
Citation: Li, Y.; Liu, H.; Wei, J.; Ma,

X.; Zheng, G.; Xi, L. Research on

Winter Wheat Growth Stages

Recognition Based on Mobile Edge

Computing. Agriculture 2023, 13, 534.

https://doi.org/10.3390/

agriculture13030534

Academic Editors: Xiuguo Zou,

Zheng Liu, Xiaochen Zhu,

Wentian Zhang, Yan Qian and

Yuhua Li

Received: 12 December 2022

Revised: 16 February 2023

Accepted: 17 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Research on Winter Wheat Growth Stages Recognition Based
on Mobile Edge Computing
Yong Li 1,2, Hebing Liu 1,2, Jialing Wei 1,2, Xinming Ma 1, Guang Zheng 1 and Lei Xi 1,2,*

1 College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
2 Henan Engineering Laboratory of Farmland Monitoring and Control, Zhengzhou 450046, China
* Correspondence: xil@henau.edu.cn

Abstract: The application of deep learning (DL) technology to the identification of crop growth
processes will become the trend of smart agriculture. However, using DL to identify wheat growth
stages on mobile devices requires high battery energy consumption, significantly reducing the
device’s operating time. However, implementing a DL framework on a remote server may result
in low-quality service and delays in the wireless network. Thus, the DL method should be suitable
for detecting wheat growth stages and implementable on mobile devices. A lightweight DL-based
wheat growth stage detection model with low computational complexity and a computing time
delay is proposed; aiming at the shortcomings of high energy consumption and a long computing
time, a wheat growth period recognition model and dynamic migration algorithm based on deep
reinforcement learning is proposed. The experimental results show that the proposed dynamic
migration algorithm has 128.4% lower energy consumption and 121.2% higher efficiency than the
local implementation at a wireless network data transmission rate of 0–8 MB/s.

Keywords: mobile edge computing; convolutional neural network; deep reinforcement learning;
wheat growth stages detection; dynamic migration algorithm

1. Introduction

Wheat is the second-largest food crop in the world and is crucial for food security and
social stability [1]. Wheat growth monitoring refers to recording the morphological changes
in wheat during different growth and development stages [2]. It is critical on smart farms
to obtain high yields and is often performed using unmanned aerial vehicles (UAVs) and
intelligent agricultural machinery [3]. Due to technological advances in smart agriculture,
and intelligent agricultural machinery and mobile devices, deep learning (DL) models
and algorithms have been increasingly used in this field [4]. However, mobile devices
have relatively low computing power, low battery capacity, and high energy consumption.
DL-based agricultural applications require mobile computing devices with high computing
power, high battery capacity, and low energy consumption to provide longer working
hours and better service quality. Thus, an imbalance exists between the high computing
needs of smart agriculture and mobile devices with low computing power. Therefore, it
is necessary to develop a lightweight DL model capable of running on intelligent mobile
devices for wheat growth monitoring. As the use of artificial intelligence has increased,
deep reinforcement learning (DRL) has attracted extensive attention from the academic
community [5]. The data generated by users show exponential growth, promoting the
rapid development of DRL. The deep Q-learning network (DQN) is an unsupervised
learning algorithm based on reinforcement learning and a neural network [6]. It combines
the learning ability of neural networks and the decision-making ability of reinforcement
learning and can make decisions in a timely and intelligent manner according to changes
in the environment [7].

Edge computing is an ideal solution for real-time applications to upload the core
parameters or data of the DRL model to the network edge for processing [8,9]. Running

Agriculture 2023, 13, 534. https://doi.org/10.3390/agriculture13030534 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13030534
https://doi.org/10.3390/agriculture13030534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture13030534
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13030534?type=check_update&version=1

Agriculture 2023, 13, 534 2 of 16

a DQN on an intelligent mobile device causes high battery energy consumption, and the
model’s identification efficiency depends on the quality of the network service when it
runs on a remote server. Therefore, the server location, the power of the mobile device, and
the quality of the network service must be carefully selected to enable the use of a DQN
so that the unloading strategy of the edge nodes can be adapted to the environment. This
approach enables the use of relatively few resources to obtain optimal results and reduces
the communication and computing costs of edge computing [10,11]. Migration is used in
mobile edge computing to migrate intensive computing tasks to the wireless network edge
server for processing, alleviating the shortcomings of low computing power, poor real-time
performance, and large power consumption of intelligent devices. This technology has
attracted the attention of academia and industry [12–15], especially optimal migration
decisions and the allocation of computing resources [16,17]. Chen et al. [18] proposed a task
unloading and scheduling method based on DRL for unloading decisions with dependency
in mobile edge computing. The goal was to minimize the application’s execution time.
Experiments showed that the proposed algorithm has good convergence ability, verifying
the effectiveness and reliability of the method. Tian et al. [19] deployed a cognition model
to the edge and designed an intelligent recognition device based on computer vision and
edge computing for crop pest image recognition. Agricultural crop images were collected
in realtime, and image recognition was used to identify crop pests. Zhang et al. [20]
proposed an improved algorithm called the natural deep Q-learning network (NDQN) for
resource scheduling and decision-making in edge computing. The results showed that
the improved NDQN algorithm performed better than the local unloading and random
unloading algorithms. Gu et al. [21] designed an embedded monitoring system based on
edge computing that considered different planting conditions of crops in different regions.
They established neural networks and crop data processing algorithms and deployed them
in embedded devices. UAVs were used for crop monitoring. However, most of the above
studies designed migration algorithms for relatively large computing tasks and complex
models [22–26], whereas few studies designed migration strategies or algorithms based on
lightweight recognition models for intelligent agricultural production scenarios.

Wheat is an important grain crop and is grown extensively worldwide. Wheat growth
monitoring algorithms have high computational complexity, many parameters, and long
task execution times. They require extensive computing resources and sufficient battery
power. General migration algorithms and intelligent equipment are inadequate. This paper
proposes a lightweight wheat growth stage detection model for intelligent devices. The
wheat growth stage detection model is migrated to the wireless network edge server for
processing to reduce energy consumption and computing time and simulate the cost of
intelligent devices to make decisions by calculating the weighted sum of the battery energy
consumption and computing time delay. The DQN algorithm is used to obtain the optimal
output model because it reduces energy consumption and computing time delay in the
DL model. The proposed method enables complex computing tasks on intelligent mobile
devices in smart agriculture, and its use for the accurate identification of wheat growth
stages is demonstrated. The innovation points of this study are as follows:

1. A wheat growth stage detection model that uses depth-wise separable convolutional
layers and a residual network is designed. It has low energy consumption and
computing delay and high accuracy in distinguishing the seedling stage (SS), tillering
stage (TS), overwintering stage (OS), greening stage (GS), and jointing stage (JS). The
average recognition accuracy of the five wheat growth stages is 98.6%, whereas the
DenseNet model achieves an average accuracy of 99.2%.

2. A dynamic migration algorithm for the wheat growth detection model is designed
using the DQN. This algorithm makes optimal migration decisions by monitoring
the power consumption and network service quality of the equipment in real-time,
considering the energy consumption and delay cost caused by the migration/non-
migration, respectively. At a wireless network transmission data rate of 0–8 MB/s,

Agriculture 2023, 13, 534 3 of 16

the overall energy consumption loss of the dynamic migration algorithm is 128.4%
lower than that of the intelligent device.

