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Abstract: As a raw material for sugar, ethanol, and energy, sugarcane plays an important role in
China’s strategic material reserves, economic development, and energy production. To guarantee the
sustainable growth of the sugarcane industry and boost sustainable energy reserves, it is imperative
to forecast the yield in the primary sugarcane production regions. However, due to environmental
differences caused by regional differences and changeable climate, the accuracy of traditional models
is generally low. In this study, we counted the environmental information and yield of the main
sugarcane-producing areas in the past 15 years, adopted the LSSVM algorithm to construct the
environmental information and sugarcane yield model, and combined it with WCA to optimize
the parameters of LSSVM. To verify the validity of the proposed model, WCA-LSSVM is applied to
two instances based on temporal differences and geographical differences and compared with other
models. The results show that the accuracy of the WCA-LSSVM model is much better than that of
other yield prediction models. The RMSE of the two instances are 5.385 ton/ha and 5.032 ton/ha,
respectively, accounting for 7.65% and 6.92% of the average yield. And the other evaluation indicators
MAE, R2, MAPE, and SMAPE are also ahead of the other models to varying degrees. We also
conducted a sensitivity analysis of environmental variables at different growth stages of sugarcane
and found that in addition to the main influencing factors (temperature and precipitation), soil
humidity at different depths had a significant impact on crop yield. In conclusion, this study presents
a highly precise model for predicting sugarcane yield, a useful tool for planning sugarcane production,
enhancing yield, and advancing the field of agricultural production prediction.

Keywords: crop production; agricultural production; artificial intelligence; machine learning; parameter
optimization; sensitivity analysis

1. Introduction

Sugarcane is a perennial crop of the grass family, mainly found in the tropics, and
is the main raw material for sugar production [1], contributing to more than 90% of
sugar production in China [2]. Simultaneously, sugarcane bagasse has emerged as a
promising and versatile composite material component, attracting widespread attention
for its potential as a viable alternative energy source due to its natural, biodegradable
properties and chemical composition [3]. This bio-residue is currently considered by
many researchers as a low-carbon alternative to fossil fuels [4] and is considered to be
the most promising material for low-cost sustainable biofuels (e.g., ethanol) and power
generation [5]. The importance of the sugarcane industry is not limited to food, ethanol,
or electricity production. Sugarcane and its residues can also produce many value-added
products, including various biofuels, biomaterials, biochemicals, and bioenergy, obtained
through biological refining. This has promoted the development of sustainable economy.
China ranks third in global sugarcane production behind Brazil and India [6]. Among
them, the southern provinces of Guangxi, Hainan, Guangdong, and Yunnan are the main
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producing regions, which have similar climatic characteristics: strong solar radiation,
abundant rainfall, and high average temperatures. The main production area can reach
1.5 million hectares, and sugarcane yields account for more than 95% of the country. In
Guangxi, for example, between 2012 and 2013, the sugar industry’s gross domestic product
(GDP) was 43.58 billion yuan, accounting for 3.33 percent of Guangxi’s total GDP, and
farmers’ income from sugarcane reached 32.26 billion yuan. In addition, the sugar industry
also provides many opportunities for other industries such as transportation, marketing,
and employment, leading to overall socio-economic development. To guarantee high yields
of sugarcane and foster the advancement of sustainable economics, it is imperative to
forecast the sugarcane yield.

