
Citation: Khaled, A.Y.; Ekramirad,

N.; Donohue, K.D.; Villanueva, R.T.;

Adedeji, A.A. Non-Destructive

Hyperspectral Imaging and Machine

Learning-Based Predictive Models

for Physicochemical Quality

Attributes of Apples during Storage

as Affected by Codling Moth

Infestation. Agriculture 2023, 13, 1086.

https://doi.org/10.3390/

agriculture13051086

Academic Editor: Jiangbo Li

Received: 17 April 2023

Revised: 5 May 2023

Accepted: 18 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Non-Destructive Hyperspectral Imaging and Machine Learning-
Based Predictive Models for Physicochemical Quality
Attributes of Apples during Storage as Affected by Codling
Moth Infestation †

Alfadhl Y. Khaled 1, Nader Ekramirad 1 , Kevin D. Donohue 2, Raul T. Villanueva 3 and Akinbode A. Adedeji 1,*

1 Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA;
f_yahya87@yahoo.co.in (A.Y.K.); nader.ekramirad@uky.edu (N.E.)

2 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA;
kevin.donohu1@uky.edu

3 Department of Entomology, University of Kentucky, Princeton, KY 42445, USA; raul.villanueva@uky.edu
* Correspondence: akinbode.adedeju@uky.edu; Tel.: +1-(859)-218-4355
† This paper is a part of the PhD Thesis of Ekramirad N, presented at University of Kentucky (USA).

Abstract: The demand for high-quality apples remains strong throughout the year, as they are one of
the top three most popular fruits globally. However, the apple industry faces challenges in monitoring
and managing postharvest losses due to invasive pests during long-term storage. In this study, the
effect of codling moth (CM) (Cydia pomonella [Linnaeus, 1758]), one of the most detrimental pests of
apples, on the quality of the fruit was investigated under different storage conditions. Specifically,
Gala apples were evaluated for their qualities such as firmness, pH, moisture content (MC), and
soluble solids content (SSC). Near-infrared hyperspectral imaging (HSI) was implemented to build
machine learning models for predicting the quality attributes of this apple during a 20-week storage
using partial least squares regression (PLSR) and support vector regression (SVR) methods. Data were
pre-processed using Savitzky–Golay smoothing filter and standard normal variate (SNV) followed
by removing outliers by Monte Carlo sampling method. Functional analysis of variance (FANOVA)
was used to interpret the variance in the spectra with respect to the infestation effect. FANOVA
results showed that the effects of infestation on the near infrared (NIR) spectra were significant
at p < 0.05. Initial results showed that the quality prediction models for the apples during cold
storage at three different temperatures (0 ◦C, 4 ◦C, and 10 ◦C) were very high with a maximum
correlation coefficient of prediction (Rp) of 0.92 for SSC, 0.95 for firmness, 0.97 for pH, and 0.91 for
MC. Furthermore, the competitive adaptive reweighted sampling (CARS) method was employed
to extract effective wavelengths to develop multispectral models for fast real-time prediction of the
quality characteristics of apples. Model analysis showed that the multispectral models had better
performance than the corresponding full wavelengths HSI models. The results of this study can help
in developing non-destructive monitoring and evaluation systems for apple quality under different
storage conditions.

Keywords: apples; codling moth; physicochemical quality; storage; hyperspectral image; machine
learning

1. Introduction

Apples are considered one of the most important fruits that are a source of nutrients
such as vitamins, minerals, and bioactive compounds, providing so many health benefits [1].
However, apples, like other fruits, are highly perishable produce that require proper
preservation to reduce the degradation of macro and micro-nutrients and to extend their
shelf life [2]. For this, apples are typically packaged and kept at a desired low temperature
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of 32–39 ◦F (0 ◦C to 4 ◦C) range, using different refrigeration systems during postharvest
processes, transportation, and long-term storage. Generally, this conditioning reduces and
delays microbial growth and enzymatic reactions, thereby improving overall apple quality,
reducing mass loss, and extending its shelf-life [3].