In this paper, an artificial intelligence algorithm and experiment are used to identify
wheat growth stages. A decision-making method for performing edge computing and
migrating the wheat growth stage detection model to the wireless network edge server for
processing is proposed. The dynamic migration strategy of the DQN-based identification
model enables the execution of complex processes while minimizing energy consumption
and processing time. This method is suitable for deploying application systems in agri-
culture. This paper is organized as follows: Section 1 presents the introduction. Section 2
describes the materials and methods. Section 3 provides the wheat growth stage detec-
tion model, and Section 4 presents the migration algorithm. The results are described in
Section 5, and Section 6 provides the discussion.

2. Materials and Methods
2.1. Data Source

The study area for acquiring the wheat images was the Xuchang campus of Henan
Agricultural University, Changge City, Henan Province, China (113◦58′26′′ E, 34◦12′06′′ N).
The area has a northern temperate continental monsoon climate, with an average annual
temperature of 14.3 ◦C. The average annual rainfall is 711.1 mm, and the frost-free period
is 217 days. Due to the complex field environment, images of the wheat canopy at a fixed
height using a tripod were acquired. The images of the wheat varieties “Yumai49”, “week
27”, and “Xinong 509” were acquired in five growth stages (October 2019 to June 2020).
These varieties are grown in the eastern Henan Province.

In each stage, images were acquired of plots with two densities (300 and 350 plants per
square meter) and two nitrogen contents (15 kg and 0 kg of pure nitrogen per 0.0667 hectare).
Images were obtained every two days between 8 am and 15 pm using a Nikon D3100,
5/21 sensor CMOS camera with a maximum aperture of F/5.6, 14.2 megapixels, and a
maximum resolution of 4608 × 3072. A tripod was used for fixed-height photography, and
all images were collected under natural lighting conditions.

Data were obtained in the following wheat growth stages: SS (the day before the first
day of emergence to the tillering stage), TS (the day before the first day of tillering to the
overwintering stage), OS (the day before the first day of the overwintering stage to the
greening stage), GS (from the first day of the greening stage to the day before the jointing
stage), and JS (from the first day of jointing to the day before heading) (Figure 1). A total of
12,000 images were obtained in the five stages.

2.2. Data Processing

Large sample sizes result in a higher performance and generalization ability of DL
models. However, the number and quality of samples sometimes do not meet the require-
ments of optimal model training in practical applications; thus, the enhancement of sample
data is required [27]. Images are high-dimensional data. Image data are typically rotated
and translated, or other operations are performed to improve the robustness of the model,
prevent overfitting of the test set during training, and improve the model’s generaliza-
tion ability. Data enhancement is a simple and effective method to improve the detection
accuracy of convolutional neural network models. Different data sets require different
data enhancement methods. Images are typically slightly modified, which does not affect
the model’s training results and can increase the generalization ability of the model. The
following data enhancement methods were used to improve the model’s robustness.

(1) Normalization by dividing each pixel value by the standard deviation of the sample;
(2) Dislocation transformation. The x-coordinate of the image remains unchanged, and

the y-coordinate is shifted according to a specific proportion. The degree of displace-
ment is proportional to the vertical distance to the x-axis;

(3) Image scaling. Image scaling refers to resizing the image by the same amount in the
length and width directions;

Agriculture 2023, 13, 534 4 of 16

(4) Random flipping. Random flipping refers to extracting image data and performing
random flipping;

(5) Standardization. Standardization refers to an enhancement operation that the model
performs on all images before training. Each pixel value is divided by 255 to obtain a
pixel value range from 0 to 1. This method speeds up the convergence of the model.

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 16

(a) (b)

(c) (d)

(e)

Figure 1. Wheat canopy images acquired in five stages: (a) seedling stage; (b) tillering
stage; (c) overwintering stage; (d) greening stage; (e) jointing stage.

2.2. Data Processing
Large sample sizes result in a higher performance and generalization ability of DL

models. However, the number and quality of samples sometimes do not meet the require-
ments of optimal model training in practical applications; thus, the enhancement of sam-
ple data is required [27]. Images are high-dimensional data. Image data are typically ro-
tated and translated, or other operations are performed to improve the robustness of the
model, prevent overfitting of the test set during training, and improve the model’s

Figure 1. Wheat canopy images acquired in five stages: (a) seedling stage; (b) tillering stage; (c) over-
wintering stage; (d) greening stage; (e) jointing stage.

Agriculture 2023, 13, 534 5 of 16

In the experiment, 80% of the images were randomly selected as the training set, and
20% were used as the test set. All comparative experiments in this study are conducted on
this dataset. Figure 2 is an image of seedling emergence after the above image enhancement.
Table 1 shows the number of images of the training set and test set in each growth stage
of wheat.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 16

generalization ability. Data enhancement is a simple and effective method to improve the
detection accuracy of convolutional neural network models. Different data sets require
different data enhancement methods. Images are typically slightly modified, which does
not affect the model’s training results and can increase the generalization ability of the
model. The following data enhancement methods were used to improve the model’s ro-
bustness.
(1) Normalization by dividing each pixel value by the standard deviation of the sample;
(2) Dislocation transformation. The x-coordinate of the image remains unchanged, and

the y-coordinate is shifted according to a specific proportion. The degree of displace-
ment is proportional to the vertical distance to the x-axis;

(3) Image scaling. Image scaling refers to resizing the image by the same amount in the
length and width directions;

(4) Random flipping. Random flipping refers to extracting image data and performing
random flipping;

(5) Standardization. Standardization refers to an enhancement operation that the model
performs on all images before training. Each pixel value is divided by 255 to obtain a
pixel value range from 0 to 1. This method speeds up the convergence of the model.
In the experiment, 80% of the images were randomly selected as the training set, and

20% were used as the test set. All comparative experiments in this study are conducted on
this dataset. Figure 2 is an image of seedling emergence after the above image enhance-
ment. Table 1 shows the number of images of the training set and test set in each growth
stage of wheat.

(a) (b)

(c) (d)

Agriculture 2023, 13, x FOR PEER REVIEW 6 of 16

(e)

Figure 2. Data enhancement: (a) normalization; (b) dislocation transformation; (c) image
scaling; (d) image flipping; (e) standardization.

Table 1. Number of wheat canopy image samples.

Wheat Growth Stages Training Set/Piece
Test

Sets/Piece
Total

Sets/Piece
Seedling–tillering * 1920 480 2400

Tillering–overwintering 1920 480 2400
Overwintering–greening 1920 480 2400

Greening–jointing 1920 480 2400
Jointing–heading 1920 480 2400

* Seedling stage (SS) and tillering stage (TS).

3. Design of Wheat Growth Stage Detection Model
3.1. Framework of Wheat Growth Stage DetectionModel

A lightweight recognition model based on depth-wise separable convolution [28]
and a residual network [29] are proposed for use on intelligent mobile devices. The struc-
ture diagram of the convolutional neural network is shown in Figure 3. Conv2D,
DSConv2D, and Conv2D-d represent the normal convolution, depth-wise separable con-
volution, and cavity convolution, respectively. A Relu6 activation function and a data
standardization (batch normalization (BN)) operation are inserted after each convolution
unit to ensure that the model can learn the sparse features of the wheat image and speed
up its convergence. A linear activation function is used between the normal convolution
and depth-wise separable convolution units to prevent gradient dispersion during model
training. “Addition” in Figure 3 refers to the addition of the residual network. The resid-
ual network adds the outputs of the convolution units and uses them as the final output
to achieve a greater model depth and prevent overfitting. The parameters of the network
structure are listed in Table 2. The parameter input is the input of the current unit and the
output of the upper unit. The parameters e and s1 represent the number and step size of
the convolution kernels of the normal convolution, and the parameters O and s2 represent
the number and step size of the convolution kernels of the depth-wise separable convolu-
tion. The parameter k is the size of the convolution kernel of the depth-wise separable
convolution; it is 3 × 3 and 5 × 5. The parameter s indicates the presence of the residual
network between the convolution units. A parameter value of d = 2 indicates that the nor-
mal convolution of the unit has been replaced by the void convolution. Softmax is the
output function.