Yield forecasting is a key component used in the crop production planning process for
setting goals, evaluating alternatives, and assigning management plans. Yield prediction
relies on modern techniques, which can improve the sustainability of the industry and
explore the influence of various variables on yield for agricultural production. Given the
long growth cycle of sugarcane, if the available information that can be used to generate
better yield predictions increases, there are more opportunities to modify the predictions
and optimize growth planning for sugarcane yield. However, yield has a high variance
and is difficult to predict in agricultural research [7]. This is because sugarcane production
is affected by several factors, including precipitation, temperature, water, nutrients, natural
disasters, and field management [8]. Therefore, many researchers are committed to devel-
oping a crop growth model that can be coupled with multiple factors to predict sugarcane
yield. For example, the DSSAT-CANEGRO model based on carbon balance and water bal-
ance was proposed and improved [9], and then a software system, APSIM, was developed
for agricultural systems research, which can be used for crop yield prediction. With the
emergence of Artificial Intelligence, machine learning [10,11] has overcome the limitations
of traditional methods and is capable of recognizing nonlinear patterns in large datasets;
hence, it has been widely used for crop yield prediction. Preeti Saini et al. [12] validated
models such as LSTM, GPR, and Holt-winter time series for the traditional prediction of
sugarcane. The results showed that the LSTM model had the highest prediction accuracy
with RMSE and MSE of 8.8 and 77.79. dos Santos Luciano A C et al. [13] calibrated three RF
models using different predictors to predict sugarcane yield at harvest. The results showed
that the optimal RF model had a root mean square error (RMSE) of 9.9 tons ha in yield
prediction. Das A et al. [14] developed an opti-SAR sugarcane yield prediction model with
an integrated machine learning algorithm. The results showed that the accuracy of the
integrated model was better than that of the single-base model. And the accuracy of the
prediction model was high 1–2 months before the sugarcane harvest. Ilyas Q M et al. [15]
combined machine learning algorithms with remote sensing to predict yields of linseed,
lentil, rice, sugarcane, and wheat, and found that the model outperformed individual
classification methods in classifying crop types and had relatively low mean square error
values for the returns.

However, in the traditional machine learning model, the sugarcane yield prediction
considers too many single influencing factors, and the prediction accuracy is hardly satis-
factory. On the one hand, regional differences lead to different environmental variables of
sugarcane growth, which have a greater impact on the prediction accuracy of sugarcane
yield models [16,17]. On the other hand, the decrease in the prediction accuracy of the crop
growth model is a result of the overall change in climate due to temporal differences [18].
Summing up the above two factors, it is difficult to predict future yields based on en-
vironmental factors in different regions and historical environmental factors. Therefore,
many scholars have combined climate prediction models for certain regions using crop
growth models. Climate prediction models are used to simulate future climate changes
in the region and attempt to approximate the real sugarcane yield under climate changes.
At present, many researchers have applied machine learning algorithms to continuously
improve and update climate prediction models [19–21], but improving yield prediction
models is not ideal. This is attributed to the fact that fewer studies have been conducted on
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combining machine learning algorithms with climate prediction models to predict regional
yields of sugarcane [22]. In addition, the accuracy of sugarcane-related models is generally
low (RMSE from 19.7 to 20.0 ton/ha), which needs to be improved.

In order to improve the prediction accuracy of machine learning algorithms when
combined with climate prediction models, it is necessary to find suitable methods to
optimize them. The water cycle algorithm is an algorithm for scheduling and allocating
tasks in the model. Its core idea is to reasonably arrange the execution order of tasks and
resource allocation according to the priority of tasks and resource demand, in order to
improve the performance of the model and resource utilization. The water cycle algorithm
is able to realize the fusion exploration of meteorological data, soil data, terrain data, and
other multivariate data, and at the same time, it can be highly compatible with machine
learning algorithms and climate prediction models [23,24]. In summary, the water cycle
algorithm has high potential in optimizing sugarcane yield prediction models.

Uncertainty is inevitable when using any individual machine learning model in
isolation due to lack of comparison. Optimization can solve the problem of predictive
accuracy of machine learning models, but not the uncertainty of individual model estimates.
The objective of this study is to select three machine learning algorithms, such as BPNN,
RF, and LSSVM. Based on the main sugarcane production areas in southern China, an
environmental variable sugarcane yield prediction model is developed with environmental
information during the sugarcane growth cycle. And the model is applied to two instances
of time difference and regional difference to verify the validity and accuracy. In addition,
to further improve the prediction accuracy, the algorithm parameters are optimized to
achieve reliable yield prediction. And the effects of environmental variables on sugarcane
yield during each growth cycle are analyzed. The research objectives include the following:
(1) validating the feasibility of the WCA_LSSVM prediction model proposed in this paper in
regional production potential simulation; (2) comparing the performance of sugarcane yield
models in regional production potential simulation based on different machine learning
algorithms; (3) selecting and evaluating the most critical regional environmental variables
in machine learning-based sugarcane yield prediction models.

This study is organized as follows. In Section 2, the process of building the BPNN, RF,
and LSSVM prediction models and the principle of the water cycle optimization method are
introduced. Section 3 presents a comparison of the prediction results of the three machine
learning models, as well as a comparison of the optimization results of the particle swarm
optimization method and the water cycle optimization method. Section 4 summarizes the
conclusions obtained from the comparative analysis of the prediction models and provides
an outlook for future work.

