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Abstract: Feed enzymes have been extensively used in livestock diets to enhance nutrient digestion
and promote their growth performance. Indeed, recent research has indicated that feed enzymes,
notably phytase, protease, and xylanase, function as catalysts, facilitating the breakdown of phytic
acid, proteins, and β-1,4-xylan bonds and offering prospective advantages linked to the intestinal well-
being and microbiota of young pigs and chickens. Various feed enzymes are currently being added
to the diets of swine and broiler chickens. The potential enzymes used in the feed industry include
cellulase, β-mannanase, β-glucanases, xylanases, phytases, proteases, lipases, and galactosidases.
Though significant research has been conducted on phytase, protease, and xylanase, consistent
findings, particularly in terms of improving nutrient digestibility and promoting growth performance
of monogastric animals, are still limited. Also, the outcome of recent studies raises the question
whether phytase and xylanase could play functional roles beyond increasing nutrient digestibility and
intestinal health, such as positively modulating the intestinal microbiota and reducing environmental
problems. Therefore, in this review we aimed to address the functional roles of exogenous enzyme
activities in monogastric animal diets. Also, we sought to explore the advantages of these enzymes in
enhancing the nutritional value of both alternative and conventional feedstuffs.

Keywords: exogenous enzyme; performance; nutrition; swine; poultry

1. Introduction

Sorghum has emerged as the primary cereal used in animal diets worldwide. However,
the presence of various anti-nutritional elements, such as phytic acid and tannins, limits the
use of sorghum in feed. Indeed, proteins, carbohydrates, and mineral elements can form
complexes with phytic acid and tannins that help the animals to easily digest and absorb
the nutrients [1,2]. The removal of anti-nutritional substances may enhance the nutritional
value of sorghum and maximize its use in feeds. Since the 20th century, several enzymes
have been commercially used in monogastric diets due to their favorable effects on the
economy, environment, and human health. All animals need digestive enzymes to break
down their food, and these enzymes can either be created by the animal itself or by the
helpful bacteria that live in their gastro-intestinal tract. Animals are unable to digest 15–25%
of the feed they consume, because the feed contains some undigestible components or the
animals’ bodies lack the specific enzyme to digest those particular feed ingredients [3].
In addition, anti-nutritional elements in feed are hard to digest and sometimes lead to
intestinal distress. Feed enzymes act to release nutrients from feed constituents, such as
carbohydrates, proteins, amino acids (AA), and minerals. The foremost enzyme used
in monogastric diets is phytase as it accelerates the hydrolysis of phytate and releases
phosphorus, which results in minimizing the need for adding pricey inorganic phosphorus
sources. The second most common group is carbohydrates, which are primarily utilized in
viscous diets with a high inclusion of wheat, barley, and rye compared to diets based on corn

Agriculture 2023, 13, 2195. https://doi.org/10.3390/agriculture13122195 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13122195
https://doi.org/10.3390/agriculture13122195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-6652-2504
https://doi.org/10.3390/agriculture13122195
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13122195?type=check_update&version=1


Agriculture 2023, 13, 2195 2 of 14

and sorghum, with the aim of enhancing nutrient absorption and animal performance [4].
Other enzyme types and applications, such as the utilization of high phytase inclusion
rates to lessen the anti-nutritional effects of phytate rather than concentrating just on the
release of phosphorus, have recently been developed [5]. According to the Global Animal
Feed Enzymes Market Report (LP Information, Inc., Rockville, MD, USA), the use of feed
enzymes in animal diet is predicted to increase at a compound annual growth rate (CAGR)
of 5.0% from 2022 to 2028 [6]. These statistics suggest enzymes are starting to play a bigger
role in the animal feed industry.

