
Citation: Maican, E.; Iosif, A.;

Maican, S. Precision Corn Pest

Detection: Two-Step Transfer

Learning for Beetles (Coleoptera)

with MobileNet-SSD. Agriculture

2023, 13, 2287. https://doi.org/

10.3390/agriculture13122287

Academic Editor: Dimitre Dimitrov

Received: 22 October 2023

Revised: 12 December 2023

Accepted: 12 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Precision Corn Pest Detection: Two-Step Transfer Learning for
Beetles (Coleoptera) with MobileNet-SSD
Edmond Maican 1,* , Adrian Iosif 1 and Sanda Maican 2

1 Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica
Bucharest, RO-060042 Bucharest, Romania; adrian.iosif0104@upb.ro

2 Institute of Biology Bucharest, Romanian Academy, RO-060031 Bucharest, Romania; sanda.maican@ibiol.ro
* Correspondence: edmond.maican@upb.ro

Abstract: Using neural networks on low-power mobile systems can aid in controlling pests while
preserving beneficial species for crops. However, low-power devices require simplified neural
networks, which may lead to reduced performance. This study was focused on developing an
optimized deep-learning model for mobile devices for detecting corn pests. We propose a two-step
transfer learning approach to enhance the accuracy of two versions of the MobileNet SSD network.
Five beetle species (Coleoptera), including four harmful to corn crops (belonging to genera Anoxia,
Diabrotica, Opatrum and Zabrus), and one beneficial (Coccinella sp.), were selected for preliminary
testing. We employed two datasets. One for the first transfer learning procedure comprises 2605
images with general dataset classes ‘Beetle’ and ‘Ladybug’. It was used to recalibrate the networks’
trainable parameters for these two broader classes. Furthermore, the models were retrained on a
second dataset of 2648 images of the five selected species. Performance was compared with a baseline
model in terms of average accuracy per class and mean average precision (mAP). MobileNet-SSD-
v2-Lite achieved an mAP of 0.8923, ranking second but close to the highest mAP (0.908) obtained
by MobileNet-SSD-v1 and outperforming the baseline mAP by 6.06%. It demonstrated the highest
accuracy for Opatrum (0.9514) and Diabrotica (0.8066). Anoxia it reached a third-place accuracy (0.9851),
close to the top value of 0.9912. Zabrus achieved the second position (0.9053), while Coccinella was
reliably distinguished from all other species, with an accuracy of 0.8939 and zero false positives;
moreover, no pest species were mistakenly identified as Coccinella. Analyzing the errors in the
MobileNet-SSD-v2-Lite model revealed good overall accuracy despite the reduced size of the training
set, with one misclassification, 33 non-identifications, 7 double identifications and 1 false positive
across the 266 images from the test set, yielding an overall relative error rate of 0.1579. The preliminary
findings validated the two-step transfer learning procedure and placed the MobileNet-SSD-v2-Lite
in the first place, showing high potential for using neural networks on real-time pest control while
protecting beneficial species.

Keywords: pest control; Coleoptera; smart agriculture; neural network; MobileNet; transfer learning;
iNaturalist

1. Introduction

The ever-growing global demand for food production poses significant challenges to
farmers in safeguarding their crops from harmful pests. Pest management, or the control
and mitigation of pest populations, plays a crucial role in modern agriculture. To ensure
food and health security in agricultural production systems, pest management plays a
key role [1]. To achieve effective pest control, various strategies have been developed,
encompassing chemical, biological and mechanical methods [2]. The conventional methods
of pest control, which rely heavily on chemical pesticides, have raised environmental
concerns and faced growing resistance from pest populations [3,4], rendering them less
effective over time. Moreover, the indiscriminate use of pesticides can harm beneficial

Agriculture 2023, 13, 2287. https://doi.org/10.3390/agriculture13122287 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13122287
https://doi.org/10.3390/agriculture13122287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0009-0009-6102-6435
https://doi.org/10.3390/agriculture13122287
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13122287?type=check_update&version=1

Agriculture 2023, 13, 2287 2 of 24

insects, disrupt ecological balance and potentially compromise human health through the
food chain [5–9]. As a result, there is a pressing need to shift towards more eco-friendly
and sustainable pest management approaches.

The agribusiness sector encounters notable obstacles in crop protection, marked by the
considerable expenses linked to ineffective approaches and by the complexities involved in
detecting pest infestations [10]. Moreover, the increasing environmental worries and the
public’s call for minimized reliance on toxic insecticides add further complexity to pest
management practices [11].

In recent years, the integration of artificial intelligence (AI) has shown promise in
revolutionizing not only irrigation optimization, yield prediction, and precision livestock
farming but also weed and pest management practices [12–14]. By harnessing the power
of artificial intelligence, agricultural processes can be optimized and adapted to specific
and ever-changing agricultural issues, rendering it the most suitable answer to tackling
these challenges [15,16]. Advanced algorithms, particularly neural networks, can enable
accurate, precise and timely identification and control of pest species, thus facilitating
targeted interventions and reducing reliance on broad-spectrum chemicals.

In recent agricultural research, these approaches have showed substantial promise. For
instance, in disease management for sunflower crops [17], deep-learning models, including
AlexNet, VGG16, InceptionV3, MobileNetV3 and EfficientNet, exhibited high precision,
recall, F1-score and accuracy in classifying sunflower diseases, demonstrating the potential
for early disease detection. In the horticulture industry [18], an automated system employ-
ing transfer learning in MobileNetV2, termed TL-MobileNetV2, significantly outperformed
traditional models like AlexNet, VGG16, InceptionV3 and ResNet in fruit classification.
The research not only achieved an impressive 99% accuracy but also highlighted the role
of transfer learning in enhancing model performance. Furthermore, in citrus fruit disease
detection [19], a systematic review revealed the efficacy of advanced algorithms, such
as support vector machines (SVMs) in machine learning, convolutional neural networks
(CNNs) in deep learning and linear discriminant analysis (LDA) in statistical techniques.
These studies collectively demonstrate the adaptability and effectiveness of advanced al-
gorithms, particularly neural networks, in diverse agricultural applications, ranging from
crop disease identification to fruit classification and disease detection in citrus crops.

In terms of insect pest detection and identification, Table 1 provides an overview
of various research studies focused on utilizing AI-driven techniques. Diverse datasets,
including pest trap images, greenhouse images and natural environments, were used in
various research activities that covered a wide range of pest species, from fruit flies and
beetles to stink bugs and pine scale insects.

Table 1. Overview of studies on identification of insects with neural networks.

Study Model/Backbone Dataset Performance Metrics

Kalfas et al. [20] YOLO v5 731 sticky plates containing
74,616 bounding boxes

mAP = {0.76 across all dataset; 0.73 wooly
aphid; 0.86 chicory leaf-miner; 0.61 grass-fly;
0.67 wasp}

Yang et al. [21]
YOLOv7 with insertion of
CSPResNeXt-50 and
VoVGSCSP modules

4533 annotated images;
13 maize pests

mAP@0.5 = 76.3%; mAP@0.5:0.95 = 51.2;
recall = 77.3%; F1 = 75.2%

Wu et al. [22] Faster R-CNN, FPN, SSD300,
RefineDet, YOLOv3 IP102 dataset (18,983 images) FPN with ResNet-50: AP@0.5 = 54.93%,

YOLOv3: AP@0.5 = 50.64%

Albanese et al. [23] Modified LeNet-5, VGG16,
MobileNetV2

4400 images; 2 classes: codling
moth and general insect

LeNet-5: Acc. 96.1%, Prec. 99.6%
VGG16: Acc. 97.9%, Prec. 99.6%
MobileNetV2: Acc. 95.1%, Prec. 98.5%

Agriculture 2023, 13, 2287 3 of 24

Table 1. Cont.

Study Model/Backbone Dataset Performance Metrics

Wang et al. [24]
Faster R-CNN-FPN with
ResNet-50 or ResNet-101,
YOLOv5, YOLOv7

4865 images; seven species of
coccinellids

YOLOv7: AP@0.50 up to 97.31 and AP up
to 74.5;
YOLOv5: AP@0.50 up to 96 and AP up to 73.8;
Faster R-CNN: AP@0.50 up to 94.3 and AP up
to 65.6;

Salamut et al. [25] Faster R-CNN, YOLOv5 [26] 1600 annotated images of cherry
fruit flies

Faster R-CNN: AP@0.50 = 0.88%; YOLOv5:
AP@0.50 = 0.76%

Rustia et al. (2021) [26] Multi-stage deep learning
method Greenhouse images F1-scores up to 0.92

Wang et al. [27]

Faster R-CNN/VGG-16,
Cascade
R-CNN/ResNet-50-FPN,
YOLOv3/Darknet-53

Pest24 dataset; 24 field pests;
25,000 images

YOLOv3: mAP@0.50 = 59.79%; Cascade
R-CNN: mAP@0.50 = 57.23%; Faster R-CNN:
mAP@0.50 = 51.10%

Li et al. [28] Faster R-CNN (COCO
pre-trained)

1500 sticky trap images; 2
classes: whitefly and thrips

Faster R-CNN (pre-trained): NA (More
accurate than direct training)

Hong et al. (2021) [29] AI-based pest counting method Black pine bast scale images Counting accuracy = 95%

Wang et al. [30] Improved Faster
R-CNN/Attention

AgriPest21 dataset; 21 types of
pests; 25,000 images Improved Faster R-CNN: mAP = 78.7%

Jiao et al. [31] Faster R-CNN/ResNet50 AgriPest21 dataset 21 types of
pests; 25,000 images Faster R-CNN: mAP = 77.4%

Zhang et al. [32] YOLO models with attention
mechanism

Pest24 dataset; 25,000 images of
small pests AgriPest-YOLO: mAP@0.50 = 71.3%

Sava et al. [33] YOLOv5m Dataset from Maryland
Biodiversity Project YOLOv5m: mAP = 99.2%

Takimoto et al. [34] Faster R-CNN Web and field-collected images
of herbivorous beetles Faster R-CNN: NA

Ozdemir and
Kunduraci [35] Faster R-CNN (Inception-v3) 25,820 training images of

various insect orders Faster R-CNN: NA

Butera et al. [36] Faster R-CNN (MobileNet-v3)
36,000 web images of
Beetle-type pests and
non-harmful beetles

Faster R-CNN: mAP = 92.66%

Ahmad et al. [37] YOLO models 7046 images with 23 pests YOLOv5-X: mAP@0.5 = 98.3%,
mAP@0.05:0.95 = 79.8%

Ratnayake et al. [38] YOLOv2 and hybrid approach
22,260 video frames with
honeybees in wildflower
clusters

HyDaT: Detection rate = 86.6%, YOLOv2:
Detection rate = 60.7%

Bjerge et al. [39] YOLOv5 29,960 beneficial insects YOLOv5: mAP@0.50:0.05:0.95 = 0.592,
F1-score = 0.932

Spanier [40] YOLOv5 variant 17,000 pollinator insect images YOLOv5 variant: Accuracy = 0.9294,
F1-score = 0.9294

Bjerge et al. [41] YOLOv5, Faster R-CNN 100,000 annotated images of
small insects

YOLOv5: mAP@0.50 = 0.924, Faster R-CNN:
mAP@0.50 = 0.900

Venegas et al. [42] Deep CNN and traditional
methods 2300 coccinellid beetle images CNN model AUC = 0.977

Vega et al. [43] CNN with weighted Hausdorff
distance 2633 beetle images Mean accuracy = 94.30%

These studies employed a broad spectrum of neural network models, architectures
and methodologies. The choice of backbone network, such as ResNet, VGG, MobileNet and
Darknet, significantly impacts performance. Wang et al. [27] demonstrated the effectiveness
of YOLOv3, achieving a substantial mean average precision (mAP) of 59.79% on the Pest24
dataset, outperforming both Cascade R-CNN and Faster R-CNN. Sava et al. [33] achieved
notable results with YOLOv5m, attaining an mAP of 99.2% for the detection of brown
marmorated stink bugs. Additionally, Rustia et al. (2021) [26] introduced a multi-stage
deep learning method for greenhouse insect detection, with F1-scores reaching up to 0.92.