2. Methodology
2.1. Sugarcane Study Area

In this study, 19 cities are selected as target production areas in four major sugarcane-
producing provinces in southern China (18–30◦ N), including Guangxi, Guangdong, Yun-
nan, and Hainan provinces, as shown in Figure 1. During the sugarcane growing season,
the average maximum temperature in the region is from 24.97 ◦C to 32.26 ◦C, the aver-
age minimum temperature is from 14.97 ◦C to 25.75 ◦C, and total precipitation is from
487.17 mm to 2914.4 mm. According to the statistical yearbook of provincial governments,
the data on sugarcane yield and planting area in 15 years from 2005 to 2019 are collected to
form a dataset. Sugarcane is divided into sugar cane and fruit cane according to the type
of sugar cane because the area planted with fruit cane is small and no valid data can be
formed. In addition, fruit cane shape and unit weight differ from sugar cane, which can
interfere with the unit yield in the data set. Therefore, the planting area and planting yield
of fruit sugarcane are screened, and only sugarcane data are counted. In the paper, Matlab
(MathWorks, Natick, MA, USA) is applied for simulation application calculations.
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2.2. Meteorological and Soil Data Collection

In this study, the entire growth process of sugarcane was divided into four cycles:
seeding stage, germination tillering stage, elongation stage, and maturation stage. Me-
teorological and soil information was mainly counted in each cycle. Table 1 lists the
meteorological and soil input variables required to build the model. Among them, the
temperature and precipitation in the meteorological data are mainly from the statistics of
some meteorological stations and the website of NOAA-NCEI. Wind speed and sunshine
intensity data are from the dataset of ECMWF Re-Analysis 5 (ERA5) monthly averaged data
on single levels from 1979 to the present [25]. ERA5 is the fifth generation of the ECMWF
reanalysis of global climate and weather values over the past 40 to 70 years. This dataset
counts each month’s information at a spatial resolution of 0.25◦ × 0.25◦, and then forms the
input data of this research model after cumulative processing. Soil data are derived from
a GLDAS, which was developed jointly by GSFC and NECP in the United States [26,27];
the system has a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution of month
by month. The selected data are processed by accumulating and averaging to generate
the input for the model. The original dataset sources are all real data between 2005 and
2019. Based on the original data set, 270 groups of sample values are obtained by filtering
null values and outliers. We consider selecting 230 sets of samples as the training set and
the remaining 40 sets as the test set. The variation range of input variables is shown in
Table 2. In addition, the effective accumulated temperature refers to the sum of the effective
temperature of crops in the whole growth period, that is, the sum of the difference between
the daily average temperature T and biological zero θ of crops in a certain period of time
(n days). In this study, the biological temperature of sugarcane is set at 10 ◦C, and the
effective accumulated temperature Y is calculated from temperature-related data using the
following equation:

Yn =
n

∑
i=1

Ti − θ (1)

Table 1. Model input variable.

Name Description Units

Temp_Aver The average temperature during a growth cycle. ◦C

Temp_Max The average daily maximum temperature during a
growth cycle.

◦C
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Table 1. Cont.

Name Description Units

Temp_Min The average daily minimum temperature during a
growth cycle.

◦C

Wind_Speed The average daily wind speed during a growth cycle. m/s
EAT Effective accumulative temperature. ◦C
Prec Total precipitation during a growth cycle. mm
SSR Total Surface solar radiation during a growth cycle. MJ/m2

M1_SoilM The average soil moisture at 0–10 cm depth. mm
M2_SoilM The average soil moisture at 10–40 cm depth. mm
Evap Total evapotranspiration during a growth cycle. kg/m3

Table 2. Model input variable range.