Figure 2. Data enhancement: (a) normalization; (b) dislocation transformation; (c) image scaling;
(d) image flipping; (e) standardization.

Agriculture 2023, 13, 534 6 of 16

Table 1. Number of wheat canopy image samples.

Wheat Growth Stages Training Set/Piece Test Sets/Piece Total Sets/Piece

Seedling–tillering * 1920 480 2400

Tillering–overwintering 1920 480 2400

Overwintering–greening 1920 480 2400

Greening–jointing 1920 480 2400

Jointing–heading 1920 480 2400
* Seedling stage (SS) and tillering stage (TS).

3. Design of Wheat Growth Stage Detection Model
3.1. Framework of Wheat Growth Stage Detection Model

A lightweight recognition model based on depth-wise separable convolution [28] and
a residual network [29] are proposed for use on intelligent mobile devices. The structure
diagram of the convolutional neural network is shown in Figure 3. Conv2D, DSConv2D,
and Conv2D-d represent the normal convolution, depth-wise separable convolution, and
cavity convolution, respectively. A Relu6 activation function and a data standardization
(batch normalization (BN)) operation are inserted after each convolution unit to ensure that
the model can learn the sparse features of the wheat image and speed up its convergence. A
linear activation function is used between the normal convolution and depth-wise separable
convolution units to prevent gradient dispersion during model training. “Addition” in
Figure 3 refers to the addition of the residual network. The residual network adds the
outputs of the convolution units and uses them as the final output to achieve a greater
model depth and prevent overfitting. The parameters of the network structure are listed in
Table 2. The parameter input is the input of the current unit and the output of the upper
unit. The parameters e and s1 represent the number and step size of the convolution kernels
of the normal convolution, and the parameters O and s2 represent the number and step
size of the convolution kernels of the depth-wise separable convolution. The parameter
k is the size of the convolution kernel of the depth-wise separable convolution; it is 3 × 3
and 5 × 5. The parameter s indicates the presence of the residual network between the
convolution units. A parameter value of d = 2 indicates that the normal convolution of the
unit has been replaced by the void convolution. Softmax is the output function.

Agriculture 2023, 13, x FOR PEER REVIEW 7 of 16

Figure 3. Structure of convolutional neural network.

Table 2. Network parameters of the wheat growth stage detection model.

Input Basic Unite e O S1 S2 k d s
 2242 × 3 Convolution32 32 1 2 3 2 false

1122 × 32 Convolution64 32 1 2 3 1 false
562 × 32 Convolution128 32 1 1 3 1 true
562 × 32 Convolution128 48 1 1 2 1 false
562 × 48 Convolution196 48 2 1 3 1 false
282× 48 Convolution196 48 1 1 3 2 true
282 × 48 Convolution256 64 1 1 5 1 false
282 × 64 Convolution256 64 2 1 5 1 false

142 × 64 Convolution400 64 1 1 5 1 false

142 × 64 Convolution400 80 1 1 5 1 false
142 × 80 Pooling2D (pool_size = 7, strides = 2)

42 × 1024 Conv2d 1 × 1(filters = 1024)
Softmax

3.2. Parameter Settings
The learning rate represents the speed of updating the model parameters during

training, and the optimizer is a gradient descent updating method implemented during
iteration. Different data sets have different learning rates and optimizer settings. Optimiz-
ing the hyperparameters improves the model’s accuracy. The training batch represents
the number of training images input into the model at each iteration. It is generally 32 and
64 batches in the image classification.

Canopy images of the five wheat growth stages were used: emergence, tillering, over-
wintering, greening, and jointing. There were 12,000 samples, including 2400 samples in
each stage. The test set comprised 20% of the data, and the training set contained 80% of
the data for model training and learning. Table 3 lists the results of the different learning
rates, training batches, and optimizer training approaches. The optimization algorithms
are the Adam optimizer and stochastic gradient descent (SGD) method, and 32 and 64 are
used as the number of training batches. Adam-32 shows the training results of the Adam
optimizer with a batch size of 32; 0.005, 0.001, 0.0005, and 0.0001 are the test values for the
learning rate. The model achieves the highest accuracy when the learning rate is 0.001 and
the Adam-32 optimizer is used. The accuracy is higher for 32 than for 64 training batches.

Figure 3. Structure of convolutional neural network.

Agriculture 2023, 13, 534 7 of 16

Table 2. Network parameters of the wheat growth stage detection model.

Input Basic Unite e O S1 S2 k d s

2242 × 3 Convolution32 32 1 2 3 2 false

1122 × 32 Convolution64 32 1 2 3 1 false

562 × 32 Convolution128 32 1 1 3 1 true

562 × 32 Convolution128 48 1 1 2 1 false

562 × 48 Convolution196 48 2 1 3 1 false

282 × 48 Convolution196 48 1 1 3 2 true

282 × 48 Convolution256 64 1 1 5 1 false

282 × 64 Convolution256 64 2 1 5 1 false

142 × 64 Convolution400 64 1 1 5 1 false

142 × 64 Convolution400 80 1 1 5 1 false

142 × 80 Pooling2D (pool_size = 7, strides = 2)

42 × 1024
Conv2d 1 × 1(filters = 1024)

Softmax

3.2. Parameter Settings

The learning rate represents the speed of updating the model parameters during train-
ing, and the optimizer is a gradient descent updating method implemented during iteration.
Different data sets have different learning rates and optimizer settings. Optimizing the
hyperparameters improves the model’s accuracy. The training batch represents the number
of training images input into the model at each iteration. It is generally 32 and 64 batches
in the image classification.

Canopy images of the five wheat growth stages were used: emergence, tillering,
overwintering, greening, and jointing. There were 12,000 samples, including 2400 samples
in each stage. The test set comprised 20% of the data, and the training set contained 80% of
the data for model training and learning. Table 3 lists the results of the different learning
rates, training batches, and optimizer training approaches. The optimization algorithms
are the Adam optimizer and stochastic gradient descent (SGD) method, and 32 and 64 are
used as the number of training batches. Adam-32 shows the training results of the Adam
optimizer with a batch size of 32; 0.005, 0.001, 0.0005, and 0.0001 are the test values for the
learning rate. The model achieves the highest accuracy when the learning rate is 0.001 and
the Adam-32 optimizer is used. The accuracy is higher for 32 than for 64 training batches.
Therefore, the Adam optimization algorithm with a learning rate of 0.001 and 32 batches
was selected to train the wheat growth stage detection model.

Table 3. Comparison of hyperparameters.