Agriculture 2023, 13, 2287 4 of 24

Several studies also explored model adaptations to improve performance. Wang et al. [30]
presented an enhanced Faster R-CNN model integrated with attention mechanisms, re-
sulting in enhanced detection of small pests and an mAP of 78.7%. Zhang et al. [32] and
Jiao et al. [31] both investigated the integration of attention mechanisms into YOLO models,
yielding significant improvements in detecting small pests and achieving mAPs of 71.3%
and 77.4%, respectively. These three investigations were carried out using AgriPest21, a
dataset containing insects with very small sizes. It encompasses 21 types of pests, with
21,970 training images and 2442 testing images. The original images of crop pests with a
format of 2596 × 1944 pixels, were adjusted to 800 × 600 for better efficiency. The average
dimensions (width and height) for all pest classes do not exceed 70 pixels. The average
relative scale for all categories is less than 1%, with the smallest average relative scale
measuring only 0.1129% [20]. The primary focus of these inquiries was to address the
constraints of deep learning methodologies in capturing adequately detailed features for
small and very small objects within an image.

In terms of dataset size and performance, Ahmad et al. [37] worked with a dataset
of only 7046 images containing 23 types of pests. YOLOv5-X achieved an mAP@0.5 of
98.3% and an mAP@0.05:0.95 of 79.8%, showcasing reliable performance on a moderately
sized dataset.

A small number of studies also extended their focus to the identification of beneficial
insects (pollinators, natural enemies, food and food insects), biological controls of agri-
cultural pests, or food sources to humans and other animals [44]) using AI as a tool for
preserving ecosystems. Bjerge et al. [39] and Spanier [40] both demonstrated successful
applications of YOLO models in the identification of various beneficial insects, highlighting
the adaptability of these models for broader insect classification tasks. YOLOv5 proved top
performance, with an mAP@0.50:0.05:0.95 of 0.592 and high accuracy.

Comparative analyses were also conducted. The investigation of Wu et al. [22] in-
volved a comparison of deep learning-based object detection methods, on a dataset that
contains more than 75,000 images belonging to 102 categories. The results showed that the
combination of FPN (Feature Pyramid Network) with ResNet-50 architecture achieved the
highest average precision (AP) of 54.93%. Following closely was YOLOv3, with an average
precision of 50.64%.

Not many studies, however, have explored the application of MobileNet networks
in insect pest detection. Albanese et al. [23] utilized modified LeNet-5, VGG16 and Mo-
bileNetV2 on a dataset comprising 4400 images, specifically focusing on classifying the
codling moth from other insects. The results indicated competitive accuracy levels, with
LeNet-5 achieving 96.1%, VGG16 reaching 97.9% and MobileNetV2 demonstrating an
accuracy of 95.1% and a precision of 98.5%. Similarly, Butera et al. [36] employed a Faster
R-CNN with a MobileNet-v3 backbone for the detection of beetle-type crop pests and non-
harmful beetles, leveraging a substantial dataset of 36,000 web-sourced images. The model
exhibited strong performance, achieving a mean average precision (mAP) of 92.66%. Both
studies showcased competitive accuracy in insect detection tasks using MobileNet models.

An innovative approach to detection has been explored in a study conducted by Rat-
nayake et al. [38], wherein hybrid methodologies were introduced by combining YOLOv2
with background subtraction techniques for honeybee tracking. The results demonstrated
that hybrid models can provide competitive detection rates, offering promising ways for
tracking insects in their natural environments.

In the context of model generalization and transfer learning, Li et al. [28] employed
transfer learning strategies by utilizing a pre-trained Faster R-CNN model derived from
the COCO dataset. Their results demonstrated that pre-trained models could achieve a
higher accuracy for detecting small pests, showcasing the benefits of generalization through
transfer learning.

Overall, these diverse studies collectively highlight the evolving landscape of AI-
powered pest detection and identification techniques, showcasing both innovation and
continuous efforts to address challenges in agriculture and pest management.

Agriculture 2023, 13, 2287 5 of 24

With some exceptions, most of the research presented in Table 1, while promising in the
context of pest detection or classification, may encounter certain limitations when applied
to low-power devices that are used on agricultural mobile systems, such as counting
pests from pest traps or selective use of pesticides by agricultural autonomous equipment.
These systems necessitate lightweight neural networks to maximize battery life; however,
reducing network complexity often results in decreased performance, particularly in tasks
involving the detection of small objects, such as tiny pest insects. This trade-off between
computational efficiency and accuracy poses a critical challenge for deploying these models
on resource-constrained mobile devices.

In the context of sustainable pest control, where the preservation of beneficial species
like pollinators and predators is crucial, the limitations of low-complexity neural networks
become more apparent. These models may struggle to accurately differentiate between
pests and beneficial insects, potentially leading to unintended harm to ecologically valu-
able species.

Additionally, several prior studies have relied on datasets comprised of high-quality,
close-up images sourced from professional photographers. While such datasets may be
suitable for controlled settings, they are not appropriate for real-world applications, where
cameras of varying qualities and environmental conditions are the norm [45–51].

In this preliminary study, our main objective was to address these limitations and make
such research more suitable for low-power mobile applications. We propose a two-step
transfer learning approach to enhance the accuracy of two versions of pre-trained variations
in SSD-MobileNet lower-complexity networks, namely, MobileNet-SSD-v1 and MobileNet-
SSD-v2-Lite. The custom dataset we used comprises images of diverse resolutions, varying
image quality, distinct lighting conditions and insects of varying sizes within the context
of the image frame, mirroring the real-world conditions encountered in pest detection
scenarios. The models trained on this dataset have a greater chance to handle a wide array
of technical conditions, such as different camera models, setups and resolutions, benefitting
from the capability to process images of various sizes.

We aimed to assess the efficiency of the proposed two-step transfer learning (TL)
procedure. The first TL training step was performed on a dataset of 2605 images to
recalibrate the networks’ trainable parameters on the ‘Beetles’ and ‘Ladybug’ classes. Then,
a second TL training step was performed on a distinct custom dataset of 2648 images
with four classes of pests and one class for the beneficial ‘Ladybug’ insect, in order to
fine-tune the trainable parameters for selected species of insects. The best-performing
network was selected for the future research step aiming at employing a much larger and
more representative custom dataset to reduce generalization error, as well as to test it onto
an experimental model.

This research aligns with the principles of Agriculture 5.0, characterized by the in-
tegration of advanced technologies, such as artificial intelligence, the Internet of Things
(IoT), robotics and data analytics, into traditional farming practices. The general aim is to
enhance efficiency, sustainability and productivity in agriculture. In particular, research
in the development of low-power mobile systems with neural networks capable of rec-
ognizing and localizing pests in corn crops can be useful in performing real-time crop
monitoring, providing immediate information to farmers about potential pest infestations,
thus allowing them to intervene promptly to limit damage, and to ensure higher yields
and superior crop quality. It saves time and resources by eliminating the need for exten-
sive manual monitoring and unplanned pesticide applications. By specifically identifying
pests, farmers can apply precise and selective treatments, reducing the need for excessive
pesticide use and minimizing environmental impact. These mobile systems can aid in the
early identification of infestation outbreaks, allowing farmers to prevent the spread and
multiplication of pests. They are easy to implement and can be integrated into existing
farm infrastructure without requiring major investments in complex equipment.

To conclude, the primary and intermediate objectives of this research are outlined
as follows:

Agriculture 2023, 13, 2287 6 of 24

• To introduce a new approach to transfer learning involving a two-step process that
significantly enhances the accuracy of MobileNet SSD networks. As mentioned above,
this procedure starts with broader dataset training, followed by fine-tuning the neural
networks parameters on a specific dataset;

• To thoroughly assess in this context two versions of the MobileNet SSD network—
MobileNet-SSD-v1 and MobileNet-SSD-v2-Lite—providing insights into their relative
performance. This comparative analysis is important for understanding the balance
between model complexity and accuracy in the context of low-power mobile systems;

• To assess the advantages in terms of practicality and feasibility of deploying the
proposed neural network models on Jetson low-power devices, as a solution for real-
world applications. The combination of the MobileNet SSD networks in conjunction
with the NVIDIA Jetson platforms is known as a highly optimized solution in terms of
computational speed and energy efficiency, making it well-suited for embedded and
mobile applications;

• To apply the trained models to detect harmful beetle species, and also to distinguish
them from a beneficial species (Coccinella), in order to demonstrate the potential
utility of neural networks in real-time pest control. Emphasizing the preservation of
beneficial species adds ecological significance to the research.

2. Materials and Methods

To address the limitations of low-complexity neural networks and make such research
more suitable for low-power mobile applications, a strategic approach was adopted. To
optimize both accuracy and efficiency, the Nvidia Jetson Nano Orin—a high-performance
graphics processing unit (GPU) tailored for low-cost mobile applications, manufactured
by Nvidia Corporation, based in Santa Clara, CA, USA—was selected as target hardware
platform for deployment. It is important to note that, in this preliminary research, the
more expensive Nvidia Jetson AGX Orin was employed for training purposes due to its
superior performance in the training phase. In the second research stage that will follow
this preliminary study, the best model will be retrained on a larger dataset, and then will
be transitioned to the entry-level Jetson Nano Orin, thus aligning with our target low-cost
mobile platform.

The study focused on five distinct beetle species. Among these, four are well-documented
as significant crop pests, namely, Anoxia villosa, Diabrotica virgifera virgifera, Opatrum sab-
ulosum and Zabrus tenebrioides. According to the information presented in Table 2, these
species are polyphagous and cause substantial damage to a variety of important crops like
corn, wheat, sunflower and beans. Their geographical distribution spans large agricultural
regions throughout Europe, Asia and North America. This potential for crop damage
served as the primary criterion for the selection of these species in our research. In addition
to these crop pests, the dataset also includes images of Coccinella sp. (Coleoptera, Coc-
cinellidae), known as beneficial arthropods and important aphid predators in agricultural
crops [52].

The primary focus was on enhancing the accuracy of two pre-trained versions of the
SSD-MobileNet network architecture, a well-established choice for real-time object detection
on mobile and embedded devices. This architecture combines the Single-Shot MultiBox
Detector (SSD-300) with the MobileNet backbone, known for its computational efficiency.
To achieve improved accuracy while maintaining efficiency, a two-step transfer learning
procedure was devised for fine-tuning the network on specific pest detection tasks. Two
variations in the SSD-MobileNet architecture, namely, MobileNet-SSD-v1 and MobileNet-
SSD-v2-Lite, were tested. The goal was to determine which version achieved the best
accuracy and to assess the efficiency of the proposed two-step transfer learning procedure.

To facilitate model evaluation and deployment, the Nvidia-developed detectNet
wrapper was employed. This wrapper streamlined the testing process, making it more
efficient and accessible for further real-world applications.

Agriculture 2023, 13, 2287 7 of 24

Table 2. Pest species used in custom dataset.

Family/Species/
Common Name

Body Length
(mm) Distribution

Flight Period/
Optimum

Temperature Range
Affected Plants References

Carabidae/
Zabrus tenebrioides
Goeze, 1777 (Corn
Ground Beetle)

14–16

England, Southern
Sweden, Northern Africa,
Asia Minor, Cyprus,
Ukraine, Moldova,
Transcaucasia

May–June/20–26 ◦C Winter wheat, corn,
horn, rye, barley, oat [53,54]

Tenebrionidae/
Opatrum sabulosum
Linnaeus, 1761
(Darkling Beetle)

7–10

Western Europe,
Northwestern Iran,
Northwestern China; the
European part of the
former USSR, the
Caucasus, South and
Middle Siberia
Kazakhstan, Central Asia

-/they feed actively at a
temperature of
17–20 ◦C. Below 25 ◦C
prefer dry plants, at
temperature above
27 ◦C they eat green
plants almost
exclusively

Polyphagous
(corn, sugar beet, flax,
sunflower, tobacco,
cotton, pumpkin,
fennel, anise, castor-oil
plan, safflower,
buckwheat, bean)

[54,55]

Scarabaeidae/
Anoxia villosa
(Fabricius, 1781)
(Cockchafer, Steppe
Beetle)

20–25 Europe, especially
Mediterranean area

May–August,
especially July/-

Polyphagous
(corn, sunflower, wheat,
barley, woody plants:
vine, orchards, forest
nurseries)

[56]

Chrysomelidae/
Diabrotica virgifera
virgifera LeConte,
1868 (Western Corn
Rootworm)

~5 Europe, North America

the end of June–the
middle of
October/high
temperature, but not
more than 30 ◦C

Preferred corn; white
squash, alfalfa, clover,
rape, bean, soybean,
sunflower

[57,58]

2.1. Selected Neural Networks

A versatile object detection framework optimized for real-time inferencing on Nvidia
Jetson platforms is detectNet [59], also from Nvidia. It accepts input images and, in return,
yields a list of bounding box coordinates, along with class labels and confidence values.
One of its features is its ability to integrate various pre-trained detection models, providing
flexibility in choosing the most suitable architecture for the task at hand. Among them,
MobileNet-SSD-v1 and MobileNet-SSD-v2-Lite both fit our specific research requirements.