In order to increase livestock production, it is necessary to feed the animals with
nutritious and highly digestible feed [7]. Such animal feed should be based on cereals,
forages, and silage, among other things, depending on the region, but the need to reduce
the costs of feeding and animal production has prompted the search for new components.
The utilization of agroindustry and agroforestry wastes is currently popular; however,
they have drawbacks since the nutritional components are unbalanced or unavailable,
necessitating the addition of grains, cereals, legumes, or additives in order to meet the
health status [8]. Exogenous enzymes have been demonstrated to have beneficial effects on
agro-industrial and agroforestry wastes, and they have been used as animal feed to improve
the bioavailability and digestibility of minerals, as well as assisting in the removal of some
anti-nutritional elements [9,10]. By specifying the described mechanisms of action and the
positive effects of supplemental phytase, xylanase and protease, it was hypothesized that
these enzymes may have functional implications related to the intestinal health of livestock.
Thus, this review concentrates on the functional roles of exogenous enzyme activities in
swine and poultry diets. Additionally, it seeks to explore the advantages of these enzymes
in enhancing the nutritional value of both alternative and conventional feedstuffs.

2. Exogenous Enzymes as Feed Additives

Energy and protein are the major nutrients in animal diet. The main energy and protein
sources in swine diet are corn and soybean meal. In addition, barley, wheat, sorghum and
oats are considered as energy ingredients that have higher fiber content than corn, while
alternative protein sources are oilseeds such as rapeseed, canola, flaxseed, etc. Generally,
corn and soybean meal (SBM) diets have relatively higher non-starch polysaccharides
(NSPs) and anti-nutritional factors. These anti-nutritional factors pose challenges for the
regular digestion of feed and lead to reduced meat and egg production, lower feed efficiency,
and digestive disturbances. Feed enzymes function to enhance the availability of nutrients,
such as starch, protein, amino acids, and minerals, from feed ingredients [3]. Traditional
poultry diets mainly comprise grains such as corn, wheat, and SMB that contain 10% to
22.7% of NSPs; sometimes these NSPs lead to physiological impacts in chickens. Previously,
Elangovan et al. [11] reported that quails fed dietary enzyme supplementation at various
energy levels improved their growth rate over the growing period, while Shalash et al. [12]
reported that the inclusion of multi-enzyme supplements containing xylanase, glucanase,
protease, and amylase had no impact on growth performance. Similarly, Kocher et al. [13]
reported that broiler-fed diets supplemented with exogenous complex enzymes (protease,
xylanase, and amylase) had minimal impact on their growth performance. Exogenous
enzymes are frequently added to the diets to help with nutrient digestion and the utilization
of energy from animal feed in an effort to reduce negative effects [14,15].

In the context of animal nutrition, commercial enzymes can be divided into three main
categories based on their intended function (Table 1). Phytase targets phytate molecules [16]
released from phosphorus, while beta-glucanase and cellulases target NSPs and cellulose
polysaccharides, respectively, effectively breaking down fiber into smaller components.
On the other hand, proteases act on proteins, leading to enhanced digestibility. Lastly,
alpha-amylase enzymes act as starch and improve digestion in animals [17].
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Table 1. Enzymes used in animal feed processing.

Enzymes Substrates Effect Example References

Phytase Phytates

Phytase degrades phytate bonds,
liberating trapped nutrients,

which leads to enhanced livestock
efficiency. Additionally, it

increases phosphorus absorption,
reducing the risk of soil and water

contamination through excreta.
Moreover, phytase

supplementation increases amino
acid availability.

Histidine acid phytase (pH
5.0) mainly applied to feed

for poultry or pigs.
Ojha et al. [10]

Proteases Proteins

Certain proteases have been found
to enhance the apparent ileal

nitrogen digestibility and apparent
nitrogen retention in both broiler

chicks and broiler cockerels. When
added exogenously, proteases can
further enhance the digestibility of

proteins in feed ingredients by
solubilizing and hydrolyzing

dietary proteins. As a result, levels
of antinutritional factors decrease.
These proteases can originate from

animal, vegetable, or
microbial sources.

Proteases isolated from
microorganisms such as

Aspergillus niger and
Bacillus spp.

Chymosin, pepsin A
Bromelain, papain, ficine,

aminopeptidase, bacillolysin
1, dipeptidyl peptidase III,

chymotrypsin,
subtilisin, trypsin.

Ghazi et al. [18];
Marsman et al. [19].

Carbohydrases
Carbohydrates
(fiber and/or

starch)

Exogenous enzymes, such as
carbohydrases and proteases,

improve the digestibility of plant
biomass, leading to an increase in
energy availability. This beneficial
effect extends to both poultry and

pig diets.