Input Variables
Seeding and
Germination
Tillering Stage

Elongation Stage Maturation Stage Units

Temp_Aver (18.76–28.28) (21.91–30.31) (18.11–27.26) ◦C
Temp_Max (22.47–33.84) (25.51–34.62) (22.56–30.95) ◦C
Temp_Min (12.73–26.24) (18.66–28.27) (11.24–24.28) ◦C
Wind_Speed (1.27–4.64) (0.99–5.23) (0.99–5.25) m/s
Prec (28.70–768.1) (273.3–1986.53) (49.53–1417.07) mm
SSR (8.49–19.95) (10.04–19.73) (9.11–16.03) MJ/m2

M1_SoilM (18.68–37.35) (27.73–41.21) (22.52–40.09) mm
M2_SoilM (56.74–113.33) (84.25–124.03) (69.23–120.84) mm
Evap (125.73–359.85) (211.85–507.71) (173.71–378.52) kg/m3

2.3. Model Descriptions

In this study, in order to obtain the algorithm with the highest prediction accuracy and
the best generalization capability, we choose BP neural network, random forest machine
learning, and least square support vector machine to compare three algorithms and opti-
mize the parameters of the algorithm with the best performance to find the optimal value
of the model. In addition, RMSE, MAE, MAPE, R2, and SMAPE are used to evaluate the
generalization ability and prediction accuracy of each model.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
1
n

n

∑
i=1
| (yi − ŷi)| (3)

R2 = 1− ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 (4)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ (5)

SMAPE =
100%

n

n

∑
i=1

|yi − ŷi|
(|ŷi |+|yi |)

2

(6)

2.3.1. Back Propagation Neural Network (BPNN)

BPNN is a basic neural network, first proposed by Rumelhart and McClelland in
1986 [28]. It is characterized by the forward propagation of signals and backward transmis-
sion of errors. The information is forward propagated through layer-to-layer connections,
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and the error is back-propagated and weights are updated through a back-propagation
algorithm to minimize the error between the predicted output and the actual output. BPNN
has the advantages of feature extraction by learning, memory association, parallel architec-
ture, autonomous learning, and self-adaptive ability [29], and BPNN models have been
widely used in precipitation forecasting, meteorological parameter rainfall forecasting
studies [30], regional surface soil moisture estimation [31], etc.

The topological structure of BPNN is shown in Figure 2, which consists of the input
layer, hidden layer, and output layer. The connections between neurons of each layer are
formed by weights and thresholds. The weight and threshold are constantly adjusted by
the gradient descent method to minimize the error between the network output value
and the expected value [32]. The BPNN works in two steps: the first step is the forward
propagation of the signal, and the value of the output layer is calculated from the input
layer using the kernel function of the hidden layer; the second step is the back propagation
of errors. The output errors are transmitted back from the hidden layer to the input
layer and distributed to each neuron. According to the prediction error, the weight and
threshold between the hidden layer node and the output node is adjusted, and the expected
value is finally reached. The process expressions of H calculation of hidden layer output
(Formula (7)), O calculation of output layer output (Formula (8)), weight ωij and ωjk update
(Formulas (10) and (11)), hidden layer threshold a, and output layer threshold b update
(Formulas (12) and (13)) are as follows:

Hj = f

(
n

∑
i=1

ωijxi − aj

)
j = 1, 2, . . . , l (7)

Ok =
l

∑
j=1

Hjωjk − bk k = 1, 2, . . . , m (8)

ek = Yk −Ok (9)

ωij = ωij + ηHj
(
1− Hj

)
x(i)

m

∑
k=1

ωjkek i = 1, 2, . . . , n; j = 1, 2, . . . , l (10)

ωjk = ωjk + ηHjek j = 1, 2, . . . , l; k = 1, 2, . . . , m (11)

aj = aj + ηHj
(
1− Hj

) m

∑
k=1

ωjkek j = 1, 2, . . . , l (12)

bk = bk + ek k = 1, 2, . . . , m (13)

where f is the implied layer excitation function, n is the number of input nodes, m is the
number of output nodes, l is the number of implied layer nodes, e is the network prediction
error, and η is the learning rate.

2.3.2. Random Forest (RF)

Random forest is an algorithm that integrates multiple decision trees for regression or
classification through integrated learning techniques [33]. The advantage of the Random
forest algorithm is that it can determine the importance of features without feature selection
and analyze the interaction between different features. In addition, for unbalanced datasets,
the Random forest algorithm can balance the error and maintain the model accuracy.
In the Random Forest regression, each decision tree is considered as a basic unit that
selects a portion of a branch of the dataset by setting a threshold. Essentially, Random
forest is a classifier integration algorithm based on decision trees, each of which relies on
independently distributed random vectors. Random forest generates multiple classification
trees by randomly observing column vectors and row vectors and finally summarizes the
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results of each classification tree. In order to obtain optimal segmentation in generating
random forests, the number of decision trees and the number of variables need to be
selected and tested. Different from the single decision tree model, RF is based on the
Bootstrap method of repeated sampling in the original dataset Sn to generate multiple new
datasets (Sl

n) of equal capacity to the original dataset. Then, the decision tree is constructed
by randomly selecting the split attribute set, and the predictions of multiple decision trees
are integrated, and the final prediction result is obtained through voting. The prediction
result depends on the average result of the decision tree (Figure 3). The model is represented
as follows:

Ŷ =
1
q

q

∑
l=1

ĥ
(

X, Sl
n

)
(14)

where q denotes the number of decision trees.
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2.3.3. Least Squares Support Vector Machine (LSSVM)

SVM is a machine learning (ML) method that can be used for classification and
regression, which was proposed by Vapnik and Cortes [34]. Support vector machine
achieves pattern recognition between two-point classes by looking for decision surfaces
determined by certain points of the training set, called support vectors. It has good fitting
accuracy and speed when processing nonlinear data, and is suitable for small sample
research. The goal of SVM is to create a classification hyperplane, separate the two types,
and maximize the isolation edge. Then, Sukens et al. proposed LSSVM [35–37], which
uses the least square linear system as the loss function, and the inequality constraints of
the optimization problem are converted into equality constraints, so as to obtain better
performance than SVM.

LSSVM maps nonlinear problems to linear problems in a high-dimensional space.
For a given nonlinear training sample data, N is the number of samples, and the linear
regression function is constructed as follows:

f(x) = ωT ϕ(x) + b (15)

where ωT is the column vector of power coefficients in the high-dimensional feature space;
b is the deviation; and ϕ(x) is the nonlinear mapping. The solution of the linear regression
function is transformed into the following optimization problem:

min
ω, ξ

1
2‖ω‖

2 + γ
2

N
∑

τ=1
ξ2

yi
(
ωT ϕ(xi) + b

)
= 1− ξi, i = 1, 2, · · ·N

(16)

where γ > 0 is the penalty coefficient and ξi is the error variable. The above formula is
substituted into the Lagrange function:

L(ω, b, ξ, b) =
1
2
‖ω‖2 +

γ

2

N

∑
τ=1

ξ2
i −

N

∑
k=1

ai

{
yi

(
ωT ϕ(xi) + b

)
− 1 + ξi

}
(17)

where ai > 0 is the Lagrange multiplier. Finally, the kernel function is set as K
(
xi, xj

)
, and

the optimal regression function is obtained by solving the KKT optimization condition:

f(x) =
l

∑
i=1

aiyiK
(
xi, xj

)
+ b (18)

2.3.4. Water Cycle Algorithm (WCA)

In order to further improve the accuracy of the prediction model, optimization of the
model parameters using an optimization-seeking algorithm is necessary. WCA is a new
robust search method, which is a meta-heuristic algorithm proposed by Hadi Eskandar et al.
in 2012 inspired by the natural water cycle process [38]. In the process of the water cycle,
assuming that precipitation occurs constantly, the individuals generated by rain constitute
the population of the algorithm, which is divided into three levels according to flow
intensity. The best level is the ocean, the second level is the river, and the rest are streams.
The individual composition of the algorithm is as follows:

The population initialization simulates the natural rainfall process. To meet the
randomness of the rainfall process, WCA uses a random function to arrive at the initial
population (X), and it can be expressed as follows:

X = LB + rand× (UB− LB) (19)
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where LB and UB represent the lower and upper bounds of the population, respectively.
Moreover, rand denotes a vector generated randomly between 0 and 1. In addition, the
matrix expression of the population is as follows:

X =


Raindrop1
Raindrop2
Raindrop3

...
RaindropN

 =



Sea
River1
River2

...
RiverNsr

StreamNsr+1

StreamNsr+2
...

StreamNpop


=


x1

1 x1
2 · · · x1

N
x2

1 x2
2 · · · x2

N
...

... · · ·
...

x
Npop
1 x

Npop
2 · · · x

Npop
N

 (20)

where Npop is the number of populations and N is the dimension of the search space. After
forming the initial population, each individual is brought into the objective function to
calculate the traffic intensity for ranking.