Codling moth (CM), (Cydia pomonella L.) is the most problematic pest to the apple
industry in the United States that can have large economic effects if uncontrolled [4]. Our
group studied methods to non-destructively (NDT) detect and sort CM-infested apples
with high accuracy [5–9]. There is greater interest in the NDT approach due to zero-
tolerance for the occurrence of CM in most international destinations, particularly Asia,
for U.S. apples, where there may be an import ban if a pest such as CM is entrained
in a shipment. Cold storage is one of the system approaches used to reduce the risk of
possible pest infestation. To meet the severe phytosanitary regulations for apples, cold
storage treatment was already used against the apple maggot and the oriental fruit moth
pests [10,11]. Normally, the CM begins to reproduce by laying eggs on apples and the
surrounding leaves at temperatures above 10 ◦C. However, when they are exposed to a
temperature lower than this or colder temperature below 1 ◦C, the physiological condition
of the CM larvae undergoes preconditioning for diapause, an inactive state that allows the
larvae to last through the winter season within their cocoons [12]. Diapausing larvae do not
feed and are freeze-tolerant [9]. However, cold storage may not solve and eliminate CM in
the apple during shipments to foreign markets and can cause some physiochemical changes
to apples if its temperature falls below a certain threshold that can cause physiological
damage, such as a chilling injury. While it is known that cold storage will slow down the
CM’s activities, a better understanding of the impact of cold storage conditions on quality
attributes of healthy and infested apples is desired in this study.

Inefficient apple storage in terms of temperature and humidity can change the fruit
quality, including external and internal quality [13]. In terms of the external quality of
apples, they are typically evaluated based on physical appearance including, shape, color,
size, and the presence or absence of surface defects. These attributes affect the pricing of
horticultural products in the market. The internal quality of apples, however, refers to their
nutritional value, texture, and flavor. The internal quality features cannot be evaluated
using visual inspection and they often require destructive physicochemical analysis such
as a Brix refractometer to test the soluble solids content (SSC) and the Magness-Taylor
test for firmness. Firmness is the primary textural attribute of horticultural products, and
sensory properties such as bitterness, sweetness, and sourness, as well as various volatile
compounds, form the characteristic flavor [14]. Thus, there is a need to study the effect of
cold storage on the important quality attributes of apples and to develop quality predicting
models using NDT evaluation methods. The evaluation of these internal qualities was a
key theme in the non-destructive quality assessment of horticultural products [15]. Some
studies explored different techniques for the non-destructive evaluation of apple quality
features. These techniques include machine vision [16], visible-near infrared (Vis/NIR)
spectroscopy [17], and computed tomography (CT) [18]. Most of these techniques have
limitations, including a long setup process, high cost, and sensitivity to changes in the
environmental condition.

Hyperspectral imaging (HSI) emerged as a promising tool in detecting apple quality,
as it combines imaging and spectroscopy technologies for providing spatial and spectral
information of the sample simultaneously. Through this integration, HSI can detect a
sample’s external and internal quality characteristics [19]. The HSI technique, which
is based on the relation between light scattering, structure, and textural properties of
biological tissues, uses a highly focused light beam to generate scattering images to enhance
its assessment of fruit qualities. Lu [20] applied Vis/NIR HSI to evaluate the SSC and
firmness of two types of apple varieties, namely golden delicious and red delicious. The
author used the artificial neural networks (ANN) model to analyze the data and found
that the coefficient of determination (R2) for SSC and firmness prediction were 0.79 and
0.76 for golden delicious and red delicious apples, respectively. It was concluded that the
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relatively poor predictions for red delicious apples might be attributed to their irregular
fruit shape, which could have negatively affected the scattering measurements. Relatively
poor predictions of SSC using Vis/NIR HSI compared to point Vis/NIR spectroscopy
could be attributed to the lower signal-to-noise ratio and the fact that the light scattering
technique tends to be suitable in predicting structural features such as firmness than SSC. In
addition, using NIR HSI in comparison to Vis/NIR system will ensure full coverage of the
spectral absorption bands such as water (1150, 1450, and 1900 nm), lipids (1040, 1200, 1400,
and 1700 nm), and collagen (near 1200 and 1500 nm) at the longer wavelength range [21].
For example, Ma et al. [21] applied near-infrared HSI in 913 to 2519 nm to predict the SSC
in Fuji apples and obtained a higher R2 of 0.89 using PLS regression.