Xylanases and β-glucanases
(degrade cell walls, used in

poultry), β-mannanases
Pectinases α-galactosidases

α-amylase (improves
digestibility of starch, body

weight gain has been
observed in poultry)

Nortey et al. [20];
Yin et al. [21].

3. Application of Phytase Additive in Monogastric Animal Nutrition

Enzymes were developed as feed additives in order to improve the digestion and
absorption of nutrients. The first phytase products entered the market in 1991 [22] and
were particularly used in swine, poultry, and fish diets [23]. The small intestine of mono-
gastric animals has a limited capacity to break down phytate due to the absence of potent
internal phytase enzymes and a relatively small number of microbes in the upper diges-
tive tract. This phenomenon can also explain the low bioavailability of phosphorus from
phytate [24,25]. The utilization of phosphorus in monogastric animals primarily relies on
the absorption of orthophosphate, and their ability to utilize phytate phosphorus depends
largely on their capacity to hydrolyze phytate. Earlier studies [26–29] have shown that the
inclusion of microbial phytase in animal diets enhanced the utilization of phosphate from
phytate, thereby improving overall animal nutrition. The addition of microbial phytase to
animal diets has been demonstrated as the most effective strategy for the animal industry to
reduce phosphate excretion in animal waste. It also enhances the availability of amino acids.
The interaction between phytate and proteins can lead to changes in protein structure,
which can negatively impact enzymatic activity, protein solubility, and digestibility [26].
However, the detrimental impact of phytate on monogastric animals has not been defini-
tively established. Diverse perspectives exist regarding the impact of phytate on protein
digestibility [30]. Some researchers [31] have suggested that phytate does not affect protein
digestibility, while other researchers [32] have pointed out that amino acid’s availability
improves when phytate levels decrease. It has been proposed that the inclusion of phytase
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enzymes could improve energy utilization in animals. For instance, the phytase enzymes
derived from Aspergillus niger, Peniophoralycii, Schizosaccharomyces pombe, and Escherichia coli
improved energy utilization in animals [22]. Currently, the phytase utilized in animal feeds
is classified as histidine acid phytase. Phytase supplements should be cost-effective and
exhibit resistance to temperature-induced inactivation during feed processing and storage,
so that they can serve as suitable feed additive for livestock.

In monogastric animals, phytate is destroyed during the digestion process. To in-
vestigate the effects of intrinsic feed phytases and endogenous gut phytases on phytate
hydrolysis, a diet containing barley, wheat, and soybean was tested. The presence of
InsP1,2,3,4 and InsP5 were considered as the predominant plant-based intrinsic feed phy-
tases (6-phytases), and they were responsible for phytate degradation in the stomach.
Previously, Kemme et al. [33] found minimal phytate degradation in the stomach and
proximal duodenum with a maize and soybean meal-based diet supplemented with low
Ins-phytase activity (35 FTU/kg DM). The authors also observed significantly increased
hydrolysis of intermediate inositol phosphates (InsP4 and InsP5) in pigs fed high levels of
phytase supplementation. Similarly, Rapp et al. [34] found that diets with high intrinsic
plant phytase exhibited greater phytate hydrolysis in the stomach compared to very low
intrinsic phytase activity (43 FTU/kg DM). Some anti-nutritional elements derived from
plant origins, including phytate, can lower animal performance [35]. Because of its preva-
lence in diets, phytate restricts the utilization of minerals like phosphorus, which is crucial
for animal development. Additionally, it restricts the use of energy and the digestibility
of amino acids not only because it binds to nutrients or prevents the access of digestive
enzymes to the bolus, but also because of endogenous losses brought by its aggression
towards the intestinal mucosa [2].