The SSD-MobileNet model is a fusion of the SSD-300 Single Shot MultiBox Detector
(SSD) and the MobileNet convolutional neural network (CNN), resulting in a lightweight
architecture that is ideally suited for resource-constrained environments, such as mobile and
embedded vision applications (Figure 1). This integration combines the efficiency of SSD as
an object detector, and MobileNet as a feature extractor, thus providing a high-performance
yet computationally efficient solution.

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 24

SSD as an object detector, and MobileNet as a feature extractor, thus providing a high-
performance yet computationally efficient solution.

Figure 1. The SSD-MobileNet architecture (adapted by [60]).

One of the defining characteristics of MobileNet backbone is the utilization of depth-
wise separable convolutions—a technique that applies a single convolution operation to
each color channel individually, in order to reduce both the computational complexity
and model size. It involves a depthwise convolution layer, followed by a pointwise con-
volution layer, thus minimizing computational demands while preserving accuracy. Sub-
sequently, batch normalization and ReLU are employed on the output of each convolu-
tional operation. Batch normalization fine-tunes the data by modifying learning parame-
ters, adjusting learning rates, managing dropout ratios and preventing gradient vanish-
ing. Feature Pyramid Network (FPN) is an integral part of SSD-MobileNet-V1 and oper-
ates by combining feature maps from different stages of the MobileNet-v1 backbone. FPN
integrates feature maps from different depths of the backbone network, creating a pyra-
mid of feature maps at various scales. This ensures that objects of different sizes, including
small ones, are effectively captured in the feature representation. The SSD head is respon-
sible for predicting object bounding boxes and class scores. The number of output chan-
nels in the final convolutional layers of the SSD head corresponds to the total number of
anchor boxes and object classes to be predicted. This multi-scale approach plays an im-
portant role in accommodating objects of varying sizes, allowing the model to predict
bounding boxes and categories across multiple feature maps.

The MobileNet-SSD-v2-Lite uses the MobileNet-v2-Lite architecture as its backbone,
which builds upon the advancements of MobileNet-v2 by further optimizing for effi-
ciency, thus making it even more suitable for resource-constrained environments. It pri-
oritizes efficiency and is ideal for scenarios where real-time detection is crucial and hard-
ware resources are limited.

The primary goal of the loss function L (Equation (1)) is to compute a weighted com-
bination of the localization loss (Lloc) and the confidence loss (Lconf), given the number N of
matched default boxes: 𝐿(𝑥, 𝑐, 𝑙, 𝑔) = 1𝑁 𝐿 (𝑥, 𝑐) + 𝛼𝐿 (𝑥, 𝑙, 𝑔) (1)

The confidence loss is calculated as the softmax loss across confidences for the fol-
lowing multiple classes (c):

𝐿 (𝑥, 𝑐) = − 𝑥 𝑙𝑜𝑔 �̂� −∈ 𝑙𝑜𝑔(�̂�)∈ where �̂� = exp (𝑐)∑ exp (𝑐) (2)

In this equation, 𝑥 = {1, 0} is an indicator for matching the i-th default box with the
j-th ground truth box of category p. The confidence loss evaluates how well the model
predicts the presence of objects as well as their associated classes.

Figure 1. The SSD-MobileNet architecture (adapted by [60]).

One of the defining characteristics of MobileNet backbone is the utilization of depth-
wise separable convolutions—a technique that applies a single convolution operation to
each color channel individually, in order to reduce both the computational complexity and

Agriculture 2023, 13, 2287 8 of 24

model size. It involves a depthwise convolution layer, followed by a pointwise convolution
layer, thus minimizing computational demands while preserving accuracy. Subsequently,
batch normalization and ReLU are employed on the output of each convolutional operation.
Batch normalization fine-tunes the data by modifying learning parameters, adjusting learn-
ing rates, managing dropout ratios and preventing gradient vanishing. Feature Pyramid
Network (FPN) is an integral part of SSD-MobileNet-V1 and operates by combining feature
maps from different stages of the MobileNet-v1 backbone. FPN integrates feature maps
from different depths of the backbone network, creating a pyramid of feature maps at vari-
ous scales. This ensures that objects of different sizes, including small ones, are effectively
captured in the feature representation. The SSD head is responsible for predicting object
bounding boxes and class scores. The number of output channels in the final convolutional
layers of the SSD head corresponds to the total number of anchor boxes and object classes
to be predicted. This multi-scale approach plays an important role in accommodating
objects of varying sizes, allowing the model to predict bounding boxes and categories
across multiple feature maps.

The MobileNet-SSD-v2-Lite uses the MobileNet-v2-Lite architecture as its backbone,
which builds upon the advancements of MobileNet-v2 by further optimizing for efficiency,
thus making it even more suitable for resource-constrained environments. It prioritizes
efficiency and is ideal for scenarios where real-time detection is crucial and hardware
resources are limited.

The primary goal of the loss function L (Equation (1)) is to compute a weighted
combination of the localization loss (Lloc) and the confidence loss (Lconf), given the number
N of matched default boxes:

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(1)

The confidence loss is calculated as the softmax loss across confidences for the follow-
ing multiple classes (c):

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ijlog

(
ĉp

i

)
− ∑

i∈Neg
log

(
ĉ0

i

)
where ĉp

i =
exp

(
cp

i

)
∑p exp

(
cp

i

) (2)

In this equation, xp
ij = {1, 0} is an indicator for matching the i-th default box with the

j-th ground truth box of category p. The confidence loss evaluates how well the model
predicts the presence of objects as well as their associated classes.

The localization loss measures the squared distance between the predicted coordinates,
and is weighted by α, which balances these two losses and their impact on the overall loss
value [61]. Using the parameters of the predicted box (l) and the ground truth box (g), one
can compute the localization loss as a Smooth L1 loss [62]:

Lloc(x, l, g) = ∑N
i∈Pos ∑m∈{cx,cy,w,h} xk

ijsmoothL1(lm
i − ĝm

j), (3)

where cx, cy, w and h are the coordinates of the default bounding box (d) center, its width
and height. The above sum is taken over all positive samples, where positive samples
are those that have a significant overlap (e.g., IoU—Intersection over Union) with ground
truth objects.

2.2. The Training Platform and Framework

To further develop an efficient and optimized object detection model, for training
we used the Nvidia Jetson AGX Orin platform in conjunction with PyTorch 2.0.0 for
JetPack 5.1.1. The Jetson AGX Orin Nvidia Jetson AGX Orin is manufactured by Nvidia
Corporation, based in Santa Clara, California, United States, and is equipped with a high-
performance GPU architecture, designed for accelerating model training and inference

Agriculture 2023, 13, 2287 9 of 24

due to parallel processing capabilities of its CUDA cores (Table 3). For increased storage
capacity, we have added a 2 TB SSD (model Samsung 980 PRO Heatsink Gen.4 NVMe),
with a read transfer rate of 7000 MB/s and a write transfer rate of 5100 MB/s.

Table 3. Main technical specifications of the Nvidia Jetson AGX Orin training hardware.

GPU NVIDIA® Ampere architecture; 2048 NVIDIA CUDA cores; 64 Tensor cores

CPU 12-core Arm Cortex-A78AE v8.2 64-bit CPU; 3MB L2 + 6MB L3

DL Accelerator 2× NVDLA v2.0

Vision Accelerator PVA v2.0

Memory 64 GB 256-bit LPDDR5; 204.8 GB/s

Storage 64 GB eMMC 5.1 + 2 TB SSD, model Samsung 980 PRO Gen.4
NVMe (added)

We choose PyTorch for JetPack—a specialized variant of the PyTorch framework that
integrates with NVIDIA’s CUDA technology—as it is optimized for accelerated parallel
processing on Nvidia Jetson platforms. The software stack of NVIDIA JetPack is fully com-
patible with PyTorch for JetPack, ensuring integration and access to Nvidia’s proprietary
libraries and optimizations.

2.3. PyTorch Scripts

Throughout the training and testing process, the following PyTorch scripts were
employed:

• train_ssd.py [63]: this script serves as a tool for training Single Shot MultiBox Detector
(SSD) object detection models. It offers flexibility in configuring dataset types, network
architectures and training parameters. The script incorporates data preprocessing,
model training, validation and checkpointing, with support for various learning
rate scheduling strategies. It also enables optional mean average precision (mAP)
evaluation during validation. We used this script for re-training our SSD-MobileNet
networks;

• eval_ssd.py [64]: this script is an evaluation tool for assessing the performance of
trained SSD models. It allows for customizable evaluation parameters, including
dataset type, model architecture and evaluation metrics, such as mean average preci-
sion (mAP). The script loads the dataset and the model pth file, performs inference
and computes class-specific and/or overall accuracy and mAP values. We used this
script to test the model inference performance on the test set before converting it from
PyTorch to Open Neural Network Exchange (ONNX) format;

• onnx_export.py [65]: this script is designed for the conversion of PyTorch deep-
learning models into the ONNX format. ONNX (Open Neural Network Exchange) is
an open-standard format facilitating model interoperability and deployment across
diverse inference platforms and inference environments. The script offers command-
line customization options, including the choice of neural network architecture, input
model checkpoint path, class labels file and output ONNX model path. It dynamically
selects the inference device, loads the PyTorch model and exports it to ONNX. In
order to conduct testing and real-time inference using our re-trained SSD-MobileNet
models with TensorRT version 8.5.2, it was necessary to convert the PyTorch models
into the ONNX format so that TensorRT can load them; TensorRT is a specialized
library designed for high-performance inference on NVIDIA graphics processing units
(GPUs), currently being considered the fastest way to run a trained model [66]. It
automatically optimizes DNN models by fusing multiple layers and operations into
a single, efficient kernel. This reduces memory bandwidth usage and minimizes the
number of compute operations, resulting in faster inference. In order to further im-
prove efficiency, TensorRT applies various graph optimizations, such as layer pruning,

Agriculture 2023, 13, 2287 10 of 24

to eliminate unnecessary operations. It also supports batched inference, allowing
multiple inputs to be processed in parallel, which enhances throughput in real-time
applications [67];

• detectnet.py [68]: this script creates an Nvidia detectNet object, and subsequently
uses it to employ TensorRT for trained models inferencing on actual images and video
sequences. We used ‘detectnet.py’ with the ONNX format of the trained models to
visualize detection boxes and confidence scores on the images from the test set. This
script was particularly important in the stage of errors analysis and identification of
the model’s strengths and limitations.

2.4. Image Datasets

As previously mentioned, the base models of MobileNet-SSD-v1 and v2-Lite come
pre-trained on the PASCAL-VOC and COCO datasets, respectively, which do not include
specific classes for insects. Here, the term “class” refers to the meaning used in the field of
machine learning, and not in the sense of taxonomic category from the biological sciences.
To adapt these models for our pest detection task we used two datasets, one for each stage
of the two-step transfer learning procedure. The first dataset consisted of 2605 images,
which represents a subset of Open Images [69], specifically containing classes ‘Beetles’
and ‘Ladybug’. Maintained by Google, Open Images has 600 classes, providing a diverse
range of images and has the status as one of the significant and well-regarded datasets in
the field. The reason we turned to the Open Images dataset for our study consists of the
following advantages:

• It has a large number of labeled images, standing as one of the most extensive sources
of data available for training computer vision models;

• Each image is already annotated and comes with detailed information about the
objects, which makes it readily suitable for training object detection models;

• It provides an open-licensed image sharing and use.