Learning Rate Adam-32(%) Adam-64(%) SGD-32(%) SGD-64(%)

0.005 97.8 97.3 97.2 97.8

0.001 98.6 97.9 98.0 97.5

0.0005 97.9 96.1 96.9 97.3

0.0001 97.8 97.5 97.8 97.2

4. Design of Migration Algorithm

The proposed wheat growth stage detection model has a low battery energy consump-
tion and delay. However, there is a need for intensive computing to perform intelligent
fault monitoring in smart agriculture. When there are many computing tasks, moving them
to the edge server improves crop monitoring efficiency. However, the dynamic changes

Agriculture 2023, 13, 534 8 of 16

in the computing scenarios and the wireless network quality of the service may result in
inadequate performance when tasks are executed at the edge. Therefore, intelligent mobile
devices must dynamically decide whether to offload computing tasks to the edge of the
network. When the wireless network transmission rate is high and the intelligent device
has sufficient power, it is suitable to unload the task to the edge server, resulting in high
performance. In contrast, when the wireless network transmission rate is low and the
device power is insufficient, the task cannot be moved to the edge for processing. However,
it is often impossible in real scenarios to determine whether task unloading is required due
to the dynamic changes in the computing environment and the wireless network’s quality
of service.

4.1. Design for Dynamic Migration Algorithm with a Mobile Terminal

The residual power of mobile devices is a valuable energy resource in the migration of
computing services to the mobile edge. In addition to variable factors, such as the dynamic
characteristics of the mobile device’s environment, especially the network conditions, many
factors determine the migration decision of mobile devices. The strong perception of DRL
can be used to learn the state information of the environment and modify the decision-
making so that mobile users can complete the computing task at the lowest cost. The DQN
is an unsupervised neural network learning algorithm based on reinforcement learning.
It combines the learning ability of a neural network and the decision-making ability of
reinforcement learning and makes intelligent decisions in a timely manner according to
the changing environment [30]. The proposed dynamic migration algorithm makes the
optimal decision by monitoring the power and wireless network speed of the device in real-
time, considering the energy consumption and delay cost caused by the unloading/non-
unloading decision, minimizing the calculation delay and power consumption.

ϕ(S) is used as the input of the DQN. The greedy method is used to make random
selections of an action selection to prevent the network from falling into a local mini-
mum. Figure 4 shows the flowchart of the algorithm. The DRL model considers five key
factors [14]: the environment, agent, action, status, rewards, and penalties.

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 16

Figure 4. Flowchart of the DQN algorithm.

The following equation expresses the DRL model: y௝ = ቊ 𝑅௝𝑖𝑠_𝑒𝑛𝑑 = 𝑡𝑟𝑢𝑒𝑅௝ + 𝛾𝑚𝑎𝑥௔ᇲ𝑄൫φ൫S’௝൯, A’௝, 𝑤൯𝑖𝑠_𝑒𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒 (1)𝜑(𝑆) is the input of the deep Q-learning network. A greedy method is used to obtain
the Q value. It uses a random selection to prevent the network from falling into the local
optimum. The current action, 𝐴, in the state, 𝑆, is executed to obtain the feature vector
corresponding to the new state S’ with φ(S′) and reward 𝑅 to terminate the status, 𝑖𝑠_𝑒𝑛𝑑. {𝜑(𝑆), 𝐴, 𝑅, 𝜑(𝑆’), 𝑖𝑠_𝑒𝑛𝑑} is used as the parameters in the experience pool. The
agent obtains the experience value to learn the current 𝑄 value for y௝.

4.2. Energy Consumption and Calculation Delay of Wheat Growth Stage DetectionModel
A mathematical equation was established to calculate the energy consumption and

delay of the wheat growth stage detection model. The processing information of the mo-
bile device is represented as a quaternion, Mi= (cw,uw,dw,fs), where cw is the CPU power of
the mobile device, uw and dw are the power of the mobile device to upload and download
data, respectively, and fs is the number of floating-point operations per second. The wire-
less network status is represented as a binary group, Si = (uୱ,dୱ), where uୱ represents the
upload speed, and dୱ represents the download speed of the wireless network. The deci-
sion space is defined as xi = 0 and xi = 1, where “0” denotes the task is processed on the
intelligent device, and “1” denotes the task is unloaded to the edge server for processing.
The delay includes the calculation delay and communication delay, when xi = 0, 𝑇௠rep-
resents the calculation delay of the mobile device, and when xi = 1, 𝑇௠ represents the
calculation delay of the edge server. The communication delay is represented by Tୱ, as
shown in Equations (2) and (3): 𝑇௠ = 𝐹௟𝑓௦ (2)

𝑇௦ = 𝑃௦௜௭௘𝑢௦ + 𝑃௥௘௦௨௟௧𝑑௦ (3)

where 𝐹௟ represents the floating-point number required by the mobile device’s CPU to
complete the computing tasks, and 𝑃௦௜௭௘ and 𝑃௥௘௦௨௟௧ represent the size of the uploaded
and received data, respectively. The energy consumption consists of the computing en-
ergy consumption and communication energy consumption; only the energy consump-
tion of the mobile device is considered. The computing energy consumption and commu-
nication energy consumption are calculated by Equations (4) and (5), respectively.

Figure 4. Flowchart of the DQN algorithm.

The following equation expresses the DRL model:

yj =

{
Rjis_end = true

Rj + γmaxa′Q
(
ϕ
(
S′ j

)
, A′ j, w

)
is_end = f alse

(1)

ϕ(S) is the input of the deep Q-learning network. A greedy method is used to obtain
the Q value. It uses a random selection to prevent the network from falling into the local
optimum. The current action, A, in the state, S, is executed to obtain the feature vector

Agriculture 2023, 13, 534 9 of 16

corresponding to the new state S’ with ϕ(S′) and reward R to terminate the status, is_end.
{ϕ(S), A, R, ϕ(S′), is_end} is used as the parameters in the experience pool. The agent
obtains the experience value to learn the current Q value for yj.

4.2. Energy Consumption and Calculation Delay of Wheat Growth Stage Detection Model

A mathematical equation was established to calculate the energy consumption and
delay of the wheat growth stage detection model. The processing information of the mobile
device is represented as a quaternion, Mi= (cw,uw,dw,fs), where cw is the CPU power of the
mobile device, uw and dw are the power of the mobile device to upload and download data,
respectively, and fs is the number of floating-point operations per second. The wireless
network status is represented as a binary group, Si = (us,ds), where us represents the upload
speed, and ds represents the download speed of the wireless network. The decision space is
defined as xi = 0 and xi = 1, where “0” denotes the task is processed on the intelligent device,
and “1” denotes the task is unloaded to the edge server for processing. The delay includes
the calculation delay and communication delay, when xi = 0, Tm represents the calculation
delay of the mobile device, and when xi = 1, Tm represents the calculation delay of the edge
server. The communication delay is represented by Ts, as shown in Equations (2) and (3):

Tm =
Fl
fs

(2)

Ts =
Psize
us

+
Presult

ds
(3)

where Fl represents the floating-point number required by the mobile device’s CPU to
complete the computing tasks, and Psize and Presult represent the size of the uploaded and
received data, respectively. The energy consumption consists of the computing energy
consumption and communication energy consumption; only the energy consumption of
the mobile device is considered. The computing energy consumption and communication
energy consumption are calculated by Equations (4) and (5), respectively.