Vis-NIR HSI was wildly used for the quality assessment of fruits because of its lower
cost than that of longer wavelength range NIR. However, the absorption of the chemical
component of tissue such as water, lipids, and collagen at the longer wavelength (NIR)
range is much more conspicuous than the features observed in the Vis-NIR range. Thus,
the longer wavelengths of NIR HSI have the potential to provide enhanced sensitivity
compared to the Vis-NIR range [21]. In addition, there is no study that investigated the
cold storage effect on CM-infested apples in terms of the quality of apples as well as the
prediction of the quality of the fruit using the spectral information from the HSI method.
Since any biological variability will affect the prediction of the quality parameters and
the developed models [22], it is necessary to study the CM-infestation variability in the
measured spectra. This gap in knowledge indicates a need to understand the influence
of cold storage on CM infestation and the ability to use the HSI approach to predict
physicochemical changes in healthy apples under different storage conditions. The main
objectives of this study were to study the effect of the storage conditions (temperature
and time) on the quality changes of apples as well as to predict the quality characteristics
of apples using HSI combined with machine learning regression models. The specific
objectives were to: (1) investigate the effect of the CM-infestation as a source of variability
on the measured HSI spectra, (2) evaluate its impact on the performance of the models for
predicting the quality characteristics of apples, and (3) to select some optimal wavebands
to develop a multispectral imaging system for the non-destructive quality prediction
of apples.

2. Materials and Methods
2.1. Sample Preparation

A total of 180 organic Gala apple samples, with a diameter ranging from 60 to 75 mm,
with no sign of pest attack, diseases, or damage, were purchased from a local market in
Lexington, KY, USA, in February 2021. The apple samples were divided into two groups:
60 samples as a control and 120 samples as the infested group. The samples of the infested
group were artificially infested by placing the first instar larvae on each apple and isolating
it in a plastic container with a removable lid. Then, a total of 180 samples were further
divided randomly into three groups of 60 apples (20 control and 40 infested) to place in
three different storage conditions of 0 ◦C, 4 ◦C, and 10 ◦C in a relative humidity of 85–90%.
The physiological quality attributes of apples were measured on the first day and after
being refrigerated for 4, 8, 12, 16, and 20 weeks. The hyperspectral data acquisition and
measurement of quality characteristics of apples were carried out in the Food Engineering
lab at the Biosystems and Agricultural Engineering Department, University of Kentucky,
Lexington, KY, USA.

2.2. Hyperspectral Image Acquisition

The shortwave near-infrared (SWNIR) HSI system used in this study consisted of a
NIR spectrograph with a wavelength range from 900 to 1700 nm and a spectral resolution
of 3 nm (N17E, Specim, Oulu, Finland), a moving stage driven by a stepping motor
(MRC-999-031, Middleton Spectral Vision, Middleton, WI, USA), a 150 W halogen lamp
(A20800, Schott, Southbridge, MA, USA), an InGaAs camera (Goldeye infrared camera:
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G-032, Allied Vision, Stradtroda, Germany) mounted perpendicular to the sample stage,
and a computer with data acquisition and analysis software (FastFrame™ Acquisition
Software, version 1, Middleton Spectral Vision com, Middleton, WI, USA) (Figure 1). The
parameters of the sample stage speed, the exposure time of the camera, the halogen lamp
angle, and the vertical distance between the lens and the sample were adjusted to 10 mm/s,
40 milliseconds (ms), 45◦, and 25 cm, respectively, to acquire clear images. The size of each
acquired HSI was 266 × 320 × 256 (X, Y, ) which was saved as a “*.raw” file along with a
header file as “*.hdr”.
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Figure 1. Schematic diagram of the hyperspectral imaging system [7].

After the image acquisition, calibrating the raw HSI with white and dark reference
images was needed to compensate for the effect of illumination as well as the dark current
of the detector. A whiteboard with a reflectance of 99% from a polytetrafluoroethylene
(PTFE) Teflon plate was used to acquire the white reference image. Then, the lights were
turned off and the camera lens was covered completely with a cap to acquire the dark
reference image. Then, the HSI was corrected with the white and dark reference according
to the following Equation (1):

R =
R0 − Rd
Rw − Rd

(1)

where R is the corrected image, R0 is the raw HSI, Rd is the dark image, and Rw is the white
reflectance image.