The second dataset consisted of 884 images representing Coccinella sp., Anoxia villosa,
Diabrotica virgifera virgifera, Opatrum sabulosum and Zabrus tenebrioides [70–74]. They were
sourced from the iNaturalist web portal via Global Biodiversity Information Facility plat-
form (GBIF) [75], and a few from various cloud resources. iNaturalist is a publicly available
platform providing free and open access to biodiversity data courtesy of the California
Academy of Sciences and the National Geographic Society, with the purpose to facilitate
the distribution and sharing of data and images related to plant, animal and fungal species.

Image augmentation was performed through mirroring along the horizontal and
vertical axes, in order to diversify the training dataset, enhance model generalization by
exposing it to a wider range of variations and real-world scenarios, and thus mitigate
overfitting and improve performance. After augmentation, the dataset size increased to
2648 images. The distribution of both augmented and non-augmented images across each
class is presented in Table 4.

According to Table 4, the dataset is characterized by an equitable distribution of images
across species, which means that the model is trained on a representative sample of each
species, preventing any single class from dominating the training process. This balance
enables both models to equally learn the characteristics and features associated with each
species, enhancing its ability to accurately detect and classify each of them.

The annotation process was conducted using the Computer Vision Annotation Tool
(CVAT v2.9.0) software for bounding box delineation and labeling according to the Pas-
cal VOC (Pascal Visual Object Classes) format [76]. In this format, one XML file with
information such as image dimensions and bounding boxes coordinates is generated for
each image.

Agriculture 2023, 13, 2287 11 of 24

Table 4. The distribution of images across each species in the custom dataset.

Dataset Class

Number of Images
Relative

DistributionBefore
Augmentation After Augmentation

Anoxia 154 462 17.4%

Ladybug 173 519 19.6%

Diabrotica 206 618 23.3%

Opatrum 180 536 20.2%

Zabrus 171 513 19.5%

Total: 884 2648 100%

2.5. Transfer Learning Procedures

For the first transfer learning, the 2605 annotated images were downloaded from
the Open Images platform. Files are structured according to the Open Images format
requirements (Figure 2), namely, divided into three main directories (‘train’, ‘validation’
and ‘test’, with 2376, 60 and 169 images, respectively), and with csv metadata files.

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 24

Image augmentation was performed through mirroring along the horizontal and ver-
tical axes, in order to diversify the training dataset, enhance model generalization by ex-
posing it to a wider range of variations and real-world scenarios, and thus mitigate over-
fitting and improve performance. After augmentation, the dataset size increased to 2648
images. The distribution of both augmented and non-augmented images across each class
is presented in Table 4.

Table 4. The distribution of images across each species in the custom dataset.

Dataset
Class

Number of Images Relative Distribu-
tion Before Augmentation After Augmentation

Anoxia 154 462 17.4%
Ladybug 173 519 19.6%

Diabrotica 206 618 23.3%
Opatrum 180 536 20.2%
Zabrus 171 513 19.5%
Total: 884 2648 100%

According to Table 4, the dataset is characterized by an equitable distribution of im-
ages across species, which means that the model is trained on a representative sample of
each species, preventing any single class from dominating the training process. This bal-
ance enables both models to equally learn the characteristics and features associated with
each species, enhancing its ability to accurately detect and classify each of them.

The annotation process was conducted using the Computer Vision Annotation Tool
(CVAT v2.9.0) software for bounding box delineation and labeling according to the Pascal
VOC (Pascal Visual Object Classes) format [76]. In this format, one XML file with infor-
mation such as image dimensions and bounding boxes coordinates is generated for each
image.

2.5. Transfer Learning Procedures
For the first transfer learning, the 2605 annotated images were downloaded from the

Open Images platform. Files are structured according to the Open Images format require-
ments (Figure 2), namely, divided into three main directories (‘train’, ‘validation’ and
‘test’, with 2376, 60 and 169 images, respectively), and with csv metadata files.

Figure 2. Dataset file structure, following the Open Images format.

Each directory is further categorized into class subdirectories (‘Beetles’ and ‘Lady-
bug’), containing the corresponding class images. The csv files from the main folder

Figure 2. Dataset file structure, following the Open Images format.

Each directory is further categorized into class subdirectories (‘Beetles’ and ‘Ladybug’),
containing the corresponding class images. The csv files from the main folder provide
detailed metadata, such as image identifiers, bounding box coordinates, class labels and
other details.

Following the preparation of our image dataset, we employed the ‘train_ssd.py’ Py-
Torch script to retrain each of the two neural networks. The following is a sample command
line for training the MobileNet-SSD-v1 network:
python3 train_ssd.py --dataset-type=open_images --net=mb1-ssd --data=data/
beetles_OpenImages --model-dir=models/custom_beetles --batch-size=32 --workers=12
--epochs=150 --checkpoint-folder=models/custom_beetles

Where the arguments used in the above command are as follows:

• dataset-type: the dataset format to be used; in this case, the Open Images format;
• net: used to select MobileNet-SSD-v1 or MobileNet-SSD-v2-Lite;
• data: the directory containing the training images;
• model-dir: the directory where the trained models are to be stored;
• batch-size: the number of images per batch; after experimentation on the Jetson

AGX Orin platform, equipped with 64 GB of memory, we determined that a batch size
of 32 provided optimal training performance in terms of training time and accuracy;

Agriculture 2023, 13, 2287 12 of 24

• workers: the number of PyTorch dataloader threads employed; in our setup, we
allocated one thread per each of the 12 CPU cores of the Jetson AGX Orin platform;

• epochs: the number of training epochs; through iterative testing, we determined that
the highest accuracy was achieved after more than 100 training epochs.

The ‘train_ssd.py’ script provides 29 distinct arguments for dataset balance, network
architecture, loading pretrained basenet or checkpoints, fine-tuning Stochastic Gradient
Descent parameters, scheduler for dynamic adjustment of the learning rate during training,
and more. These arguments come with default values that proved to be appropriate for our
specific training requirements. To test a potential further model refinement, a second round
of transfer learning was undertaken. Our custom dataset was organized in accordance with
the Pascal VOC format (Figure 3).

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 24

provide detailed metadata, such as image identifiers, bounding box coordinates, class la-
bels and other details.

Following the preparation of our image dataset, we employed the ‘train_ssd.py’
PyTorch script to retrain each of the two neural networks. The following is a sample com-
mand line for training the MobileNet-SSD-v1 network:
python3 train_ssd.py --dataset-type=open_images --net=mb1-ssd --
data=data/beetles_OpenImages --model-dir=models/custom_beetles --
batch-size=32 --workers=12 --epochs=150 --checkpoint-folder=mod-
els/custom_beetles

Where the arguments used in the above command are as follows:
• dataset-type: the dataset format to be used; in this case, the Open Images format;
• net: used to select MobileNet-SSD-v1 or MobileNet-SSD-v2-Lite;
• data: the directory containing the training images;
• model-dir: the directory where the trained models are to be stored;
• batch-size: the number of images per batch; after experimentation on the Jetson

AGX Orin platform, equipped with 64 GB of memory, we determined that a batch
size of 32 provided optimal training performance in terms of training time and accu-
racy;

• workers: the number of PyTorch dataloader threads employed; in our setup, we
allocated one thread per each of the 12 CPU cores of the Jetson AGX Orin platform;

• epochs: the number of training epochs; through iterative testing, we determined that
the highest accuracy was achieved after more than 100 training epochs.
The ‘train_ssd.py’ script provides 29 distinct arguments for dataset balance, network

architecture, loading pretrained basenet or checkpoints, fine-tuning Stochastic Gradient
Descent parameters, scheduler for dynamic adjustment of the learning rate during train-
ing, and more. These arguments come with default values that proved to be appropriate
for our specific training requirements. To test a potential further model refinement, a sec-
ond round of transfer learning was undertaken. Our custom dataset was organized in ac-
cordance with the Pascal VOC format (Figure 3).

Figure 3. Dataset file structure following the Pascal VOC format requirements.

The ‘Annotations’ directory contains XML files that characterize the images and
bounding boxes. The dataset was partitioned into three subsets, with 75% of the data al-
located to the training set, 15% to the validation set and the remaining 10% designated for
the test set. The files ‘train.txt’, ‘val.txt’, ‘test.txt’ and ‘trainval.txt’ include the filenames of
the image files, without extensions, corresponding to the training, validation and testing
sets. All 2648 images in JPG format are located in the ‘JPEGImages’ directory. The ‘la-
bels.txt’ file contains the simplified dataset class names in alphabetical order, namely, ‘An-
oxia’, ‘Diabrotica’, ‘Ladybug’, ‘Opatrum’ and ‘Zabrus’.

To increase the precision of statistical inference, stratified sampling was applied to
create the training, testing and validation sets (Table 5). Thus, the size of the sample ran-
domly drawn from each class is proportional to the relative size of the class in the dataset.

Figure 3. Dataset file structure following the Pascal VOC format requirements.

The ‘Annotations’ directory contains XML files that characterize the images and
bounding boxes. The dataset was partitioned into three subsets, with 75% of the data
allocated to the training set, 15% to the validation set and the remaining 10% designated
for the test set. The files ‘train.txt’, ‘val.txt’, ‘test.txt’ and ‘trainval.txt’ include the filenames
of the image files, without extensions, corresponding to the training, validation and testing
sets. All 2648 images in JPG format are located in the ‘JPEGImages’ directory. The ‘labels.txt’
file contains the simplified dataset class names in alphabetical order, namely, ‘Anoxia’,
‘Diabrotica’, ‘Ladybug’, ‘Opatrum’ and ‘Zabrus’.

To increase the precision of statistical inference, stratified sampling was applied to
create the training, testing and validation sets (Table 5). Thus, the size of the sample
randomly drawn from each class is proportional to the relative size of the class in the dataset.

Table 5. Images counts for each class and subset.

Class Name Number of
Images

Relative
Distribution Train (75%) Test (10%) Validation

(15%)

Anoxia 462 17.4% 347 46 69

Diabrotica 618 23.3% 463 63 92

Ladybug 519 19.6% 389 52 78

Opatrum 536 20.2% 402 54 80

Zabrus 513 19.5% 385 51 77

Total 2648 100% 1986 266 396

The training process is conducted using the same ‘train_ssd.py’ script as before, with
the command line closely resembling the one presented previously, with the following
exceptions:

• The Pascal VOC format is specified for the dataset, by means of the dataset-type
argument: --dataset-type=voc;

• The pretrained-ssd argument is employed to retrain the model obtained in the previ-
ous transfer learning phase, characterized by the highest accuracy and the lowest cost

Agriculture 2023, 13, 2287 13 of 24

function value; for instance: --pretrained-ssd=models/mb1-ssd-Epoch-62-Loss-
0.97135413.pth.

Following each training phase, the retrained model performance was tested. Thus, we
adopted a two-step approach, involving model conversion and real-time inference. First,
the ‘export_onnx.py’ script was employed to convert the trained model into the ONNX
format, for compatibility with Nvidia TensorRT, which further optimizes the ONNX models
for real-time inference as described earlier. In this respect, the ‘detectnet.py’ script was used
to transfer the ONNX model to an Nvidia detectNet object. The following is a command
line example:
detectnet --model=PATH_TO_ONNX_FILE –threshold=0.5 --labels=PATH_TO_CLASS_
NAMES_FILE --input-blob=input_0 --output-cvg=scores --output-bbox=boxes PATH_
TO_TEST_IMAGES PATH_TO_INFERENCED_IMAGES

In this example, the input_blob argument specifies the input layer of the detectNet
object, and the threshold parameter defines the confidence threshold for object detection.
detectNet employs the following two distinct output layers: the ‘confidence grid’ for
predicting object presence likelihood across spatial locations (the output-cvg argument),
and the ‘bounding box data’ for precise object localization, including coordinates and
class labels (the output-bbox argument). This dual-output architecture enhances object
detection accuracy by first identifying potential object regions and then providing detailed
information about detected objects, making it very efficient for real-time object detection
and tracking applications [77].