Em = cw ×
Fl
fs

(4)

Es = uw ×
Psize
us

+ dw ×
Presult

ds
(5)

4.3. Design of Agent

After defining the energy consumption and time delay, it is necessary to determine
the agent’s learning ability to evaluate the two parameters and decide whether to migrate
the services. The DQN evaluates the energy consumption and time delay dynamically.
The weight of the energy consumption is small if the mobile devices have more residual
power and vice versa, regardless of whether the services are migrated or not. Similarly,
time delay also has a weight parameter. Figure 5 shows the structure of the agent. During
the training of the DQN algorithm, the agent learns useful information as the environment
changes. The agent is used to simulate the decision-making and calculation processes
of intelligent devices. After the agent inputs the network and electricity status into the
neural network, it calculates the energy consumption and time delay of the decision results
and evaluates the decision quality to assess the rewards and penalties. Because the input
consists of only two parameters (the network speed and power), the agent uses a small back
propagation (BP) neural network to simulate the decision-making of intelligent devices.
Figure 5 shows that the BP neural network for decision-making has four hidden layers, and
the activation function is a leaky ReLU function. The decision-making results are obtained
by inputting the network speed and power, and the agent learns using the reinforcement
learning algorithm. The calculation of the energy consumption and time delay is expressed

Agriculture 2023, 13, 534 10 of 16

by Equations (6) and (7), which are combined into Equation (8) to optimize the time delay
and energy consumption jointly.

A(si, ai) = kt × Ti + ke × Ei (6)

Ti = min
xi

(
Fl
fs
+ xi

(
Psize
us

+
Presult

ds

))
(7)

Ei = min
xi

(
(1− xi)× cw ×

Fl
fs
+ xi

(
uw ×

Psize
us

+ dw ×
Presult

ds

))
(8)

where Ti and I represent the delay and energy consumption costs after the agent has made
a decision, and A(si, ai) represents the weighted sum of the energy consumption and costs.
kt and ke are the delay and energy consumption coefficients, indicating the importance
of the delay and energy consumption. When the power is low, the energy consumption
coefficient, ke, is high, and when the network speed is high, the delay coefficient, kt, is high.

Agriculture 2023, 13, x FOR PEER REVIEW 10 of 16

𝐸௠ = 𝑐௪ ൈ 𝐹௟𝑓௦ (4)

𝐸௦ = 𝑢௪ ൈ 𝑃௦௜௭௘𝑢௦ + 𝑑௪ ൈ 𝑃௥௘௦௨௟௧𝑑௦ (5)

4.3. Design of Agent
After defining the energy consumption and time delay, it is necessary to determine

the agent’s learning ability to evaluate the two parameters and decide whether to migrate
the services. The DQN evaluates the energy consumption and time delay dynamically.
The weight of the energy consumption is small if the mobile devices have more residual
power and vice versa, regardless of whether the services are migrated or not. Similarly,
time delay also has a weight parameter. Figure 5 shows the structure of the agent. During
the training of the DQN algorithm, the agent learns useful information as the environment
changes. The agent is used to simulate the decision-making and calculation processes of
intelligent devices. After the agent inputs the network and electricity status into the neural
network, it calculates the energy consumption and time delay of the decision results and
evaluates the decision quality to assess the rewards and penalties. Because the input con-
sists of only two parameters (the network speed and power), the agent uses a small back
propagation (BP) neural network to simulate the decision-making of intelligent devices.
Figure 5 shows that the BP neural network for decision-making has four hidden layers,
and the activation function is a leaky ReLU function. The decision-making results are ob-
tained by inputting the network speed and power, and the agent learns using the rein-
forcement learning algorithm. The calculation of the energy consumption and time delay
is expressed by Equations (6) and (7), which are combined into Equation (8) to optimize
the time delay and energy consumption jointly.

Figure 5. Agent structure.

𝐴(𝑠௜, 𝑎௜) = 𝑘௧ ൈ 𝑇௜ + 𝑘௘ ൈ 𝐸௜ (6)

𝑇௜ = min௫೔ ൭𝐹௟𝑓௦ + 𝑥௜ ൬𝑃௦௜௭௘𝑢௦ + 𝑃௥௘௦௨௟௧𝑑௦ ൰൱ (7)

𝐸௜ = min௫೔ ൭(1 െ 𝑥௜) ൈ 𝑐௪ ൈ 𝐹௟𝑓௦ + 𝑥௜ ൬𝑢௪ ൈ 𝑃௦௜௭௘𝑢௦ + 𝑑௪ ൈ 𝑃௥௘௦௨௟௧𝑑௦ ൰൱ (8)

where 𝑇௜ and 𝐼 represent the delay and energy consumption costs after the agent has
made a decision, and 𝐴(𝑠௜, 𝑎௜) represents the weighted sum of the energy consumption
and costs. 𝑘௧ and 𝑘௘ are the delay and energy consumption coefficients, indicating the
importance of the delay and energy consumption. When the power is low, the energy

Figure 5. Agent structure.

5. Experimental Design and Results
5.1. Experimental Results of Lightweight Detection Model

The VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNet models were com-
pared with the proposed lightweight wheat growth stage model. These classic models have
achieved good results in many fields. The experimental environment and the hyperpa-
rameters were consistent for all of the models, and training was conducted locally using
the Tensorflow framework [31]. The graphics card was a GTX1050 Ti. A 0.001 learning
rate, and the Adam optimizer was used for training. The effect of the network structure on
the detection performance was compared. The accuracy rate change in each epoch during
training was recorded to compare the models’ learning abilities. Only the accuracy rate
change of the first 30 epochs is shown because all the models have a high learning ability.
The performances of the different models for detecting the wheat growth stages are listed
in Table 4.

The results indicate that the proposed model has a higher accuracy rate than the other
models in the GS. Because the GS is difficult to identify, the accuracy rate is slightly higher
than in the other growth stages. The average recognition accuracy of the five growth stages
is 98.6% for the proposed model and 99.2% for DenseNet, which achieved the highest
average accuracy.

Agriculture 2023, 13, 534 11 of 16

Table 4. Performance of different models for detecting the wheat growth stages.

Model JS (%) * ES (%) * GS (%) * TS (%) * OS (%) * Average (%)

VGG16 99.2 100 94.6 96.0 97.3 97.8

Inception 99.4 99.6 93.1 100 97.4 97.9

ResNet50 99.6 99.2 94.2 99.8 98.2 98.2

Mobile Net 99.6 100 96.0 99.4 98.0 98.6

Dense Net 99.6 100 97.9 99.8 98.6 99.2

Proposed model 99.4 98.6 98.0 99.2 97.8 98.6
* JS: jointing stage; ES: emergence stage; GS: greening stage; TS: tillering stage; OS: overwintering stage.

5.2. Experimental Results of Deep Reinforcement Learning Recognition Model and Dynamic
Migration Algorithm
5.2.1. Comparison of the Models’ Operating Speeds

The model’s operating speed is critical because it runs on a mobile terminal. A speed
test was conducted using 100 wheat growth stage images to evaluate the performances of
the models. Table 5 lists the results. The results show that the detection speed of the models
does not increase with a decrease in the parameter number but is related to the model’s
structure. This effect is the most pronounced for the VGG because it has a relatively simple
structure despite its many parameters; therefore, it has a fast detection speed. Although the
DenseNet model has few parameters, its structure is complex, resulting in a large number
of feature maps and low detection speed. The size of the proposed wheat growth stage
detection model is only 1.3 MB. Thus, it has the highest detection speed due to the low
parameter number. The parameter number of the proposed model is 58% lower, and its
detection speed is 47% higher than that of MobileNetV2.