4. Application of Xylanases Supplementation in Swine

The digestive system of early-weaned pigs is not completely matured [36], making
it less capable of effectively processing the transition from a milk-based diet to solid
foods. Previously, Himmelberg et al. [37] stated that digestive enzymes are responsible for
breaking down carbohydrates, proteins, and fats. Weaned pigs may experience decreased
nutrient digestibility, which can negatively affect the integrity of the intestinal epithelial
layer. However, the undigested starch and protein in the digestive tract can serve as
substrates that promote the growth of pathogens [38]. These factors frequently lead to
inadequate utilization of nutrients, compromised health, and impaired growth performance
in young weanlings. To improve the nutrient digestibility of weanling pigs, exogenous
enzymes, like xylanases [39], were incorporated in their diets. Xylanase is an enzyme
that breaks down xylans, which are significant carbohydrate constituents present in the
cell walls of various dietary ingredients commonly used in pig feed [40]. In an earlier
study, Woyengo et al. [41] proposed that xylanases exert their effects through several
potential mechanisms, including cell wall degradation, reduction in viscosity, and the
provision of fermentable xylo-oligosaccharides. These actions collectively modify nutrient
availability in the small intestine and result in increased growth performance and nutrient
digestibility [42,43]. Feeding high levels of co-products has a greater risk compared with
traditional diets. This risk can be minimized by using modern feed formulation, feed
enzymes, and feed processing to attain predictable swine growth performance, carcass
characteristics, and pork quality. For instance, increased energy digestibility in swine was
observed with the inclusion of xylanase in a diet containing wheat co-products from flour
milling having high NSP and arabinoxylan contents [20]. Also, the supplementation of
xylanase in growing pigs’ diets containing wheat co-products improved apparent total
tract digestibility (ATTD) and ileal digestibility of dry matter (DM), crude protein (CP)
and energy [21]. The addition of enzyme cocktails. such as xylanase and beta-glucanase,
to energy-deficient diets containing distilled dried grain solubles (DDGS) as a grain co-
product has also been reported in improving the total tract digestibility of DM, GE and
nitrogen [44]. Phytase supplementation increased the ATTD and standardized total tract
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digestibility (STTD) of P and diminished P excretion in the feces of pigs fed diets containing
rice co-products such as rice bran, rice feed mill and broken rice [45]. The inclusion of
pectinolytic enzymes in rapeseed meals has been shown to have significant improvement
in carbohydrate digestion [46]. Also, xylanase addition to rapeseed meal improved nutrient
digestibility and growth performance in pigs [47]. However, supplemental xylanase does
not always seem to improve the energy digestibility of DDGS, even though phytase does
increase phosphorus digestibility [48]. Several studies failed to show the positive effects of
carbohydrate enzyme supplementation in the diets containing DDGS of nursery pigs [49]
and grower-finishing pigs [50,51]. Thus, more research is necessary to prove the exact
mechanism of action.

5. Application of Xylanase Supplementation in Poultry

Xylanases are categorized as carbohydrase and belong to the glycosyl hydrolase en-
zyme family. This classification implies that xylanases facilitate the hydrolysis of glycosidic
bonds present in complex sugar compounds [52]. As such, xylanase plays a crucial role in
catalyzing the hydrolysis of 1,4-β-D-xylopyranosyl linkages present in xylan, which helps
in reducing the anti-nutritional effects associated with this type of NSP [53]. Consequently,
it aids in decreasing the digesta viscosity and releasing nutrients that would remain trapped.
This increased accessibility of endogenous enzymes to their substrates results in improved
nutrient digestibility and enhanced growth performance, providing significant benefits.
Recently, more studies have been conducted evaluating the supplementation of xylanase for
poultry, and they have been showing promising results, especially related to enhancements
in nutrient digestibility and intestinal health [54,55]. The positive outcomes in growth
performance and nutrient digestibility, along with the modulation of mucosa-associated
microbiota in the jejunum and changes in jejunal oxidative stress and morphology parame-
ters, can be attributed to the decrease in digesta viscosity and bulkiness. This reduction
leads to the release of trapped nutrients and bioavailability of fermentable NSP-derived
compounds. Previously, McCormick et al. [56] found a close link between fermentable
non-starch NSP compounds and increased fragmentation in the xylan structure. These
compounds are believed to include phenolic substances such as ferulic acid. Ferulic acid
possesses antioxidant properties [57] and antimicrobial functions [58]. Research on the
supplementation of xylanase in broiler chickens has consistently demonstrated positive
effects, such as reduced digesta viscosity and improved nutrient digestibility [59]. However,
it should be noted that broiler chickens might exhibit varying responses to the utilization
of xylanase concerning intestinal health parameters.