2.6. Evaluation Metrics

Mean average precision (mAP) is a very popular metric for evaluating object detec-
tion models. It considers both precision and recall across various confidence thresholds.
Precision is used to measure the accuracy of positive predictions made by a model, thus
assessing the model’s ability to avoid false positives (instances where the model incorrectly
identifies a non-existent object as positive). A high precision value indicates that, when
the model predicts an object, it is usually correct. Recall measures the model’s capability
to avoid false negatives. In the context of object detection, false negatives refer to cases
where the model fails to detect an object that actually exists in the image. A high recall
value indicates that the model can effectively capture most of the relevant objects. The
mAP is calculated as the mean of the average precision (AP) values for each class, where
AP measures the area under the precision-recall curve. The average precision (AP) for a
specific class is computed as follows:

AP =
1
n∑n

k=1 Pk·∆R(k), (4)

where:

• P(k) represents the precision at the kth retrieved item;
• ∆R(k) is the change in recall at the kth retrieved item;
• n is the total number of retrieved items.

The mAP is then the mean of these AP values across all classes, providing an aggre-
gated measure of the model’s ability to accurately detect objects. In object detection, besides
assessing if the model identifies the correct class, it is important to consider if the location of
the object is correctly identified. In this respect, the AP is computed based on Intersection
over Union (IoU), which is the area of overlap between the predicted bounding box and
the target bounding box, divided by the area of their union [78]. In the context of mAP
calculation, IoU@0.5 (Intersection over Union at a threshold of 0.5) is a common choice. It
means that a predicted bounding box is considered correct if the IoU with a ground-truth
box is equal to or greater than 0.5. This threshold determines whether a prediction is a true
positive or a false positive.

Agriculture 2023, 13, 2287 14 of 24

Accuracy quantifies the model’s ability to correctly classify objects into their respective
classes and is an appropriate metric when the dataset is balanced, such in this case. The
accuracy is calculated as the fraction of predictions that the model correctly identified
as follows:

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

(5)

These two metrics, mAP and accuracy, were employed to evaluate the retrained
models, and for the subsequent selection of the model with the best performance.

3. Results and Discussion

In order to assess whether the two-step transfer learning procedure offers advantages
compared to a single transfer learning procedure performed directly onto the custom
dataset, the following steps were undertaken (Figure 4):

1. Initially, the original downloaded MobileNet-SSD-v1 neural network was retrained
directly on the custom image dataset without augmentation. The performance of this
model on the testing set served as the baseline reference level;

2. A single transfer learning step was performed, involving the retraining of the original
MobileNet-SSD-v1 and MobileNet-SSD-v2-Lite models directly on the augmented
custom dataset;

3. A two-step transfer learning procedure was performed. Each of the two original
models was retrained twice as follows: first on the Open Images dataset (containing
only the ‘Ladybug’ and ‘Beetles’ dataset classes), and then each of the resulting
retrained model was further retrained on the augmented custom dataset;

4. The performances of the models obtained in steps (2) and (3) were compared in terms
of accuracy and mAP, to the baseline reference model from step (1).

Agriculture 2023, 13, x FOR PEER REVIEW 15 of 24

Figure 4. Assessing the performance of the two-step transfer learning procedure on SSD-MobileNet
Networks; 2 step TL—two-step transfer learning; color scheme: orange-neural network models;
blue-training procedures; green-datasets; grey-final results.

Figure 5 illustrates the loss variation in the MobileNet-SSD-v2-Lite network during
the second retraining stage on the custom dataset. All the other training procedures ex-
hibited a similar behavior. Continuous loss reduction indicates that the model is capturing
patterns and features in the data. The stabilization of both training and validation loss
values after approximately epoch 120 suggests that the model has reached a point of
steady-state performance. In this phase, it has learned to represent the data adequately.
The subsequent plateau and minor fluctuations in the losses show that the model is fine-
tuning its parameters but not making substantial performance improvements.

Figure 5. Loss variation in the MobileNet-SSD-v2-Lite network during the second retraining stage
on the custom dataset.

Figure 4. Assessing the performance of the two-step transfer learning procedure on SSD-MobileNet
Networks; 2 step TL—two-step transfer learning; color scheme: orange-neural network models;
blue-training procedures; green-datasets; grey-final results.

Agriculture 2023, 13, 2287 15 of 24

Figure 5 illustrates the loss variation in the MobileNet-SSD-v2-Lite network during the
second retraining stage on the custom dataset. All the other training procedures exhibited a
similar behavior. Continuous loss reduction indicates that the model is capturing patterns
and features in the data. The stabilization of both training and validation loss values
after approximately epoch 120 suggests that the model has reached a point of steady-
state performance. In this phase, it has learned to represent the data adequately. The
subsequent plateau and minor fluctuations in the losses show that the model is fine-tuning
its parameters but not making substantial performance improvements.

Agriculture 2023, 13, x FOR PEER REVIEW 15 of 24

Figure 4. Assessing the performance of the two-step transfer learning procedure on SSD-MobileNet
Networks; 2 step TL—two-step transfer learning; color scheme: orange-neural network models;
blue-training procedures; green-datasets; grey-final results.

Figure 5 illustrates the loss variation in the MobileNet-SSD-v2-Lite network during
the second retraining stage on the custom dataset. All the other training procedures ex-
hibited a similar behavior. Continuous loss reduction indicates that the model is capturing
patterns and features in the data. The stabilization of both training and validation loss
values after approximately epoch 120 suggests that the model has reached a point of
steady-state performance. In this phase, it has learned to represent the data adequately.
The subsequent plateau and minor fluctuations in the losses show that the model is fine-
tuning its parameters but not making substantial performance improvements.

Figure 5. Loss variation in the MobileNet-SSD-v2-Lite network during the second retraining stage
on the custom dataset.
Figure 5. Loss variation in the MobileNet-SSD-v2-Lite network during the second retraining stage on
the custom dataset.

The overall minimal fluctuations for both training and validation loss values indicate
that the model is not overfitting to the training data. Overfitting would manifest as a later
increase in validation loss relative to the training loss, which is not observed, suggesting that
the model generalizes well to unseen data. The fact that both losses stabilize indicates an
appropriate model complexity level. The behavior of the loss curves can also be indicative of
the fact that hyperparameters, such as batch size, learning rate schedule and regularization
techniques, were properly selected, thus contributing to the observed convergence and
steady-state aspect.

3.1. Evaluation Metrics and Models Ranking

As one can notice from the results achieved on the test set and presented in Table 6 and
in Figure 6, the MobileNet-SSD-v2-Lite model trained with the two-step transfer learning
procedure ranks first, closely followed by the MobileNet-SSD-v1 after the same two-step
transfer learning procedure.

The MobileNet-SSD-v2-Lite model achieved an mAP of 0.892, ranking second but
very close to the highest mAP of 0.908, which was obtained by MobileNet-SSD-v1 after
the same two-step transfer learning procedure. It outperformed the baseline mAP (0.8412)
by 6.07%, and it is only 1.76% less than the highest value. Compared to the other non-
baseline attempts, the two-step transfer learning trained MobileNet-SSD-v2-Lite model
demonstrated the highest accuracy for Opatrum (0.9514, baseline excepted) and Diabrotica
(0.8066). For Anoxia, it reached a third-place accuracy of 0.9851, which is only 0.6% less than
the top value of 0.9912. Also, for Zabrus, the MobileNet-SSD-v2-Lite model achieved the
second position (0.9053), surpassing the baseline model (0.803) by 12.74%, while Coccinella
(the ‘Ladybug’ dataset class) was reliably differentiated from all other species, with an
accuracy of 0.8939 and zero false positives. In the case of using the model for precision
pest control, zero false positives ensure that the beneficial Coccinella species will not be
mistakenly targeted or harmed, thus contributing to a more environmentally friendly and
sustainable approach to agriculture.

Agriculture 2023, 13, 2287 16 of 24

Table 6. Accuracy and mean average precision for each type of training procedure; red font—highest
value; blue font—the second highest value; TL—transfer learning.

Trained Model
Accuracy

mAP Notes
Anoxia Diabrotica Ladybug Opatrum Zabrus

SSD-MB-v1
(baseline) 0.8432 0.7323 0.8276 1 0.8030 0.841

Retrained once, on
non-augmented
custom dataset

SSD-MB-v1 TL on
custom dataset 0.9866 0.7259 0.8737 0.9240 0.9475 0.887 Retrained once, on

augmented custom dataset

SSD-MB-v1
2-step TL 0.9072 0.7770 0.9436 0.9056 0.9033 0.908 Two-step transfer learning

SSD-MB-v2 Lite TL
on custom dataset 0.9912 0.7273 0.8906 0.9091 0.9030 0.884 Retrained once, on

augmented custom dataset

SSD-MB-v2-Lite
2-step TL 0.9851 0.8066 0.8939 0.9514 0.9053 0.892 Two-step transfer learning

Agriculture 2023, 13, x FOR PEER REVIEW 16 of 24

The overall minimal fluctuations for both training and validation loss values indicate
that the model is not overfitting to the training data. Overfitting would manifest as a later
increase in validation loss relative to the training loss, which is not observed, suggesting
that the model generalizes well to unseen data. The fact that both losses stabilize indicates
an appropriate model complexity level. The behavior of the loss curves can also be indic-
ative of the fact that hyperparameters, such as batch size, learning rate schedule and reg-
ularization techniques, were properly selected, thus contributing to the observed conver-
gence and steady-state aspect.

3.1. Evaluation Metrics and Models Ranking
As one can notice from the results achieved on the test set and presented in Table 6

and in Figure 6, the MobileNet-SSD-v2-Lite model trained with the two-step transfer
learning procedure ranks first, closely followed by the MobileNet-SSD-v1 after the same
two-step transfer learning procedure.

Table 6. Accuracy and mean average precision for each type of training procedure; red font—high-
est value; blue font—the second highest value; TL—transfer learning.

Trained Model
Accuracy

mAP Notes
Anoxia Diabrotica Ladybug Opatrum Zabrus

SSD-MB-v1 (baseline) 0.8432 0.7323 0.8276 1 0.8030 0.841
Retrained once, on

non-augmented cus-
tom dataset

SSD-MB-v1 TL on cus-
tom dataset

0.9866 0.7259 0.8737 0.9240 0.9475 0.887
Retrained once, on
augmented custom

dataset
SSD-MB-v1
2-step TL 0.9072 0.7770 0.9436 0.9056 0.9033 0.908

Two-step transfer
learning

SSD-MB-v2 Lite TL on
custom dataset

0.9912 0.7273 0.8906 0.9091 0.9030 0.884
Retrained once, on
augmented custom

dataset
SSD-MB-v2-Lite 2-step

TL 0.9851 0.8066 0.8939 0.9514 0.9053 0.892
Two-step transfer

learning

Figure 6. Neural network performances in terms of mAP for each dataset class.

The MobileNet-SSD-v2-Lite model achieved an mAP of 0.892, ranking second but
very close to the highest mAP of 0.908, which was obtained by MobileNet-SSD-v1 after

Figure 6. Neural network performances in terms of mAP for each dataset class.

Table 7 displays only the first and second-place results for mAP and accuracies across
classes, clearly confirming that the two-step transfer learning procedure performs better on
both MobileNet-SSD-v1 and MobileNet-SSD-v2-Lite. The MobileNet-SSD-v2-Lite model
has the best overall performance. It exhibits, however, an exception in detecting the
‘Anoxia’ dataset class, where it ranks third but with only a marginal 0.6% difference from
the first-place position.

Figure 7 shows a clear and significant performance advantage gained from the two-
step transfer learning procedure applied to the MobileNet-SSD-v1-Lite model compared to
the baseline model. However, one can notice from Table 7 that, in the case of the ‘Opatrum’
dataset class, the baseline model developed perfect performance, achieving a maximum
accuracy of one. This phenomenon could be attributed to the fact that the images from
the test set belonging to the ‘Opatrum’ class are well-separated in the feature space from
other classes, thus being relatively easy to classify. Without augmentation, the number of
images in the test set is small for each class, and it is possible that it does not represent the
full diversity and complexity of the ‘Opatrum’ class. In such cases, the model might have
memorized the training data and generalized well to the limited test examples.