Table 5. Operating speeds of different models.

ModelVGG16 IV3 * RT50 * MT2 * DT * Proposed Model

Time(s) 32.88 163.09 116.81 84.88 212.16 45.07

Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3

Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3
* IV3: InceptionV3; RT50: Resnet50; MT2: MobileNetV2; DT: DenseNet.

5.2.2. Impact of Learning Rate and Experience Pool on Loss

The mobile device uses a Core i5-10500 processor, 8G (DDR43000) of memory, and
no GPU acceleration. The edge computing server uses the Tencent lightweight server,
CentOS7 system, and 2G memory, and the maximum bandwidth is 5 Mbps. Different
data transmission rates were selected according to the wireless network communication
mode [32]. The TensorFlow service’s framework was used to deploy the model to the Linux
server. The loss value was utilized to evaluate the error between the real and predicted
values [33,34]. The change in the learning rate significantly affects the loss value of the DQN
algorithm. Thus, the models with learning rates of 0.01, 0.001, and 0.0001 were assessed for
200 iterations. Figure 6 shows that when the experience pool is 500, the loss value fluctuates
significantly with an increase in the epoch number when the experience pool is 500 and
stabilizes at 2000. Therefore, a value of 2000 was used to store the decision data.

Agriculture 2023, 13, 534 12 of 16

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 16

Table 5. Operating speeds of different models.

ModelVGG16 IV3 * RT50 * MT2 * DT *
Proposed

Model
Time(s) 32.88 163.09 116.81 84.88 212.16 45.07

Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3
Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3

* IV3: InceptionV3; RT50: Resnet50; MT2: MobileNetV2; DT: DenseNet.

5.2.2. Impact of Learning Rate and Experience Pool on Loss
The mobile device uses a Core i5-10500 processor, 8G (DDR43000) of memory, and

no GPU acceleration. The edge computing server uses the Tencent lightweight server,
CentOS7 system, and 2G memory, and the maximum bandwidth is 5 Mbps. Different data
transmission rates were selected according to the wireless network communication mode
[32]. The TensorFlow service’s framework was used to deploy the model to the Linux
server. The loss value was utilized to evaluate the error between the real and predicted
values [33,34]. The change in the learning rate significantly affects the loss value of the
DQN algorithm. Thus, the models with learning rates of 0.01, 0.001, and 0.0001 were as-
sessed for 200 iterations. Figure 6 shows that when the experience pool is 500, the loss
value fluctuates significantly with an increase in the epoch number when the experience
pool is 500 and stabilizes at 2000. Therefore, a value of 2000 was used to store the decision
data.

Figure 6. Impact of experience pool on loss value.

5.2.3. Energy Consumption and Delay
The gradient descent method is used to minimize the energy consumption and delay

(𝐴(𝑠௜, 𝑎௜)). The values of 𝑘௧ and kୣ change with a change in the power and network
speed. When the power is sufficient, the agent’s learning strategy ensures that the delay
is minimized, and when the network’s speed is sufficient, the energy consumption is min-
imized. The time delay and energy consumption coefficients, 𝑘௧ and 𝑘௘, at different net-
work speeds are shown in Figure 7. When the coefficient, 𝑘௧, of the network speed ex-
ceeds 75%, the energy consumption coefficient remains unchanged, the delay coefficient
increases, and the delay is reduced.

Figure 6. Impact of experience pool on loss value.

5.2.3. Energy Consumption and Delay

The gradient descent method is used to minimize the energy consumption and delay
(A(si, ai)). The values of kt and ke change with a change in the power and network
speed. When the power is sufficient, the agent’s learning strategy ensures that the delay
is minimized, and when the network’s speed is sufficient, the energy consumption is
minimized. The time delay and energy consumption coefficients, kt and ke, at different
network speeds are shown in Figure 7. When the coefficient, kt, of the network speed
exceeds 75%, the energy consumption coefficient remains unchanged, the delay coefficient
increases, and the delay is reduced.

Agriculture 2023, 13, x FOR PEER REVIEW 13 of 16

Figure 7. Time delay and energy consumption factors at different power values.

Energy consumption and time delay are critical parameters of migration decisions
when mobile devices are used. The reinforcement learning algorithm continuously learns
from the energy consumption and time delay resulting from each decision to minimize
these parameters. Table 6 shows the energy consumption and delay for the different mod-
els. The proposed model has fewer parameters, a faster running speed, and lower energy
consumption than the other detection models. The speed of performing the detection on
one image on an intelligent device is 0.43 s, and the energy consumption is 0.023 mWh.
These values are 49% lower than that of MobileNetV2 (MT2).

Table 6. Comparison of energy consumption and delay for different models.

Model IV3 RT50 DT MT2 Proposed
Method

Data (MB) 21.8 * 27.9 7.0 3.1 1.3
Delay (s) 1.63 1.16 2.12 0.84 0.43

Energy (mWh) 0.091 0.064 0.118 0.045 0.023
* IV3: InceptionV3; RT50: Resnet50; DT: DenseNet; MT2: MobileNetV2.

The energy consumption and delay of the proposed method at the mobile terminal
and edge server are listed in Table 7.

Table 7. Energy consumption and delay of the proposed method.

Proposed
Model Data Layers Accuracy Delay Energy

Value 1.3 MB 21 98.6% 0.43 s 0.077 mWh

Experiments were conducted on performing and not performing decision-making to
evaluate the effect of the DQN algorithm on the intelligent migration of the convolutional
neural network model. Not performing decision-making was divided into execution on
the device (local execution) and execution in the cloud (edge execution). The average op-
eration times and average delay of the system were analyzed at the same power. Figure 8
shows the average running times of the model at different network speeds. The higher the
average running time, the lower the energy consumption. At a network speed of 0–2 MB/s,
the energy consumption is high, and the model decision is biased toward local execution
because the network speed is low and the transmission time is long. However, as the

Figure 7. Time delay and energy consumption factors at different power values.

Energy consumption and time delay are critical parameters of migration decisions
when mobile devices are used. The reinforcement learning algorithm continuously learns
from the energy consumption and time delay resulting from each decision to minimize these
parameters. Table 6 shows the energy consumption and delay for the different models.
The proposed model has fewer parameters, a faster running speed, and lower energy
consumption than the other detection models. The speed of performing the detection on
one image on an intelligent device is 0.43 s, and the energy consumption is 0.023 mWh.
These values are 49% lower than that of MobileNetV2 (MT2).

Agriculture 2023, 13, 534 13 of 16

Table 6. Comparison of energy consumption and delay for different models.

Model IV3 RT50 DT MT2 Proposed Method

Data (MB) 21.8 * 27.9 7.0 3.1 1.3

Delay (s) 1.63 1.16 2.12 0.84 0.43

Energy (mWh) 0.091 0.064 0.118 0.045 0.023
* IV3: InceptionV3; RT50: Resnet50; DT: DenseNet; MT2: MobileNetV2.

The energy consumption and delay of the proposed method at the mobile terminal
and edge server are listed in Table 7.

Table 7. Energy consumption and delay of the proposed method.