6. Functional Role and Mode of Action of Protease Supplementation in Swine
and Poultry

Gut health and growth performance of animals are significantly influenced by the
balance of dietary proteins and amino acids [60]. Diets low in protein have the potential
to make a profit by lowering the cost of feed, nitrogen excretion, and environmental
impacts [61]. The nutrients in poultry feed that are relevant to the environment include
crude protein and phosphorus [62]. Even after receiving all of their nutritional needs,
broilers fed low-protein diets (more than 3%) showed slower developmental rates and
poorer carcass composition [63,64]. According to Zulkifli et al. [65], broilers fed low-protein
diets had lower growth performance under heat stress. Supplementing feed with enzymes
can aggravate nutrient consumption of broilers [66,67]. Earlier studies showed that the
utilization of dietary proteins and amino acids may enhance animal performance [68,69].
In order to maintain growth and improve the sustainability of poultry production, low-
protein diets with protease are suggested [70]. Protease supplementation enhanced amino
acid digestibility, feed conversion, and intestinal integrity in broiler chicks [71]. Another
investigation verified that adding proteases may change the substrates that are available for
bacterial growth in the gut [72]. Supplemental protease’s effects are still debatable. Protease
supplementation in broilers and turkeys has been reported to improve [73], decrease [74],
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or have no effect [75] on AA digestibility. The impact of protease on amino acid digestibility
varies depending on the product [76] and dosage [77].

Soybean meal is one of the major ingredients for pigs as a protein source, but it
contains several anti-nutritional factors, such as lectins, oligosaccharides, haemagglutinin,
goitrogenic factors, trypsin inhibitors, and antigenic proteins, that cause reduction in
protein utilization of pigs by inhibiting the secretion of pancreatic digestive enzymes and
increasing the loss of endogenous secretions of pigs [78–80]. Protein sources, such as
soybean meal, used in pig diets are more expensive than other ingredients, and the pigs’
inability to consume them drives up the cost of feed. Pigs’ inability to metabolize protein
contributes to environmental damage from their nitrogen emissions. The swine industry
has therefore been exploring solutions to these problems. A method to increase nutrient
availability and lower feed costs in the swine business may be to add dietary protease
to pig diets. Dietary protease is commonly used to decrease the amount of protein that
is not digested and help pigs better utilize their nutrients. Proteases have been routinely
included in swine diets for many years as part of enzyme cocktails containing xylanases,
cellulases, amlyases and glucanases [81–84]. The proteases promote the animal’s usage of
additional energy by efficiently separating the protein–starch links during digestion [27,85].
Dietary supplementation protease fed to broilers had a higher protein utilization than those
fed a diet lacking a dietary protease, according to research by Adeola and Cowieson [27].
Zulkifli et al. [65] demonstrated that numerous proteases with various pH optimums
and substrate specificities can enhance soybean meal digestion. This would increase the
amount of protein consumed and utilized, enhance poultry physiology, and have a less
environmental impact.

7. The Application of Enzyme Cocktails in Swine and Poultry

Enzymes are commonly used in animal diets as supplements, and their physical
effects are widely known. However, the precise mechanisms underlying their actions
are still the subject of ongoing research. The application of enzyme cocktails has been
utilized to establish and anticipate the ideal dosage of xylanase and β-glucanase in diets
primarily composed of wheat and barley. Several attempts have been made to establish the
optimal dosage of phytase in diets predominantly based on maize [86]. While it is widely
established that adding supplemental carbohydrases, proteases, and phytases to poultry
diets is effective, there remains a significant lack of clarity regarding the precise mechanisms
through which exogenous enzymes exert their actions. The response to combinations of
enzymes can be influenced by various factors, encompassing enzyme specificity towards
the target substrate, dosage levels, interactions between different enzymes, quality and
composition of ingredients, as well as the age of the animals. Several mechanisms have
been suggested to elucidate the beneficial effects of glucanase in enhancing the energy
and nutrient utilization of diets primarily based on wheat [87]. The effect of single- or
multiple-enzyme supplementation on the growth and health performance in swine and
poultry is summarized in Table 2.

Table 2. Effect of single or cocktail exogenous enzyme supplementation on health performance in
swine and poultry.

Enzyme Level Animals Effects Reference

Phytase 1000 FYT/kg Laying hens

Enhanced overall shell quality and a
beneficial influence on reproductive

hormones to sustain and support
continuous egg production.