Agriculture 2023, 13, 2287 17 of 24

Table 7. Ranking of accuracy and mAP, excluding the baseline model; (1)—first place; (2)—second
place.

Trained Model
Ranking in Terms of Accuracy for Each Dataset Class

mAP
Anoxia Diabrotica Ladybug Opatrum Zabrus

SSD-MB-v1 (baseline) - - - (1) - -

SSD-MB-v1 TL
on custom dataset (2) - - (2) (1) -

SSD-MB-v1
2-step TL - (2) (1) - - (1)

SSD-MB-v2 Lite TL on
custom dataset (1) - - - - -

SSD-MB-v2-Lite
2-step TL

3rd place;
0.6% less than
the 1st place

(1)
(2)

5.3% less than
the 1st place

1st place,
(except the
baseline)

(2)
4.5% less than
the 1st place

(2)
1.8% less than
the 1st place

1

Figure 7. Performance gain of the MobileNet-SSD-v2-Lite model following the two-step transfer.
learning procedure, against the baseline model.

Upon evaluating the same model trained on the augmented dataset, the accuracy
decreases to 0.924. This can be explained by the fact that data augmentation introduced vari-
ations into the training data, which aids in mitigating overfitting. If the model had initially
overfit to the non-augmented dataset, the addition of augmentation might have facilitated
improved generalization, even if it was at the cost of some slight performance reduction.

Figure 8 shows a few instances of accurate predictions on the testing set, made by
the MobileNet-SSD-v2-Lite following the two-step transfer learning procedure, some of
them under challenging conditions. For example, in images (a) and (c), both Diabrotica and
Anoxia exhibit small-to-medium scale in terms of image size. They are reliably detected
with confidence levels of 98.5% and 99.1%, respectively. Image (b) demonstrates the correct
detection of all individuals within a rich Diabrotica colony, some overlapping or being
partially visible; moreover, in image (d) a partially visible Zabrus is identified with a
confidence level of 95.4%.

Agriculture 2023, 13, 2287 18 of 24

Agriculture 2023, 13, x FOR PEER REVIEW 18 of 24

Figure 7. Performance gain of the MobileNet-SSD-v2-Lite model following the two-step transfer.
learning procedure, against the baseline model.

Figure 8 shows a few instances of accurate predictions on the testing set, made by the
MobileNet-SSD-v2-Lite following the two-step transfer learning procedure, some of them
under challenging conditions. For example, in images (a) and (c), both Diabrotica and An-
oxia exhibit small-to-medium scale in terms of image size. They are reliably detected with
confidence levels of 98.5% and 99.1%, respectively. Image (b) demonstrates the correct
detection of all individuals within a rich Diabrotica colony, some overlapping or being
partially visible; moreover, in image (d) a partially visible Zabrus is identified with a con-
fidence level of 95.4%.

Image (e) captures the detection of Opatrum on the ground (92.2% confidence level),
where Opatrum’s color blends with the environment. Coccinella is usually detected with
high confidence levels of more than 98% (100% in image (f), for example). Most correct
predictions follow the patterns presented above, underscoring a good performance, even
if the model was trained on a small custom dataset.

(a) (b) (c)

Agriculture 2023, 13, x FOR PEER REVIEW 19 of 24

(d) (e) (f)

Figure 8. Examples of accurate predictions made by MobileNet-SSD-v2-Lite, after a two-step trans-
fer learning procedure, some of them in the following challenging conditions: (a,c): small to medium
scale; (b) overlapping; (d) partially visible; (e) color blends with the environment; (f) high confidence
for Ladybug; credit to the original, non-transformed images, (a–f): [79–84].

3.2. Error Analysis
In order to provide insights into the model’s strengths and limitations, and to find

information for further refining its performance, we performed a detailed analysis of its
predictions on the test set and identified four types of errors.
• Misclassification errors: Illustrated in Figure 9a, there is a singular misclassification

error over the entire test set, where the model confuses Zabrus with Anoxia. This could
be attributed to Zabrus being photographed from an unusual lateral position, a sce-
nario represented by only two images in the training set;

• Non-identification errors: Errors in which the model fails to make identification, as
illustrated in Figure 9b–f. Most of these misidentifications are likely due to the fact
that the training set contains an extremely limited number of images with a very par-
ticular background; therefore, the model might encounter challenges when the back-
ground varies significantly from the majority of training images. Neural networks
are expected to generalize across different backgrounds, but extreme variations could
pose difficulties. For instance, in Figure 9b, the image has a blue sky background. In
the training set, there are only four images with a blue background. Similarly, for
Figure 9c, there are only two such images in the training set;

• Another circumstance involves instances where the object is considerably small rela-
tive to the overall image dimensions, as in Figure 9d, or when it is barely visible, as
seen in Figure 9f. A particular scenario is presented by images featuring Opatrum on
the ground, where the model correctly identifies Opatrum in Figure 8e but fails to do
so in Figure 9e, showing a nuanced performance with a confidence level of 45% in
case of Figure 9e, which is just below the 50% threshold;

• Duplication errors: Figure 9g,h show duplication errors, where the same pest is de-
tected twice in images with a singular specimen. Figure 9g highlights potential net-
work confusion during the feature extraction stag, caused by the corn silk, which
bears visual similarities to the legs and antennae of the pest species;

• False Positive errors: These are errors where a pest was detected in an area contain-
ing only background. There is a single situation over the entire test set, where a false
Diabrotica was detected in the upper-right section of Figure 9h, with a confidence
level of 62.5%.

Figure 8. Examples of accurate predictions made by MobileNet-SSD-v2-Lite, after a two-step transfer
learning procedure, some of them in the following challenging conditions: (a,c): small to medium
scale; (b) overlapping; (d) partially visible; (e) color blends with the environment; (f) high confidence
for Ladybug; credit to the original, non-transformed images, (a–f): [79–84].

Image (e) captures the detection of Opatrum on the ground (92.2% confidence level),
where Opatrum’s color blends with the environment. Coccinella is usually detected with
high confidence levels of more than 98% (100% in image (f), for example). Most correct
predictions follow the patterns presented above, underscoring a good performance, even if
the model was trained on a small custom dataset.

3.2. Error Analysis

In order to provide insights into the model’s strengths and limitations, and to find
information for further refining its performance, we performed a detailed analysis of its
predictions on the test set and identified four types of errors.

• Misclassification errors: Illustrated in Figure 9a, there is a singular misclassification
error over the entire test set, where the model confuses Zabrus with Anoxia. This
could be attributed to Zabrus being photographed from an unusual lateral position, a
scenario represented by only two images in the training set;

• Non-identification errors: Errors in which the model fails to make identification, as
illustrated in Figure 9b–f. Most of these misidentifications are likely due to the fact
that the training set contains an extremely limited number of images with a very
particular background; therefore, the model might encounter challenges when the
background varies significantly from the majority of training images. Neural networks
are expected to generalize across different backgrounds, but extreme variations could
pose difficulties. For instance, in Figure 9b, the image has a blue sky background. In
the training set, there are only four images with a blue background. Similarly, for
Figure 9c, there are only two such images in the training set;

• Another circumstance involves instances where the object is considerably small relative
to the overall image dimensions, as in Figure 9d, or when it is barely visible, as seen
in Figure 9f. A particular scenario is presented by images featuring Opatrum on the

Agriculture 2023, 13, 2287 19 of 24

ground, where the model correctly identifies Opatrum in Figure 8e but fails to do so in
Figure 9e, showing a nuanced performance with a confidence level of 45% in case of
Figure 9e, which is just below the 50% threshold;

• Duplication errors: Figure 9g,h show duplication errors, where the same pest is
detected twice in images with a singular specimen. Figure 9g highlights potential
network confusion during the feature extraction stag, caused by the corn silk, which
bears visual similarities to the legs and antennae of the pest species;

• False Positive errors: These are errors where a pest was detected in an area containing
only background. There is a single situation over the entire test set, where a false
Diabrotica was detected in the upper-right section of Figure 9h, with a confidence level
of 62.5%.

Agriculture 2023, 13, x FOR PEER REVIEW 20 of 24

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9. Examples of the following various types of errors: (a) misclassification; (b–f): types of
failed detections; (g) double detection; (h) false and double detection. Credit to the original, non-
transformed images, (a–h): [82,82,85,85–89].

The observed relatively high error rate of 0.1579 over the test set may be attributed,
in part, to the modest size of the training set, averaging around 400 images per class after
augmentation. The limited diversity in training instances could lead to challenges in the
model’s ability to generalize across various conditions.

4. Conclusions
To enhance accuracy while maintaining efficiency, a two-step transfer learning pro-

cedure was employed to fine-tune the network for crop pest detection tasks. Two

Figure 9. Examples of the following various types of errors: (a) misclassification; (b–f): types
of failed detections; (g) double detection; (h) false and double detection. Credit to the original,
non-transformed images, (a–h): [82,82,85,85–89].

Agriculture 2023, 13, 2287 20 of 24

The observed relatively high error rate of 0.1579 over the test set may be attributed,
in part, to the modest size of the training set, averaging around 400 images per class after
augmentation. The limited diversity in training instances could lead to challenges in the
model’s ability to generalize across various conditions.

4. Conclusions

To enhance accuracy while maintaining efficiency, a two-step transfer learning proce-
dure was employed to fine-tune the network for crop pest detection tasks. Two variations
in the SSD-MobileNet architecture, namely, MobileNet-SSD-v1 and MobileNet-SSD-v2-Lite,
were tested, aiming to identify the version achieving the best accuracy and assess the effi-
ciency of the proposed two-step transfer learning procedure. Five beetle species, including
four harmful to corn crops and one beneficial, were selected for testing.

The results indicated that the MobileNet-SSD-v2-Lite model, trained with the two-step
transfer learning procedure, exhibited the highest performance, closely followed by the
MobileNet-SSD-v1. MobileNet-SSD-v2-Lite achieved an mAP of 0.892, displaying the
highest accuracy for classes ‘Opatrum’ (excluding the baseline model) and ‘Diabrotica’,
and the second position in terms of accuracy for classes ‘Ladybug’ and ‘Zabrus’.

Analyzing errors in the MobileNet-SSD-v2-Lite model revealed a good overall ac-
curacy despite the reduced size of the training set, with only 1 misclassification, 33 non-
identifications, 7 double identifications and 1 false positive across the test set.

These preliminary results demonstrate the potential for real-time pest control with
minimal human intervention, showing the model’s capability to protect both crops and
beneficial species. Considering the achieved results and the identified errors, our future
research will focus on the following key areas:

• To address the issue of generalization error, we plan to employ a custom dataset
comprising a minimum of 8000 images, ensuring representative sampling for real-
world conditions;

• The top-performing model from current research will undergo retraining using the two-
step transfer learning procedure on the new dataset. To gain a more comprehensive
understanding of performance improvement, both the pretrained and untrained
versions of the model will be trained on the non-augmented dataset. The outcomes
will then be compared with the results obtained from training the same versions of the
model on the augmented dataset;

• Our dataset enhancement strategy will involve incorporating more images that led to
errors in the current study. This includes instances of small-scale beetles relative to
image size, partially visible beetles, and images featuring Opatrum on the ground. The
goal is to enhance the model’s feature extraction capabilities, particularly in scenarios
where the color of Opatrum blends with the soil color;

• Evaluation of model performance will be extended to scenarios with two or more pest
species coexisting in the same image, including scenarios involving both pests and
beneficial species.

In the third phase of our research, we plan to develop a prototype with an initial focus
on monitoring and assessing corn crop infestation levels in real-time. The images collected
during monitoring will also be used for continuous training of the model.

Author Contributions: Conceptualization, E.M., A.I. and S.M.; methodology, E.M. and A.I.; software
adjustment/training/validation/testing, E.M. and A.I.; resources, E.M.; data curation, E.M. and S.M.;
writing—original draft preparation, E.M. and S.M.; writing—review and editing, E.M. and S.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Agriculture 2023, 13, 2287 21 of 24

Data Availability Statement: The preprocessed data presented in this study are available on request
from the corresponding author. The data are not publicly available due to self-funded nature of the
research, and it was not financially supported by public sources.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems.