2.3. Physicochemical Parameters Measurements

After HSI image acquisition, destructive tests were carried out immediately with
the apple firmness measurement first. This was carried out at three locations around the
equatorial region of each apple, using a texture analyzer (TA. XT express, Stable Micro
Systems Ltd., Surrey, UK), with a 6 mm flat probe, a puncture depth of 5 mm, and a
puncture speed of 25 mm/min. From the force–displacement curve, the peak force was
used as the firmness value in N. The average of the three measurements was calculated to
represent the firmness of a sample. The soluble solids content (SSC), which is considered
an index for evaluating the sweetness of apples, was determined in ◦Brix using a portable
refractometer (PAL-BX/ACID5, ATAGO Co. Ltd., Tokyo, Japan). Apple pulp from each
tested position was cut out to extract the juice to place on the refractometer sample glass for
the measurement [23]. Additionally, the extracted juice was used to determine pH by means
of a digital pH-meter (Sartorius PB-10, Göttingen, Germany) under room temperature at
25 ± 2 ◦C. Finally, to measure the moisture content (MC) of the apple slices, 20 g of each
sample was weighed using a digital balance with an accuracy of 0.001 g and dried in an
oven at 105 ◦C for 24 h [24,25]. Afterward, the wet basis MC was calculated by dividing
the final weight by the initial weight.
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2.4. Data Processing

After the acquisition and correction of the HSI, to acquire spectral data, three regions
of interest (ROIs) as rectangles with 10 × 10 pixels were segmented near the equatorial
area of each apple in the images. Then, the average spectral information of all the pixels
within each three ROIs was extracted and represented as the spectral data of the sample
in the form of reflectance intensity versus wavelength. After spectral data extraction, the
pre-processing steps of wavelength trimming, maximum normalization, Savitzky–Golay
smoothing (with the moving window width of 27 and the second-order polynomial), and
standard normal variable (SNV) were performed to remove the noisy wavelengths at
the edges of each spectrum, to scale data, and to compensate the particle size scattering
and path length difference effects, respectively. Additionally, the Monte Carlo sampling
approach was used to detect the outliers before building the regression models.

To analyze the variance in the spectra with respect to the storage time and infestation
effects, functional analysis of variance (FANOVA) was used. This method adapts the
traditional analysis of variance by representing each observation (spectrum) as a function.
Many authors showed that the functional approach in chemometrics has some advantages
in building predictive models and analyzing the sources of variance in spectroscopic
data [24]. In this method, the spectrum of a sample is the result of the reflection and
absorption peaks for different chemical components where the spectral information is
represented by the overall mean and the main effects [26]. In this study, the storage time
and CM infestation effects were considered the main effects. For each main effect, the group
effect was significant if p ≤ 0.05.

This study applied partial least squares regression (PLSR) and support vector regres-
sion (SVR) to build the regression models using the mean spectrum of the ROI as the
independent variables X and the measured quality values as the dependent variables Y.
PLSR is particularly useful in spectral analysis for constructing a linear model when the
amount of sample data used for modeling are small. The data used for modeling were
divided into the training (80%) and prediction (20%) sets using the Kennard-Stone sample
selection algorithm.

The performance of the training and prediction models was evaluated by the correla-
tion coefficient of training (Rc) and its root mean square error (RMSEC), and the correlation
coefficient of the prediction model (Rp) and its mean square error (RMSEP) [27]. All algo-
rithms used in this study for pre-processing and data analysis were performed on Python
3.10 (Python Software Foundation, https://www.python.org- accessed on 10 March 2022)
platform and in Jupyter Editor Notebook. Open-source libraries of Spectral, NumPy,
Sklearn, Scikit-fda, and Matplotlib were used in this work.

Wavelength selection is an important part of spectral data analysis. Its function is to
eliminate the redundant information contained in the spectrum, retain the data information
related to the current task, and then, reduce the data dimension. In this paper, competitive
adaptive reweighted sampling (CARS) was applied for selecting useful wavelengths [28].