Eltahan et al. [88]

Phytase 250 ftu/kg and
500 ftu/kg Broiler chickens Reduction in nutritional levels improves

bird performance Lelis et al. [89]

Phytase 50 g/ton diet Weaned pig
Improved ATTD of energy and protein;

improved standard ileal digestibilty (SID)
of histine

Pluske et al. [38]
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Table 2. Cont.

Enzyme Level Animals Effects Reference

Phytase 500 units/kg diet Growing pigs Increased the ATTD and STTD of Ca and
ATTD of P Gonzalez-Vega et al. [90]

Phytase 1500 units/kg diet Growing pigs
Increased digestibility of P in Canola

meal, 00-rapeseed meal and
00-rapeseed expellers

Maison et al. [91].

Phytase 500 units/kg
250 units/kg diet Growing pigs

Fecal output, as well as the output of Ca
in feces, was reduced. Increased ATTD of

Ca and P and increased STTD of Ca.
Endogenous loss of Ca decreased. Daily

P output reduced

Gonzalez-Vega et al. [92]

Phytase 1500 FTU/kg diet Growing-finishing pigs Increased body weight and the ATTD of
P but no effects on meat quality Dang and Kim et al. [93]

Xylanase 4000 unit/kg diet Growing pigs No effect on nutrient digestibility Yanez et al. [48]

Xylanase 4000 unit/kg diet Growing- finishing pigs

Improved apparent ileal digestibilty
(AID) of energy and threonine in wheat

but no improvement in growth
performance

Widyaratne et al. [50]

Xylanase 45,000 XU/kg Weaning Pigs
Enhanced growth performance and gut
morphology, reduced digesta viscosity,
and reduced intestinal oxidative stress

Duarte et al. [94]

Protease 125 g/ton Finishing pigs
Improved growth performance and

ATTD of nutrients and reduced
stress-related hormones

Upadhaya et al. [95]

Protease 1 to 3 g/kg feed Finishing pigs

Linear reduction in feed conversion
during overall experimental period;

linear increase in nutrient digestibility;
linear reduction in serum total

protein concentration

Liu et al. [96]

Protease 150–300 mg/kg Weaned Piglets
Promoted nutrient absorption, improved

small intestine morphology and
enhanced digestive enzyme activity

Zhu et al. [97]

Phytase,
Xylanase

250 and 500; 200
and 4000 units/kg
diet respectively

Growing pigs
No effect of phytase on AID of amino
acids, and xylanase improved AID of

some AA
Woyengo et al. [41]

Cellulase + xylanase
+ beta-glucanase +

protease

10,000, 6000, 5000
and 12,000 units/g

respectively
Finishing Pigs

No effect on growth performance.
Improved IgG and reduced

malondialdehyde levels in serum in
extruded RSM

Xie et al. [98]

Xylanase +
glucanase +

cellulase

2200, 1100 and
1200 unit/kg diet

respectively
Finishing pigs Increased AID of DM, organic matter,

energy, threonine, proline and serine Emiola et al. [99]

Multienzyme
(beta-glucanase and

beta-xylanase)
1 g/kg feed Growing-finishing pigs

No effect on growth performance and
carcass characteristics for both

barley types
Prandini et al. [100]

STTD, standardized total tract digestibility; ATTD, apparent total tract digestibility; AA, Amino Acid, RSM, Rape
seed meal; DM, Dry matter.

A single enzyme or an enzyme cocktail can be supplemented to an animal diet depend-
ing on particular needs [101,102]. For instance, the conventional utilization of xylanase,
glucanase, phytase, and more recent multi-carbohydrase preparations, have been suggested
for employing regular digestive tract enzymes as well [77,103–105]. The combination of
different enzymes catalyzes a greater proportion of the entrapped nutrients from a diet,
which eventually contributes to improved feed efficiency (Figure 1).
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Figure 1. Benefits of exogenous enzymes on poultry health and digestibility.

