent the main weakness of this study. In
fact, doing so allows considering only economic production data, with respect to the
hypothesis that higher expenditures are associated with higher environmental pressures.
However, higher costs could be associated with using inputs with less impact, such as
renewable fuels or organic fertilizers, which would result in lower environmental damages.
Moreover, the results obtained in terms of eco-efficiency could be related only to that
part of pressures associated with the purchased input, as that associated with the in-farm
management (i.e., GHG emissions from enteric fermentation or waste disposal) cannot be
accounted for. Thus, further research should include technical data involving a wider range
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of environmental impact categories, as well as test for the influence of other additional
eco-efficiency predictors involving management and social aspects. Another limitation is
related to the deterministic approach of the DEA framework, which does not allow for
interpreting the results in a frame of statistical significance. In this regard, the use of a
stochastic framework or bootstrapping techniques may represent possible developments
for future studies.
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of Polish Commercial Farms. Agriculture 2020, 10, 438. [CrossRef]

47. Eder, A.; Salhofer, K.; Scheichel, E. Land Tenure, Soil Conservation, and Farm Performance: An Eco-Efficiency Analysis of
Austrian Crop Farms. Ecol. Econ. 2021, 180, 106861. [CrossRef]

48. Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental Efficiency Analysis and Estimation of CO2 Abatement Costs in
Dairy Cattle Farms in Umbria (Italy): A SBM-DEA Model with Undesirable Output. J. Clean. Prod. 2018, 197, 895–907. [CrossRef]

49. Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-Efficiency of Farms
Considering Multiple Functions of Agriculture: Concept and Results from Austrian Farms. J. Clean. Prod. 2021, 297, 126662.
[CrossRef]

50. Dakpo, K.H.; Latruffe, L. Agri-Environmental Subsidies and French Suckler Cow Farms’ Technical Efficiency Accounting for
GHGs. In Proceedings of the 90th Annual Conference of the Agricultural Economics Society (AES), Coventry, UK, 4–6 April 2016;
31p.

51. Balmann, A.; Czasch, B.; Odening, M. Employment and Efficiency of Farms in Transition: An Empirical Analysis for Brandenburg.
In Proceedings of the 1997 Conference, Sacramento, CA, USA, 10–16 August 1997.

52. Liu, J.S.; Lu, L.Y.Y.; Lu, W.M.; Lin, B.J.Y. A Survey of DEA Applications. Omega UK 2013, 41, 893–902. [CrossRef]
53. Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martínez, E. Assessing Farming Eco-Efficiency: A Data Envelopment Analysis

Approach. J. Environ. Manag. 2011, 92, 1154–1164. [CrossRef] [PubMed]
54. Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econometrica 1958, 26, 24. [CrossRef]
55. Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment

Analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]
56. Intriligator, M.D. Mathematical Optimization and Economic Theory; SIAM: Philadelphia, PA, USA, 2002; ISBN 0-89871-511-3.
57. Hu, J.-L.; Wang, S.-C. Total-Factor Energy Efficiency of Regions in China. Energy Policy 2006, 34, 3206–3217. [CrossRef]
58. Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK,

2005; ISBN 978-0-521-84805-3.
59. Simar, L.; Wilson, P.W. Estimation and Inference in Two-Stage, Semi-Parametric Models of Production Processes. J. Econom. 2007,

136, 31–64. [CrossRef]
60. McDonald, J. Using Least Squares and Tobit in Second Stage DEA Efficiency Analyses. Eur. J. Oper. Res. 2009, 197, 792–798.

[CrossRef]
61. Dalgic, A.; Demircan, V.; Ormeci Kart, C.; Yilmaz, H. Technical Efficiency of Goat Farming in Turkey: A Case Study of Isparta

Province. Econ. Eng. Agric. Rural Dev. 2018, 18, 65–72. [CrossRef]
62. Bravo-Ureta, B.E.; Solís, D.; Moreira López, V.H.; Maripani, J.F.; Thiam, A.; Rivas, T. Technical Efficiency in Farming: A

Meta-Regression Analysis. J. Product. Anal. 2007, 27, 57–72. [CrossRef]
63. Latruffe, L.; Balcombe, K.; Davidova, S.; Zawalinska, K. Determinants of Technical Efficiency of Crop and Livestock Farms in

Poland. Appl. Econ. 2004, 36, 1255–1263. [CrossRef]
64. Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2005; ISBN 0-387-24265-1.
65. Sigelman, L.; Zeng, L. Analyzing Censored and Sample-Selected Data with Tobit and Heckit Models. Polit. Anal. 1999, 8, 167–182.

[CrossRef]
66. Amore, M.D.; Murtinu, S. Tobit Models in Strategy Research: Critical Issues and Applications. Glob. Strategy J. 2021, 11, 331–355.

[CrossRef]
67. García-Gudiño, J.; Angón, E.; Blanco-Penedo, I.; Garcia-Launay, F.; Perea, J. Targeting Environmental and Technical Parameters

through Eco-Efficiency Criteria for Iberian Pig Farms in the Dehesa Ecosystem. Agriculture 2022, 13, 83. [CrossRef]
68. Gómez-Limón, J.A.; Picazo-Tadeo, A.J.; Reig-Martínez, E. Eco-Efficiency Assessment of Olive Farms in Andalusia. Land Use Policy

2012, 29, 395–406. [CrossRef]
69. Alirezaee, M.R.; Howland, M.; van de Panne, C. Sampling size and efficiency bias in data envelopment analysis. J. Appl. Math.

Decis. Sci. 1998, 2, 51–64. [CrossRef]
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