3. Results and Discussion
3.1. Quality Change of Apples during Storage

Changes in quality attributes of apples (control), namely SSC, pH, MC, and firmness,
measured during cold storage at three different temperatures are presented in Figure 2.
The results of FANOVA showed that there was a significant (p < 0.05) change in the pH and
firmness of apples with storage time. However, SSC and MC did not show a significant
change during storage. The pH values of apples tended to decrease at first, then increase
during cold storage. It declined from 3.81 ± 0.02, 3.79 ± 0.02, and 3.70 ± 0.09 to 3.53 ± 0.24,
3.62 ± 0.11, and 3.51 ± 0.23 during the first two months for samples at 0 ◦C, 4 ◦C, and 10 ◦C,
respectively (as shown in Figure 2a). The increase in pH towards the end of the storage is
related to metabolism activities, especially respiration which consumes organic acid, as the
main factor in the pH of the fruit [29]. There was no significant (p < 0.05) difference in pH
values for apples stored at different temperatures and they showed a similar trend during

https://www.python.org
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storage. While other quality attributes of the apples did not differ significantly between the
control and the infested apples, the results of FANOVA showed that there was a significant
difference in the pH of control and infested apple fruits.
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control apples at different temperatures.

For SSC, no significant change was observed with time or temperature. This is because
the apples used in this study were fully mature. The results are in agreement with the
findings of [30], who showed that the value of SSC underwent the highest changes in
low-maturity apples by nearly 13% in comparison to only 2% for fully mature apples. This
was because of the lower initial starch content in low-maturity apples which converts into
sugar as apple fruits mature, causing the change in the SSC value during storage [31]. Since
the apples used in the current study were at a high maturity level, the change in the SSC
value was minimum. Ghafir et al. [30] presented a result that showed no significant change
in total soluble solid, SSC, and starch concentration in mature Gala apples during 180 days
of storage at 0 ◦C. In Figure 2b, the values of SSC of apples at 4 ◦C and 10 ◦C tended to
increase at first, peaking around two months of storage, before decreasing until the end.
This changing trend agrees with the results of Zhang et al. [32], who reported an increase
in the SSC of fully mature apples in the first two months of storage at 1 ◦C, followed by a
decrease towards the end of the 6-month cold storage.

As shown in Figure 2c, the firmness of apples significantly (p < 0.05) decreased with
storage time for samples stored at 4 ◦C and 10 ◦C, but the apples at 0 ◦C did not change
significantly over time. This decrease in firmness during storage was related to water loss
in cells, the cell walls becoming thinner, and the degradation of the cell wall materials and
the pectin [33,34]. Additionally, the results showed that temperature had a significant effect
on apple firmness with higher temperatures having less firmness values.
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The FANOVA also showed that the effect of time and temperature on the MC of stored
apples was not significant (p > 0.05), as can be seen in Figure 2d. This could be a result of
keeping the relative humidity of the controlled environment chamber at a high level, around
90% to minimize water loss in apples during storage. Additionally, the findings suggest
that maintaining a high relative humidity of around 90% in the controlled environment
chamber may have contributed to the insignificant effects of time and temperature on
apple MC. This information could be valuable for optimizing apple storage conditions to
minimize moisture loss and extend shelf life.

3.2. Reflectance Spectra of Control and Infested Apples during Storage

Figure 3a,b shows the measured reflectance spectra of all measured apples (control
and infested), in the region between 900 and 1700 nm, and in the raw spectra form and
after pre-processing using Savitzky–Golay smoothing and SNV. There were some distinct
absorption valleys in the spectra around 950, 1200, and 1400 nm. The absorption at about
950 and 1200 nm relates to the first overtones of O-H band in water molecules [35]. The
absorption around 1400 nm is attributed to the combination of the second overtone of C-H
and the first overtone of O-H [36]. Similar spectra were also reported for apples by Peirs
et al. [37], and Nicolaï et al. [38].
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Figure 3. Spectral curves obtained by the mean spectra for the control and infested samples over the
storage period (a), and Savitzky—Golay combined with SNV pre-treatment (b).

3.3. Predicting the Quality of Control and Infested Apples during Storage

To study the effect of biological variability on the spectra, one-way ANOVA was
applied to analyze the effect of CM infestation on the spectra. The results showed that
the CM’s infestation effect on the spectra was significant with a p ≤ 0.05. Figure 4 shows
the mean spectra of the raw data for CM-infested and control apples. Overall, it can be
seen from Figure 4 that the CM-infested apples had more absorption, especially at the peak
points. The higher absorbance of the infested apples can be explained by a combination of
chemical and textural changes due to the infestation [39]. Additionally, from Figure 4, while
all spectra have similar shapes and trends, there was a significant difference between the
mean spectra for the control and infested apples. This variability affects the performance of
predictive models. It should be noted that although all spectra have a very similar shape,
there is a large variability in absorbance at certain wavebands of each class.
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Figure 4. The mean spectra of the raw data for CM-infested and control apples.