Numerous studies examined the influence of nutrient restriction on leg abnormalities
in broilers and found a decrease in leg problems when fed phytase supplements. It can
be proposed that phytase additives heightened bird activity during a crucial phase in leg
bone development [106,107]. Previously, Pintar et al. [108] observed that the addition of
phytase in broiler diets led to enhanced levels of Fe and Mg in the tibia bone but had no
significant impact on the concentrations of Ca, P, and Zn. Emiola et al. [99] demonstrated
that the inclusion of an enzyme cocktail containing xylanase, beta-glucanase and cellulase
in a diet containing 30% wet-distilled dried-grain soluble DDGS and 65% barley improved
the ATTD of DM, N and energy in grower pigs. However, the inclusion of a 0.01% dietary
mixture of protease and probiotics to a corn–soybean meal-based diet did not have any
beneficial effects on growth performance and carcass characteristics in growing-finishing
pigs [109]. The addition of enzymes has been found to confer better efficiency in diets
containing relatively higher fiber such as barley, oats, triticale, peas, rye or wheat, whereas
a corn–soybean meal-based diet is not suggested due to lower NSP contents.

An enzyme cocktail (β-glucanase, xylanase and protease) improved the total tract
digestibility of crude protein and ileal energy in pigs fed hull-less barley-based diets [84].
In addition, Yin et al. [82] reported that enzyme cocktail (arabinoxylanase and protease)
dietary supplementation improved the nutritional value of diets containing wheat bran
or rice bran in growing pigs. Moreover, weaned pigs’ growth performance and nutrient
utilization were increased by dietary supplementation with enzyme cocktails that included
proteases [83]. Though abovementioned studies showed beneficial effects, it is still unclear
how much protease contributed to these enhancements. The exogenous enzymes and the
mode of action on non-ruminant animals are presented in Figure 2. NSPs increase the
viscosity of diets due to their capacity to bond to great amounts of water and to form a
viscous gel, reducing the rate of substrate and digestive enzyme diffusion which provides
a better litter quality.
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The optimal dose of xylanase and β-glucanase enzymes in wheat- and barley-based
diets has been determined or predicted using research findings to date, and efforts have
been undertaken to set the equivalent dose for phytase in corn-based diets [86]. Although
the benefits of adding more carbohydrases, phytases, and proteases to chicken diets are
well known, it is still unclear how these exogenous enzymes work. The ranging of an
enzyme to the target substrate, dosage, interactions between enzymes, ingredient quality,
component composition, and animal age are just a few of the variables that might affect
how an animal reacts to a combination of enzymes. The beneficial effects of glucanase
in enhancing the energy and nutritional consumption of wheat-based diets have been
explained by a number of mechanisms [87]. Carbohydrase in poultry diets may increase
availability of endogenous enzymes to cell content hydrolysis of cell wall arabinoxylan [27]
and increase viscosity, which encourages a healthier microbiota.

8. Conclusions

The data from the literature summarized in this review article, including the utilization
of exogenous enzymes as a feed additive in animal nutrition, has grown significantly in
recent years. Over the past few years, extensive research has been carried out to investigate
the impact of incorporating exogenous enzymes into swine and poultry diets. In general,
the addition of phytase, xylanase and proteases to pig and broiler chicken diets has been
shown to reinforce their nutritional significance by improving growth performance and
nutrient digestibility. Moreover, these enzymes have demonstrated a functional benefit
by reducing the oxidative stress response and potentially influencing the composition of
the mucosal microbiota in the small intestine. In addition, inclusion of either individual
enzymes or a combination of enzymes in animal diets that contain high-fiber ingredients,
such as cereal and its by-products, can lead to enhanced growth performance and improved
nutrient digestibility in the animals. In addition to the aforementioned benefits, enzyme
supplementation, particularly with phytase and protease, has been found to play a signif-
icant role in reducing environmental pollution. By aiding in the breakdown of phytate
compounds, these enzymes contribute to decreased excretion of phosphorus, nitrogen, and
other minerals in animal waste. As a result, these nutrients become more readily available
and accessible for the animals, minimizing their release as pollutants into the environment.
Moreover, the ongoing trend in the field involves actively seeking novel sources of enzymes
for utilization in animal feed, aiming to advance future research. This includes exploring
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the modification of existing enzyme-producing strains to withstand the harsh conditions
of the gastrointestinal tract, as well as exploring innovative techniques to encapsulate
and safeguard enzymes. These aspects hold significant importance and warrant thorough
investigation and application within the agroindustry to enhance animal feed production.
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