Agriculture 2023, 13, 1073. [CrossRef]
2. Flint, M.L.; Van den Bosch, R. Introduction to Integrated Pest Management; Springer: New York, NY, USA, 2012; pp. 1–256.
3. Jensen, S.E. Insecticide Resistance in the Western Flower Thrips, Frankliniella occidentalis. Integr. Pest Manag. Rev. 2000, 5,

131–146. [CrossRef]
4. Kranthi, K.R.; Jadhav, D.R.; Kranthi, S.; Wanjari, R.R.; Ali, S.S.; Russell, D.A. Insecticide Resistance in Five Major Insect Pests of

Cotton in India. Crop Prot. 2002, 21, 449–460. [CrossRef]
5. Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides.

Agriculture 2022, 12, 600. [CrossRef]
6. Krupke, C.; Holland, J.D.; Long, E.; Eitzer, B.D. Planting of Neonicotinoid-Treated Maize Poses Risks for Honey Bees and Other

Non-Target Organisms Over a Wide Area without Consistent Crop Yield Benefit. J. Appl. Ecol. 2017, 54, 1449–1458. [CrossRef]
7. Krupke, C.H.; Long, E.Y. Intersections Between Neonicotinoid Seed Treatments and Honey Bees. Curr. Opin. Insect Sci. 2015, 10,

8–13. [CrossRef]
8. Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell,

E.A.D.; et al. Environmental Fate and Exposure; Neonicotinoids and Fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [CrossRef]
[PubMed]

9. Sánchez-Bayo, F.; Goka, K.; Hayasaka, D. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for
Ecosystems. Front. Environ. Sci. 2016, 4, 71. [CrossRef]

10. Ghaderi, S.; Fathipour, Y.; Asgari, S.; Reddy, G. Economic Injury Level and Crop Loss Assessment for Tuta absoluta (Lepidoptera:
Gelechiidae) on Different Tomato Cultivars. J. Appl. Entomol. 2019, 143, 493–507. [CrossRef]

11. Saha, T.; Chandran, N. Chemical Ecology and Pest Management: A Review. Int. J. Chem. Stud. 2017, 5, 618–621. Available online:
https://www.chemijournal.com/archives/2017/vol5issue6/PartI/5-5-449-329.pdf (accessed on 7 April 2023).

12. Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L. Precision
Fish Farming: A New Framework to Improve Production in Aquaculture. Biosyst. Eng. 2018, 173, 176–193. [CrossRef]

13. Eli-Chukwu, N. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383.
[CrossRef]

14. Smith, M. Getting Value from Artificial Intelligence in Agriculture. Anim. Prod. Sci. 2018, 60, 46–54. [CrossRef]
15. Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial Intelligence in Agriculture: A Literature Survey. Int. J. Sci. Res. Comput. Sci.

Appl. Manag. Stud. 2018, 7, 1–6.
16. Jha, K.; Doshi, A.; Patel, P.; Shah, M.A. Comprehensive Review on Automation in Agriculture using Artificial Intelligence. Artif.

Intell. Agric. 2019, 2, 1–12. [CrossRef]
17. Gulzar, Y.; Ünal, Z.; Aktaş, H.; Mir, M. Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative

Study. Agriculture 2023, 13, 1479. [CrossRef]
18. Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023,

15, 1906. [CrossRef]
19. Dhiman, P.; Kaur, A.; Balasaraswathi, V.; Gulzar, Y.; Alwan, A.; Hamid, Y. Image Acquisition, Preprocessing and Classification of

Citrus Fruit Diseases: A Systematic Literature Review. Sustainability 2023, 15, 9643. [CrossRef]
20. Kalfas, I.; De Ketelaere, B.; Bunkens, K.; Saeys, W. Towards Automatic Insect Monitoring on Witloof Chicory Fields using Sticky

Plate Image Analysis. Ecol. Inf. 2023, 75, 102037. [CrossRef]
21. Yang, S.; Xing, Z.; Wang, H.; Dong, X.; Gao, X.; Liu, Z.; Zhang, X.; Li, S.; Zhao, Y. Maize-YOLO: A New High-Precision and

Real-Time Method for Maize Pest Detection. Insects 2023, 14, 278–291. [CrossRef]
22. Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
23. Albanese, A.; Nardello, M.; Brunelli, D. Automated Pest Detection with DNN on the Edge for Precision Agriculture. IEEE J.

Emerg. Sel. Top. Circuits Syst. 2021, 11, 458–467. [CrossRef]
24. Wang, C.; Grijalva, I.; Caragea, D.; McCornack, B. Detecting Common Coccinellids Found in Sorghum Using Deep Learning

Models. Sci. Rep. 2023, 13, 9748. [CrossRef] [PubMed]
25. Salamut, C.; Kohnert, I.; Landwehr, N.; Pflanz, M.; Schirrmann, M.; Zare, M. Deep Learning Object Detection for Image Analysis

of Cherry Fruit Fly (Rhagoletis cerasi L.) on Yellow Sticky Traps. Gesunde Pflanz. 2023, 75, 37–48. [CrossRef]
26. Rustia, D.J.A.; Chao, J.J.; Chiu, L.-Y.; Wu, Y.-F.; Chung, J.-Y.; Hsu, J.-C.; Lin, T.-T. Automatic Greenhouse Insect Pest Detection and

Recognition Based on a Cascaded Deep Learning Classification Method. J. Appl. Entomol. 2020, 145, 206–222. [CrossRef]

https://doi.org/10.3390/agriculture13051073
https://doi.org/10.1023/A:1009600426262
https://doi.org/10.1016/S0261-2194(01)00131-4
https://doi.org/10.3390/agriculture12050600
https://doi.org/10.1111/1365-2664.12924
https://doi.org/10.1016/j.cois.2015.04.005
https://doi.org/10.1007/s11356-014-3332-7
https://www.ncbi.nlm.nih.gov/pubmed/25096486
https://doi.org/10.3389/fenvs.2016.00071
https://doi.org/10.1111/jen.12628
https://www.chemijournal.com/archives/2017/vol5issue6/PartI/5-5-449-329.pdf
https://doi.org/10.1016/j.biosystemseng.2017.10.014
https://doi.org/10.48084/etasr.2756
https://doi.org/10.1071/AN18522
https://doi.org/10.1016/j.aiia.2019.05.004
https://doi.org/10.3390/agriculture13081479
https://doi.org/10.3390/su15031906
https://doi.org/10.3390/su15129643
https://doi.org/10.1016/j.ecoinf.2023.102037
https://doi.org/10.3390/insects14030278
https://doi.org/10.1109/JETCAS.2021.3101740
https://doi.org/10.1038/s41598-023-36738-5
https://www.ncbi.nlm.nih.gov/pubmed/37328502
https://doi.org/10.1007/s10343-022-00794-0
https://doi.org/10.1111/jen.12834

Agriculture 2023, 13, 2287 22 of 24

27. Wang, Q.-J.; Zhang, S.-Y.; Dong, S.-F.; Zhang, G.-C.; Yang, J.; Li, R.; Wang, H.-Q. Pest24: A Large-Scale Very Small Object Data Set
of Agricultural Pests for Multi-Target Detection. Comput. Electron. Agric. 2020, 175, 105585. [CrossRef]

28. Li, W.; Wang, D.; Li, M.; Gao, Y.; Wu, J.; Yang, X. Field Detection of Tiny Pests from Sticky Trap Images Using Deep Learning in
Agricultural Greenhouse. Comput. Electron. Agric. 2021, 183, 106048. [CrossRef]

29. Hong, S.-J.; Nam, I.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Ahn, S.; Parl, I.-K.; Kim, G. Automatic Pest Counting from Pheromone Trap
Images Using Deep Learning Object Detectors for Matsucoccus Thunbergianae Monitoring. Insects 2021, 12, 342–358. [CrossRef]
[PubMed]

30. Wang, R.; Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R. S-rpn: Sampling-Balanced Region Proposal Network for Small Crop Pest
Detection. Comput. Electron. Agric. 2021, 187, 106290. [CrossRef]

31. Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R.; Zhang, J. Adaptive Feature Fusion Pyramid Network for Multi-Classes Agricultural Pest
Detection. Comput. Electron. Agric. 2022, 195, 106827. [CrossRef]

32. Zhang, W.; Huang, H.; Sun, Y.; Wu, X. Agripest-YOLO: A Rapid Light-Trap Agricultural Pest Detection Method Based on Deep
Learning. Front. Plant Sci. 2022, 13, 1079384. [CrossRef]

33. Sava, A.; Ichim, L.; Popescu, D. Detection of Halyomorpha halys using Neural Networks. In Proceedings of the IEEE 8th
International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022.

34. Takimoto, H.; Sato, Y.; Nagano, A.J.; Shimizu, K.K.; Kanagawa, A. Using a Two-Stage Convolutional Neural Network to Rapidly
Identify Tiny Herbivorous Beetles in the Field. Ecol. Inf. 2021, 66, 101466. [CrossRef]

35. Ozdemir, D.; Kunduraci, M.S. Comparison of Deep Learning Techniques for Classification of the Insects in Order Level with
Mobile Software Application. IEEE Access 2022, 10, 35675–35684. [CrossRef]

36. Butera, L.; Ferrante, A.; Jermini, M.; Prevostini, M.; Alippi, C. Precise Agriculture: Effective Deep Learning Strategies to Detect
Pest Insects. IEEE/CAA J. Autom. Sin. 2022, 9, 246–258. [CrossRef]

37. Ahmad, I.; Yang, Y.; Yue, Y.; Ye, C.; Hassan, M.; Cheng, X.; Wu, Y.; Zhang, Y. Deep Learning Based Detector YOLOv5 for
Identifying Insect Pests. Appl. Sci. 2022, 12, 10167. [CrossRef]

38. Ratnayake, M.N.; Dyer, A.G.; Dorin, A. Tracking Individual Honeybees Among Wildflower Clusters with Computer Vision-
Facilitated Pollinator Monitoring. PLoS ONE 2021, 16, e0239504. [CrossRef] [PubMed]

39. Bjerge, K.; Alison, J.; Dyrmann, M.; Frigaard, C.E.; Mann, H.M.R.; Høye, T.T. Accurate Detection and Identification of Insects from
Camera Trap Images with Deep Learning. PLOS Sustain. Transform. 2023, 2, e0000051. [CrossRef]

40. Spanier, R. Pollination AI: Deep Learning Approach to Identify Pollinators and Their Taxa Using the YOLO Architecture. Ph.D.
Thesis, RWTHAachen University, Aachen, Germany, 2022.

41. Bjerge, K.; Frigaard, C.; Karstoft, H. Motion Informed Object Detection of Small Insects in Time-lapse Camera Recordings. Sensors
2023, 23, 7242. [CrossRef]

42. Venegas, P.; Calderon, F.; Riofrío, D.; Benítez, D.; Ramón, G.; Cisneros-Heredia, D.; Coimbra, M.; Rojo-Álvarez, J.-L.; Perez, N.
Automatic Ladybird Beetle Detection Using Deep-Learning Models. PLoS ONE 2021, 16, e0253027. [CrossRef]

43. Vega, M.; Benitez, D.; Perez, N.P.; Riofrio, D.; Ramón-Cabrera, G.; Cisneros-Heredia, D. Coccinellidae Beetle Specimen Detection
Using Convolutional Neural Networks. In Proceedings of the IEEE Colombian Conference on Applications of Computational
Intelligence (ColCACI), Cali, Colombia, 26–28 May 2021.

44. Amarathunga, D.C.; Grundy, J.; Parry, H.; Dorin, A. Methods of Insect Image Capture and Classification: A Systematic Literature
Review. Smart Agric. Technol. 2021, 1, 100023. [CrossRef]

45. Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest Identification via Deep Residual Learning in Complex Background. Comput.
Electron. Agric. 2017, 141, 351–356. [CrossRef]

46. Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect Classification and Detection in Field Crops using Modern Machine Learning
Techniques. Inf. Proc. Agric. 2021, 8, 446–457. [CrossRef]

47. Li, Y.; Yang, J. Few-Shot Cotton Pest Recognition and Terminal Realization. Comput. Electron. Agric. 2020, 169, 105240. [CrossRef]
48. Nanni, L.; Maguolo, G.; Pancino, F. Insect Pest Image Detection and Recognition Based on Bio-Inspired Methods. Ecol. Inf. 2020,

57, 101089. [CrossRef]
49. Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer Learning-Based Framework for Classification of Pest in Tomato Plants. Appl.