Tables 1–4 show the performance of the PLSR and SVR regression methods in predict-
ing the SSC, pH, MC, and firmness of the apples during the storage time and across three
temperatures. Spectra data with the full spectrum (900–1700 nm) were used to establish
PLSR and SVR models for the quality parameters. To obtain an efficient and reliable model,
the optimal number of latent variables (LVs) was first selected (in the range of 1 to 20) as the
inputs of the training model by calculating the RMSECV using a 10-fold cross-validation.

Table 1. The prediction performance of regression models for pH during the storage and across three
temperatures.

Samples Condition Regression Model Rc RMSEC Rp RMSEP

Control
PLSR 0.94 0.17 0.97 0.25
SVR 0.93 0.19 0.93 0.30

Infested
PLSR 0.97 0.13 0.71 0.24
SVR 0.65 0.24 0.44 0.24

Combination
PLSR 0.85 0.24 0.54 0.33
SVR 0.89 0.22 0.49 0.34

Rc: correlation coefficient of calibration, Rp: correlation coefficient of prediction, RMSEC: root mean square error
of calibration, RMSEP: root mean square error of prediction, PLSR: partial least square regression, SVR: support
vector regression.

Table 2. Prediction performance of regression models for the control samples at 0 ◦C stored for
20 weeks.

Quality Parameter Samples Condition Regression Model Rc RMSEC Rp RMSEP

pH Control, stored at 0 ◦C
PLSR 0.94 0.17 0.97 0.25
SVR 0.93 0.19 0.93 0.30

Firmness Control, stored at 0 ◦C
PLSR 0.95 1.26 0.93 1.62
SVR 0.96 1.21 0.95 1.45

SSC Control, stored at 0 ◦C
PLSR 0.95 0.53 0.90 0.81
SVR 0.95 0.56 0.92 0.89

MC Control, stored at 0 ◦C
PLSR 0.85 0.81 0.88 0.88
SVR 0.84 0.82 0.91 0.82

SSC: soluble solids content, MC: moisture content, Rc: correlation coefficient of calibration, Rp: correlation
coefficient of prediction, RMSEC: root mean square error of calibration, RMSEP: root mean square error of
prediction, PLSR: partial least square regression, SVR: support vector regression.
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Table 3. Prediction performance of regression models for the control samples at 4 ◦C stored for
20 weeks.

Quality Parameter Samples Condition Regression Model Rc RMSEC Rp RMSEP

pH Control, stored at 4 ◦C
PLSR 0.92 0.29 0.89 0.51
SVR 0.95 0.25 0.76 0.90

Firmness Control, stored at 4 ◦C
PLSR 0.95 1.37 0.74 3.19
SVR 0.67 2.20 0.54 2.54

SSC Control, stored at 4 ◦C
PLSR 0.88 0.68 0.58 0.91
SVR 0.99 0.36 0.77 0.80

MC Control, stored at 4 ◦C
PLSR 0.98 0.39 0.66 1.08
SVR 0.96 0.58 0.95 0.87

SSC: soluble solids content, MC: moisture content, Rc: correlation coefficient of calibration, Rp: correlation
coefficient of prediction, RMSEC: root mean square error of calibration, RMSEP: root mean square error of
prediction, PLSR: partial least square regression, SVR: support vector regression.

Table 4. Performance of regression models for the control samples at 10 ◦C stored for 20 weeks.

Quality Parameter Samples Condition Regression Model Rc RMSEC Rp RMSEP

pH Control, stored at 10 ◦C
PLSR 0.97 0.18 0.94 0.40
SVR 0.97 0.20 0.96 0.35

Firmness Control, stored at 10 ◦C
PLSR 0.98 0.98 0.95 0.97
SVR 0.99 0.10 0.98 1.77

SSC Control, stored at 10 ◦C
PLSR 0.92 0.65 0.73 1.03
SVR 0.71 0.92 0.56 1.19

MC Control, stored at 10 ◦C
PLSR 0.97 0.53 0.94 1.31
SVR 0.99 0.10 0.80 1.16

SSC: soluble solids content, MC: moisture content, Rc: correlation coefficient of calibration, Rp: correlation
coefficient of prediction, RMSEC: root mean square error of calibration, RMSEP: root mean square error of
prediction, PLSR: partial least square regression, SVR: support vector regression.