Proposed Model Data Layers Accuracy Delay Energy

Value 1.3 MB 21 98.6% 0.43 s 0.077 mWh

Experiments were conducted on performing and not performing decision-making to
evaluate the effect of the DQN algorithm on the intelligent migration of the convolutional
neural network model. Not performing decision-making was divided into execution on
the device (local execution) and execution in the cloud (edge execution). The average
operation times and average delay of the system were analyzed at the same power. Figure 8
shows the average running times of the model at different network speeds. The higher the
average running time, the lower the energy consumption. At a network speed of 0–2 MB/s,
the energy consumption is high, and the model decision is biased toward local execution
because the network speed is low and the transmission time is long. However, as the
network speed increases, the energy consumption is higher for local execution than for
migration to the cloud; thus, cloud execution is preferable. The energy consumption of the
intelligent migration algorithm is 128.4% lower than that of local execution at a network
speed of 0–8 MB/s.

Agriculture 2023, 13, x FOR PEER REVIEW 14 of 16

network speed increases, the energy consumption is higher for local execution than for
migration to the cloud; thus, cloud execution is preferable. The energy consumption of the
intelligent migration algorithm is 128.4% lower than that of local execution at a network
speed of 0–8 MB/s.

Figure 8. Average running times.

Figure 9 shows the average delay for the different network rates. The delay of edge
execution is the highest at a network speed of 0–2 MB/s, and local execution is preferable.
As the network speed increases, the network communication delay decreases, and edge
execution becomes preferable. The average efficiency of the intelligent migration algo-
rithm is 121.2% higher than the local execution at a network rate of 0–8 MB/s.

Figure 9. Average delay.

6. Discussion
Implementing a deep learning algorithm for wheat growth stage detection on mobile

devices has high energy consumption and a large time delay. A lightweight detection
model was proposed with low energy consumption and delay based on depth-wise sep-
arable convolution and a residual wireless network. A decision-making method was pro-
posed for performing edge computing and migrating the wheat growth stage detection

Figure 8. Average running times.

Figure 9 shows the average delay for the different network rates. The delay of edge
execution is the highest at a network speed of 0–2 MB/s, and local execution is preferable.
As the network speed increases, the network communication delay decreases, and edge
execution becomes preferable. The average efficiency of the intelligent migration algorithm
is 121.2% higher than the local execution at a network rate of 0–8 MB/s.

Agriculture 2023, 13, 534 14 of 16

Agriculture 2023, 13, x FOR PEER REVIEW 14 of 16

network speed increases, the energy consumption is higher for local execution than for
migration to the cloud; thus, cloud execution is preferable. The energy consumption of the
intelligent migration algorithm is 128.4% lower than that of local execution at a network
speed of 0–8 MB/s.

Figure 8. Average running times.

Figure 9 shows the average delay for the different network rates. The delay of edge
execution is the highest at a network speed of 0–2 MB/s, and local execution is preferable.
As the network speed increases, the network communication delay decreases, and edge
execution becomes preferable. The average efficiency of the intelligent migration algo-
rithm is 121.2% higher than the local execution at a network rate of 0–8 MB/s.

Figure 9. Average delay.

6. Discussion
Implementing a deep learning algorithm for wheat growth stage detection on mobile

devices has high energy consumption and a large time delay. A lightweight detection
model was proposed with low energy consumption and delay based on depth-wise sep-
arable convolution and a residual wireless network. A decision-making method was pro-
posed for performing edge computing and migrating the wheat growth stage detection

Figure 9. Average delay.

6. Discussion

Implementing a deep learning algorithm for wheat growth stage detection on mobile
devices has high energy consumption and a large time delay. A lightweight detection model
was proposed with low energy consumption and delay based on depth-wise separable
convolution and a residual wireless network. A decision-making method was proposed for
performing edge computing and migrating the wheat growth stage detection model to the
wireless network edge server for processing. The dynamic migration strategy of the DQN-
based identification model enabled the execution of complex processes while minimizing
energy consumption and processing time. The proposed method is also applicable to
other crops.

The experimental results show that the proposed model and algorithm have good
performance and are suitable for practical applications. This approach can be used to
develop a wheat growth period monitoring system. It can be implemented on mobile
devices, and the calculations are performed on the server. The TensorFlowlite open-source
framework can be used to implement this model on mobile devices. On the server side,
Docker can be used to deploy the model server to execute requests and return the result to
the mobile device.

Author Contributions: Formal analysis, X.M.; Investigation, J.W.; Methodology, Y.L.; Resources, G.Z.;
Supervision, L.X.; Validation, H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61871322, and the Henan Province Key Scientific and Technological Project, grant number
222102110234.

Institutional Review Board Statement: This study does not require ethical approval, and we choose
to exclude this statement.

Data Availability Statement: We will consider analyzing the research data in some way in http://en.
henau.edu.cn/.

Conflicts of Interest: The authors declare no conflict of interest.

http://en.henau.edu.cn/
http://en.henau.edu.cn/

Agriculture 2023, 13, 534 15 of 16

References
1. Hellegers, P. Food security vulnerability due to trade dependencies on Russia and Ukraine. Food Secur. 2022, 14, 1503–1510.

[CrossRef]
2. Han, S.; Zhao, Y.; Cheng, J.; Zhao, F.; Yang, H.; Feng, H.; Li, Z.; Ma, X.; Zhao, C.; Yang, G. Monitoring Key Wheat Growth

Variables by Integrating Phenology and UAV Multispectral Imagery Data into Random Forest Model. Remote Sens. 2022, 14, 3723.
[CrossRef]

3. Ren, S.; Guo, B.; Wu, X.; Zhang, L.; Ji, M.; Wang, J. Winter wheat planted area monitoring and yield modeling using MODIS data
in the Huang-Huai-Hai Plain, China. Comput. Electron. Agric. 2021, 182, 106049. [CrossRef]

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
5. Zhang, Y.; Wang, W.; Zhang, P.; Huang, P. Reinforcement-Learning-Based Task Planning for Self-Reconfiguration of Cellular

Satellites. IEEE Aerosp. Electron. Syst. Mag. 2021, 37, 38–47. [CrossRef]
6. Hassan, N.; Yau, K.L.A.; Wu, C. Edge computing in 5G: A review. IEEE Access 2019, 7, 127276–127289. [CrossRef]
7. Clifton, J.; Laber, E. Q-learning: Theory and applications. Annu. Rev. Stat. Its Appl. 2020, 7, 279–301. [CrossRef]
8. Li, Y.; Jiang, C. Distributed task offloading strategy to low load base stations in mobile edge computing environment. Comput.

Commun. 2020, 164, 240–248. [CrossRef]
9. Chen, C.; Chen, L.; Liu, L.; He, S.; Yuan, X.; Lan, D.; Chen, Z. Delay-optimized V2V-based computation offloading in urban

vehicular edge computing and networks. IEEE Access 2020, 8, 18863–18873. [CrossRef]
10. Xiao, Z.; Chen, Y.; Jiang, H.; Hu, Z.; Lui, J.C.; Min, G.; Dustdar, S. Resource management in UAV-assisted MEC: State-of-the-art

and open challenges. Wirel. Netw. 2022, 28, 3305–3322. [CrossRef]
11. Shen, H.; Jiang, Y.; Deng, F.; Shan, Y. Task Unloading Strategy of Multi UAV for Transmission Line Inspection Based on Deep

Reinforcement Learning. Electronics 2022, 11, 2188. [CrossRef]
12. Lv, Z.; Chen, D.; Wang, Q. Diversified technologies in internet of vehicles under intelligent edge computing. IEEE Trans. Intell.