Artif. Intell. 2020, 34, 981–993. [CrossRef]
50. Wang, R.J.; Zhang, J.; Dong, W.; Yu, J.; Xie, C.J.; Li, R.; Chen, T.J.; Chen, H.B. Crop Pests Image Classification Algorithm Based on

Deep Convolutional Neural Network. Telkomnika 2017, 15, 1239–1246. [CrossRef]
51. Wang, J.; Li, Y.; Feng, H.; Ren, L.; Du, X.; Wu, J. Common Pests Image Recognition Based on Deep Convolutional Neural Network.

Comput. Electron. Agric. 2020, 179, 105834. [CrossRef]
52. You, Y.; Zeng, Z.; Zheng, J.; Zhao, J.; Luo, F.; Chen, Y.; Xie, M.; Liu, X.; Wei, H. The Toxicity Response of Coccinella septempunctata L.

(Coleoptera: Coccinellidae) after Exposure to Sublethal Concentrations of Acetamiprid. Agriculture 2022, 12, 1642. [CrossRef]
53. Ovsyannikova, E.I. Zabrus tenebrioides Goeze-Corn Ground Beetle. 2008. Available online: http://agroatlas.ru/en/content/

pests/Zabrus_tenebrioides/index.html (accessed on 7 April 2023).
54. Afonin, A.N.; Greene, S.L.; Dzyubenko, N.I.; Frolov, A.N. Interactive Agricultural Ecological Atlas of Russia and Neighboring

Countries. Economic Plants and their Diseases, Pests and Weeds. 2008. Available online: http://www.agroatlas.ru (accessed on 7
April 2023).

https://doi.org/10.1016/j.compag.2020.105585
https://doi.org/10.1016/j.compag.2021.106048
https://doi.org/10.3390/insects12040342
https://www.ncbi.nlm.nih.gov/pubmed/33921492
https://doi.org/10.1016/j.compag.2021.106290
https://doi.org/10.1016/j.compag.2022.106827
https://doi.org/10.3389/fpls.2022.1079384
https://doi.org/10.1016/j.ecoinf.2021.101466
https://doi.org/10.1109/ACCESS.2022.3163380
https://doi.org/10.1109/JAS.2021.1004317
https://doi.org/10.3390/app121910167
https://doi.org/10.1371/journal.pone.0239504
https://www.ncbi.nlm.nih.gov/pubmed/33571210
https://doi.org/10.1371/journal.pstr.0000051
https://doi.org/10.3390/s23167242
https://doi.org/10.1371/journal.pone.0253027
https://doi.org/10.1016/j.atech.2021.100023
https://doi.org/10.1016/j.compag.2017.08.005
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.1016/j.compag.2020.105240
https://doi.org/10.1016/j.ecoinf.2020.101089
https://doi.org/10.1080/08839514.2020.1792034
https://doi.org/10.12928/telkomnika.v15i3.5382
https://doi.org/10.1016/j.compag.2020.105834
https://doi.org/10.3390/agriculture12101642
http://agroatlas.ru/en/content/pests/Zabrus_tenebrioides/index.html
http://agroatlas.ru/en/content/pests/Zabrus_tenebrioides/index.html
http://www.agroatlas.ru

Agriculture 2023, 13, 2287 23 of 24

55. Ovsyannikova, E.I.; Grichanov, I.Y. Opatrum sabulosum (L.)-Darkling Beetle. 2008. Available online: http://agroatlas.ru/en/
content/pests/Opatrum_sabulosum/index.html (accessed on 7 April 2023).

56. Fătu, A.-C.; Dinu, M.M.; Andrei, A.M. Susceptibility of some melolonthine scarab species to entomopathogenic fungus Beauveria
brongniartii (Sacc.) Petch and Metarhizium anisopliae (Metsch.). Sci. Bull. Ser. F Biotech. 2018, 22, 42–49.

57. Grozea, I.; Trusca, R.; Virteiu, A.M.; Stef, R.; Butnariu, M. Interaction between Diabrotica virgifera virgifera and host plants
determined by feeding behavior and chemical composition. Rom. Agric. Res. 2017, 34, 329–337.

58. CABI. Diabrotica virgifera virgifera (Western Corn Rootworm). 2021. Available online: https://www.cabidigitallibrary.org/doi/
full/10.1079/cabicompendium.18637 (accessed on 24 May 2023).

59. Franklin, D. NVIDIA: DNN Vision Library (Jetson-Inference): detectNet. 2023. Available online: https://rawgit.com/dusty-nv/
jetson-inference/master/docs/html/group__detectNet.html (accessed on 14 July 2023).

60. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A. SSD: Single Shot MultiBox Detector. In Proceedings of
the 14th European Conference on Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016.

61. Teng, T.W.; Veerajagadheswar, P.; Ramalingam, B.; Yin, J.; Mohan, R.E.; Gómez, B.F. Vision Based Wall Following Framework: A
Case Study with HSR Robot for Cleaning Application. Sensors 2020, 20, 3298. [CrossRef]

62. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015.

63. Franklin, D. SSD-Based Object Detection in PyTorch: Model Training. 2023. Available online: https://github.com/dusty-nv/
pytorch-ssd/blob/master/train_ssd.py (accessed on 14 July 2023).

64. Franklin, D. SSD-Based Object Detection in PyTorch: Model Evaluation. 2023. Available online: https://github.com/dusty-nv/
pytorch-ssd/blob/master/eval_ssd.py (accessed on 14 July 2023).

65. Franklin, D. SSD-Based Object Detection in PyTorch: Export ONNX. 2023. Available online: https://github.com/dusty-nv/
pytorch-ssd/blob/master/onnx_export.py (accessed on 14 July 2023).

66. Nelson, J. What is TensorRT. 2021. Available online: https://blog.roboflow.com/what-is-tensorrt/ (accessed on 21 June 2021).
67. NVIDIA TensorRT. 2023. Available online: https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf

(accessed on 21 June 2023).
68. Franklin, D. SSD-Based Object Detection in PyTorch: Detectnet. 2023. Available online: https://github.com/dusty-nv/jetson-

inference/blob/master/python/examples/detectnet.py (accessed on 21 July 2023).
69. Open Images Dataset V7 and Extensions. 2022. Available online: https://storage.googleapis.com/openimages/web/factsfigures_

v7.html (accessed on 21 June 2023).
70. Coccinella Linnaeus, 1758 in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset accessed via GBIF.org. Available

online: https://www.gbif.org/search?q=Coccinella%20sp. (accessed on 14 July 2023).
71. Anoxia villosa (Fabricius, 1781) in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset accessed via GBIF.org. Available

online: https://www.gbif.org/species/1054733 (accessed on 14 July 2023).
72. Diabrotica virgifera LeConte, 1868 in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset accessed via GBIF.org.

Available online: https://www.gbif.org/species/1048497 (accessed on 14 July 2023).
73. Opatrum sabulosum (Linnaeus, 1761) in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset accessed via GBIF.org.

Available online: https://www.gbif.org/species/4454749 (accessed on 14 July 2023).
74. Zabrus tenebrioides (Goeze, 1777) in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset accessed via GBIF.org. Available

online: https://www.gbif.org/species/4473277 (accessed on 14 July 2023).
75. GBIF.org, GBIF Home Page. 2023. Available online: https://www.gbif.org (accessed on 14 July 2023).
76. Everingham, M.; Ali Eslami, S.M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes

Challenge: A Retrospective. Int. J. Comput. Vision 2014, 111, 98–136. [CrossRef]
77. NVIDIA Transfer Learning Toolkit for Intelligent Video Analytics-Getting Started Guide. 2020. Available online: https://docs.

nvidia.com/metropolis/TLT/archive/tlt-10/pdf/Transfer-Learning-Toolkit-Getting-Started-Guide-IVA.pdf (accessed on 24
May 2023).

78. Geron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019;
p. 491.

79. BBirgit, iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence dataset
accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/3338144902 (accessed on 30 July 2023).

80. Miquet, A. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4039229776 (accessed on 30 July 2023).

81. Ferreira, R. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4121193187 (accessed on 30 July 2023).

82. Mobbini. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2020. Available online: https://www.gbif.org/occurrence/2901580832 (accessed on 30 July 2023).

83. Jeltov, P. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4075854369 (accessed on 30 July 2023).

84. Le Mao, P. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4018220177 (accessed on 30 July 2023).

http://agroatlas.ru/en/content/pests/Opatrum_sabulosum/index.html
http://agroatlas.ru/en/content/pests/Opatrum_sabulosum/index.html
https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.18637
https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.18637
https://rawgit.com/dusty-nv/jetson-inference/master/docs/html/group__detectNet.html
https://rawgit.com/dusty-nv/jetson-inference/master/docs/html/group__detectNet.html
https://doi.org/10.3390/s20113298
https://github.com/dusty-nv/pytorch-ssd/blob/master/train_ssd.py
https://github.com/dusty-nv/pytorch-ssd/blob/master/train_ssd.py
https://github.com/dusty-nv/pytorch-ssd/blob/master/eval_ssd.py
https://github.com/dusty-nv/pytorch-ssd/blob/master/eval_ssd.py
https://github.com/dusty-nv/pytorch-ssd/blob/master/onnx_export.py
https://github.com/dusty-nv/pytorch-ssd/blob/master/onnx_export.py
https://blog.roboflow.com/what-is-tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf
https://github.com/dusty-nv/jetson-inference/blob/master/python/examples/detectnet.py
https://github.com/dusty-nv/jetson-inference/blob/master/python/examples/detectnet.py
https://storage.googleapis.com/openimages/web/factsfigures_v7.html
https://storage.googleapis.com/openimages/web/factsfigures_v7.html
https://www.gbif.org/search?q=Coccinella%20sp.
https://www.gbif.org/species/1054733
https://www.gbif.org/species/1048497
https://www.gbif.org/species/4454749
https://www.gbif.org/species/4473277
https://www.gbif.org
https://doi.org/10.1007/s11263-014-0733-5
https://docs.nvidia.com/metropolis/TLT/archive/tlt-10/pdf/Transfer-Learning-Toolkit-Getting-Started-Guide-IVA.pdf
https://docs.nvidia.com/metropolis/TLT/archive/tlt-10/pdf/Transfer-Learning-Toolkit-Getting-Started-Guide-IVA.pdf
https://www.gbif.org/occurrence/3338144902
https://www.gbif.org/occurrence/4039229776
https://www.gbif.org/occurrence/4121193187
https://www.gbif.org/occurrence/2901580832
https://www.gbif.org/occurrence/4075854369
https://www.gbif.org/occurrence/4018220177

Agriculture 2023, 13, 2287 24 of 24

85. Levon, A. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-Grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2022. Available online: https://www.gbif.org/occurrence/3903140984 (accessed on 30 July 2023).

86. Barileva, N. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4014953025 (accessed on 30 July 2023).

87. Danielle. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4018183044 (accessed on 30 July 2023).

88. Mednii, A. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/4091424606 (accessed on 30 July 2023).

89. Fogliato, S. iNaturalist Contributors, iNaturalist (2023). iNaturalist Research-grade Observations. iNaturalist.org. Occurrence
Dataset accessed via GBIF.org. 2023. Available online: https://www.gbif.org/occurrence/3874204663 (accessed on 30 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.gbif.org/occurrence/3903140984
https://www.gbif.org/occurrence/4014953025
https://www.gbif.org/occurrence/4018183044
https://www.gbif.org/occurrence/4091424606
https://www.gbif.org/occurrence/3874204663

	Introduction
	Materials and Methods
	Selected Neural Networks
	The Training Platform and Framework
	PyTorch Scripts
	Image Datasets
	Transfer Learning Procedures
	Evaluation Metrics

	Results and Discussion
	Evaluation Metrics and Models Ranking
	Error Analysis

	Conclusions
	References