In Table 1, the regression models for predicting pH were established separately for the
control, infested, and combined samples. This was because the ANOVA results showed
a significant difference (p < 0.05) between control and infested samples in terms of pH
value. While the model for pH prediction in the control samples gave a high correlation
coefficient of prediction up to 0.97, the accuracies for the infested and combined models
were not satisfactory, possibly because of the large variations in the spectra as well as
the differences in chemical characteristics and cell structure of infested apples versus
healthy ones. It was shown that many sources of biological variabilities such as cultivar,
harvest season, and origin, as well as maturity and shelf-life, greatly affect the fruit quality
properties and the accuracy and robustness of the models for the prediction of these
properties [40]. Thus, the poor predictive models for the combination of control and
infested samples may be due to not accounting for these variabilities. This is mainly
because of significantly different spectra coming from control and infested samples for
which the predictions were poor. When these sources of variability were excluded from the
data by separating control and infested samples, there was considerable improvement in
the results for the control compared to the combined data (from Rp = 0.54, RMSEP = 0.33
to Rp = 0.97, RMSEP = 0.25). Thus, for the purpose of predicting the quality attributes of
apples, only the control samples will be considered to have propensity for accurate and
robust models. In addition, PLSR gave higher accuracies than SVR in predicting apples’
pH values. These results are comparable to the results of Guo et al. [41], who established a
PLS model based on shortwave infrared HSI (1000–2500 nm) for the pH of the Fuji apple,
with the best Rp of 0.847 and RMSEP of 0.0398. Another important point is that interest
in pH and other quality attributes measurement will always be for healthy apples and
not infested.
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The training and prediction performances of PLSR and SVR models for determining
pH, firmness, SSC, and MC of control apples stored at 0 ◦C, 4 ◦C, and 10 ◦C for stored for
20 weeks (data collected at 4 weeks intervals) are shown in Tables 2–4, respectively. As
shown in Table 2, the best results for pH were achieved using PLSR; however, the SVR
model had the highest Rp and the lowest RMSEP for firmness, SSC, and MC prediction. For
firmness, SVR gave 0.96, 0.95, 1.21, and 1.45 for Rc, Rp, RMSEC, and RMSEP, respectively.
In addition, Table 2 shows that the Rc and Rp of all models for the samples stored at 0 ◦C
exceeded 0.84, indicating the efficiency of PLSR and SVR models to predict the internal
quality attributes of apples in long-term cold storage.

Table 3 presents the prediction performance of regression models for quality attributes
of control samples stored at 4 ◦C. The PLSR model showed good prediction performance
with high Rc and Rp values and low RMSEC and RMSEP values for most quality attributes.
However, SVR showed mixed results with lower Rc and Rp values and higher RMSEC
and RMSEP values for some attributes. Overall, PLSR demonstrated promising prediction
performance, while SVR exhibited varying accuracy, indicating that PLSR may be a more
reliable method for predicting quality attributes in control samples stored at 4 ◦C.

Table 4 shows that the predictive models for the samples stored at 10 ◦C for a 20-week
period had a high performance for all the attributes except SSC. In a similar work, Dong &
Guo [42] used NIR hyperspectral reflectance imaging in the range of 900–1700 nm to predict
SSC, firmness, MC, and pH values of Fuji apples by PLS regression, least squares support
vector machine (LSSVM), and back-propagation network modeling during a 13-week
storage period. They reported that while all their models failed to predict firmness, the
LSSVM model gave better accuracy in predicting SSC, MC, and pH with Rp of 0.961, 0.984,
and 0.882, respectively.