Transp. Syst. 2020, 22, 2048–2059. [CrossRef]
13. Wang, K.; Wang, X.; Liu, X. A high reliable computing offloading strategy using deep reinforcement learning for iovs in edge

computing. J. Grid Comput. 2021, 19, 15. [CrossRef]
14. Ding, X.; Zhang, W. Computing unloading strategy of massive internet of things devices based on game theory in mobile edge

computing. Math. Probl. Eng. 2021, 2021, 2163965. [CrossRef]
15. Huang, J.; Gao, H.; Wan, S.; Chen, Y. AoI-aware energy control and computation offloading for industrial IoT. Future Gener.

Comput. Syst. 2023, 139, 29–37. [CrossRef]
16. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans.

Netw. 2015, 24, 2795–2808. [CrossRef]
17. Zhang, D.; Cao, L.; Zhu, H.; Zhang, T.; Du, J.; Jiang, K. Task offloading method of edge computing in internet of vehicles based on

deep reinforcement learning. Cluster Comput. 2022, 25, 1175–1187. [CrossRef]
18. Chen, C.; Zhang, Y.; Wang, Z.; Wan, S.; Pei, Q. Distributed computation offloading method based on deep reinforcement learning

in ICV. Appl. Soft Comput. 2021, 103, 107108. [CrossRef]
19. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric.

2020, 7, 1–19. [CrossRef]
20. Zhang, Z.J.; Wu, T.; Li, Z.; Shen, B.; Chen, N.; Li, J. Research of offloading decision and resource scheduling in edge computing

based on deep reinforcement learning. In Proceedings of the Smart Grid and Internet of Things: 4th EAI International Conference,
SGIoT 2020, TaiChung, Taiwan, 5–6 December 2020.

21. Gu, M.; Li, K.C.; Li, Z.; Han, Q.; Fan, W. Recognition of crop diseases based on depthwise separable convolution in edge
computing. Sensors 2020, 20, 4091. [CrossRef]

22. Sun, L.; Zhao, H.; Chen, J. Recognition method of crop diseases and insect pests based on multi-layer feature fusion. Basic Clin.
Pharmacol. Toxicol. 2020, 2020, 127.

23. Albanese, A.; Nardello, M.; Brunelli, D. Automated pest detection with DNN on the edge for precision agriculture. IEEE J. Emerg.
Sel. Top. Circuits Syst. 2021, 11, 458–467. [CrossRef]

24. Zhou, G.; Wen, R.; Tian, W.; Buyya, R. Deep reinforcement learning-based algorithms selectors for the resource scheduling in
hierarchical Cloud computing. J. Netw. Comput. Appl. 2022, 208, 103520. [CrossRef]

25. Weichman, P.B. Quantum-enhanced algorithms for classical target detection in complex environments. Phys. Rev. 2021, 103,
042424. [CrossRef]

26. Ji, B.; Wang, Y.; Song, K.; Li, C.; Wen, H.; Menon, V.G.; Mumtaz, S. A survey of computational intelligence for 6G: Key technologies,
applications and trends. IEEE Trans. Ind. Inform. 2021, 17, 7145–7154. [CrossRef]

27. Peng, X.; Zhang, X.; Li, Y.; Liu, B. Research on image feature extraction and retrieval algorithms based on convolutional neural
network. J. Vis. Commun. Image Represent. 2020, 69, 102705. [CrossRef]

28. Yun, J.; Jiang, D.; Liu, Y.; Sun, Y.; Tao, B.; Kong, J.; Tian, J.; Tong, X.; Xu, M.; Fang, Z. Real-Time Target Detection Method Based on
Lightweight Convolutional Neural Network. Front. Bioeng. Biotechnol. 2022, 10, 861286. [CrossRef]

29. Lochbihler, A. A mechanized proof of the max-flow min-cut theorem for countable networks with applications to probability
theory. J. Autom. Reason. 2022, 66, 585–610. [CrossRef]

http://doi.org/10.1007/s12571-022-01306-8
http://doi.org/10.3390/rs14153723
http://doi.org/10.1016/j.compag.2021.106049
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/MAES.2021.3089252
http://doi.org/10.1109/ACCESS.2019.2938534
http://doi.org/10.1146/annurev-statistics-031219-041220
http://doi.org/10.1016/j.comcom.2020.10.021
http://doi.org/10.1109/ACCESS.2020.2968465
http://doi.org/10.1007/s11276-022-03051-4
http://doi.org/10.3390/electronics11142188
http://doi.org/10.1109/TITS.2020.3019756
http://doi.org/10.1007/s10723-021-09542-6
http://doi.org/10.1155/2021/2163965
http://doi.org/10.1016/j.future.2022.09.007
http://doi.org/10.1109/TNET.2015.2487344
http://doi.org/10.1007/s10586-021-03532-9
http://doi.org/10.1016/j.asoc.2021.107108
http://doi.org/10.1016/j.inpa.2019.09.006
http://doi.org/10.3390/s20154091
http://doi.org/10.1109/JETCAS.2021.3101740
http://doi.org/10.1016/j.jnca.2022.103520
http://doi.org/10.1103/PhysRevA.103.042424
http://doi.org/10.1109/TII.2021.3052531
http://doi.org/10.1016/j.jvcir.2019.102705
http://doi.org/10.3389/fbioe.2022.861286
http://doi.org/10.1007/s10817-022-09616-4

Agriculture 2023, 13, 534 16 of 16

30. Yang, Y.; Juntao, L.; Lingling, P. Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI Trans.
Intell. Technol. 2020, 5, 177–183. [CrossRef]

31. Haghighat, E.; Juanes, R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning
using artificial neural networks. Comput. Methods Appl. Mech. Eng. 2021, 373, 113552. [CrossRef]

32. Li, Y.; Li, B.; Yang, M.; Yan, Z. A spatial clustering group division-based OFDMA access protocol for the next generation WLAN.
Wirel. Netw. 2019, 25, 5083–5097. [CrossRef]

33. Yang, H.B.; Zhao, J.; Lan, Y.; Lu, L.; Li, Z. Fraction vegetation cover extraction of winter wheat based on spectral information and
texture features obtained by UAV. Int. J. Precis. Agric. Aviat. 2019, 2, 54–61.

34. Čirjak, D.; Aleksi, I.; Miklečić, I.; Antolković, A.M.; Vrtodušić, R.; Viduka, A.; Lemic, D.; Kos, T.; Pajač Živković, I. Monitoring
System for Leucoptera malifoliella (O. Costa, 1836) and Its Damage Based on Artificial Neural Networks. Agriculture 2023, 13, 67.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1049/trit.2020.0024
http://doi.org/10.1016/j.cma.2020.113552
http://doi.org/10.1007/s11276-019-02115-2
http://doi.org/10.3390/agriculture13010067

	Introduction
	Materials and Methods
	Data Source
	Data Processing

	Design of Wheat Growth Stage Detection Model
	Framework of Wheat Growth Stage Detection Model
	Parameter Settings

	Design of Migration Algorithm
	Design for Dynamic Migration Algorithm with a Mobile Terminal
	Energy Consumption and Calculation Delay of Wheat Growth Stage Detection Model
	Design of Agent

	Experimental Design and Results
	Experimental Results of Lightweight Detection Model
	Experimental Results of Deep Reinforcement Learning Recognition Model and Dynamic Migration Algorithm
	Comparison of the Models’ Operating Speeds
	Impact of Learning Rate and Experience Pool on Loss
	Energy Consumption and Delay

	Discussion
	References