In Figure 5, the values of pH, SSC, firmness, and MC of the predicted data sets
by the PLSR model are plotted against the actual values. The figure shows that all the
qualities presented a good fit of data between measured and predicted with less variation as
clearly seen in Figure 5a. These results indicate that these apple quality parameters can be
accurately predicted from NIR reflectance HSI using PLSR. Table 5 represents the selected
wavelengths and their analysis for pH, SSC, firmness, and MC. The selected wavelength
numbers for pH, SSC, firmness, and MC were 14, 19, 7, and 12, respectively. For example,
the PLSR prediction model for firmness uses seven wavelengths 957, 1164, 1184, 1248, 1321,
1324, and 1477 nm, which only account for 0.02% of the full spectrum, achieving a relatively
optimal prediction effect with Rp of 0.95. The selection of specific wavelengths in spectral
modeling can be advantageous for several reasons. First, using selected wavelengths can
reduce the complexity of the model, as fewer variables are involved, which can lead to
simpler and more interpretable models. Second, selected wavelengths may correspond
to specific molecular or chemical information related to the analyte of interest, which can
improve the specificity and sensitivity of the model in predicting the target property. Third,
using selected wavelengths can help to mitigate the impact of noise or interference from
irrelevant spectral regions, thereby enhancing the robustness and accuracy of the model.
Additionally, using selected wavelengths can also reduce the computational burden and
processing time, as fewer data points need to be analyzed. Therefore, it is concluded that
PLSR is the best model for firmness prediction in this context.
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Table 5. Prediction performance of regression models for apples stored in 0 ◦C.

Quality
Parameter Selected Wavelengths (nm) Regression

Model Rc RMSEC Rp RMSEP

pH 950, 1161, 1221, 1224, 1271, 1274, 1334, 1378, 1381, 1471,
1474, 1477, 1481, 1584

PLSR 0.90 0.20 0.92 0.26
SVR 0.98 0.12 0.92 0.29

SSC
1081, 1117, 1157, 1161, 1164, 1167, 1238, 1241, 1244, 1248,

1251, 1254, 1258, 1301, 1354, 1358, 1368, 1477, 1481
PLSR 0.97 0.48 0.91 0.84
SVR 0.94 0.57 0.92 0.85

Firmness 957, 1164, 1184, 1248, 1321, 1324, 1477
PLSR 0.80 1.77 0.95 1.66
SVR 0.87 1.68 0.94 1.84

MC
953, 957, 1020, 1054, 1071, 1074, 1184, 1188, 1241, 1291,

1344, 1348
PLSR 0.83 0.83 0.89 0.80
SVR 0.83 0.84 0.90 0.85

Test split and with selected wavelength, SSC: soluble solids content, MC: moisture content, Rc: correlation coeffi-
cient of calibration, Rp: correlation coefficient of prediction, RMSEC: root mean square error of calibration, RMSEP:
root mean square error of prediction, PLSR: partial least square regression, SVR: support vector regression.
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4. Conclusions

This study investigated the quality of healthy and infested “Gala” organic apples
under three different storage conditions, as well as the non-destructive prediction of these
quality attributes using SWNIR HSI coupled with machine learning. FANOVA was used
to analyze the effect of biological variability on the measured spectra. This showed that
storage time and CM infestation significantly impacted the spectra, resulting in variability
in the predictive models. However, when the data of infested and control samples were
separated, the best results for the prediction of quality attributes of apples were achieved
for the control samples stored at 0 ◦C, with Rp values of 0.92 for SSC, 0.95 for firmness,
0.97 for pH, and 0.91 for MC. Furthermore, CARS algorithm was employed to select optimal
wavelengths for developing multispectral models with satisfactory performance. This study
showed that SWNIR HSI method can be used for post-harvest apple quality prediction
under varied conditions with a degree of high accuracy, with potential applications in
inline/online apple sorting.
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31. Blažek, J.; Hlušičková, I.; Varga, A. Changes in quality characteristics of Golden Delicious apples under different storage
conditions and correlations between them. Hortic. Sci. 2003, 30, 81–89. [CrossRef]

32. Zhang, B.; Zhang, M.; Shen, M.; Li, H.; Zhang, Z.; Zhang, H.; Xing, L. Quality monitoring method for apples of different maturity
under long-term cold storage. Infrared Phys. Technol. 2021, 112, 103580. [CrossRef]

33. Johnston, J.W.; Hewett, E.W.; Hertog, M.L. Postharvest softening of apple (Malus domestica) fruit: A review. New Zealand J. Crop.
Hortic. Sci. 2002, 30, 145–160. [CrossRef]
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