Cost = f
(

x1
1, x1

1, x1
1, . . . , x1

1

)
i = 1, 2, . . . , Npop (21)

Nsr = Number o f Rivers + 1 (22)

Nstream = Npop − Nsr (23)

In the above equation, Nsr is the number of rivers and oceans, Nstream is the number
of streams, and the number of streams flowing into oceans/rivers is obtained using the
following equation:

Nsrn = round

(∣∣∣∣∣ Cn

∑Nsr
n=1 Cn

∣∣∣∣∣× Nstream

)
, n = 1, 2, . . . , Nsr (24)

Cn = Costn − CostNsr+1 (25)

After the initial population is formed and graded, the confluence begins; that is, the
algorithm enters an iterative process, and the location of rivers and oceans is constantly
updated, as described below:

XStream(t + 1) = XStream(t) + rand× C× (XRiver(t)− XStream(t)) (26)

XStream(t + 1) = XStream(t) + rand× C× (XSea(t)− XStream(t)) (27)

XRiver(t + 1) = XRiver(t) + rand× C× (XSea(t)− XRiver(t)) (28)

where rand is a random number that meets uniform distribution between (0, 1), and C is
the updated coefficient between (1, 2), which is generally set to 2.

All optimization algorithms need to consider the problem of falling into local optimiza-
tion due to fast convergence. WCA can solve the local optimization problem by introducing
an evaporation process and rainfall process to enhance the searchability of the algorithm.
Therefore, rivers and streams are properly examined using the following equation to
determine if they are close enough to the sea to influence the evaporation process:

|XSea − XRiver| < dmax (29)
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di+1
max = di

max −
di

max
Max Iteration

(30)

where the initial value of dmax is a constant close to 0, and the value in this study is
10−16. When the above formula is true, that is, when evaporation conditions are met, the
real-time rainfall process and the formation of new streams can be determined by the
following equation:

XNew
Stream = LB + rand× (UB− LB) (31)

where UB and LB are the upper and lower boundaries of the search space, respectively.
Algorithm 1 is the pseudo-code for the WCA:

Algorithm 1 Pseudo-code of WCA

Initialize parameters: Npop, Nsr, dmax, Max Iteration;
Randomly initialize the population X by Equation (19);
Calculate the fitness value Cost of the population by Equation (21);
Sort the population in ascending order by fitness value;
Divide the population into three categories: XSea, XRiver, XStream;
Calculate the number of streams flowing into a river or ocean Nsrn by Equation (24);
while Iteration < Max Iteration do
Allocate streams moving to sea and generate new stream Xnewstream by Equation (27);
if Cost(Xnewstream) < Cost(Xsea) then
Swap Xsea and Xnewstream;
end if
Allocate streams moving to river and generate new stream Xnewstream by Equation (26);
if Cost(Xnewstream) < Cost(Xriver) then
Swap Xriver and Xnewstream;
end if
Allocate rivers moving to sea and generate new river Xnewriver by Equation (28);
if Cost(Xnewriver) < Cost(Xsea) then
Swap Xsea and Xnewriver;
end if
Check the evaporation to generate new streams Xnewstream by Equation (31);
Decrease dmax by Equation (30);
Interation = Iteration + 1
end while
return Xsea

The WCA optimization process is shown in the flow chart (Figure 4):

2.3.5. Variance-Based Sensitivity Analysis

In sensitivity analysis, any model may be viewed as a function Y = f(X), where X is a
vector of d uncertain model inputs {X1, X2, . . . Xd}, and Y is a chosen univariate model
output (note that this approach examines scalar model outputs, but multiple outputs can
be analyzed via multiple independent sensitivity analyses). Furthermore, it is assumed
that the inputs are independently and uniformly distributed within the unit hypercube, i.e.,
Xi ∈ [0, 1] for i = 1, 2, . . . d. This incurs no loss of generality because any input space can
be transformed onto this unit hypercube. f(X) may be decomposed in the following way:

Y = f0 +
d

∑
i=1

fi(Xi) +
d

∑
i<j

fij
(
Xi, Xj

)
+ . . . + f1,2,...d(X1, X2, . . . , Xd) (32)
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where f0 is a constant and fi is a function of Xi, Xj a function of Xi and Xj, etc. A condition
of this decomposition is as follows:∫ 1

0
fi1i2 ...is

(
Xi1 , Xi2 , . . . , Xis

)
dXk = 0, f or k = i1, . . . , is (33)

i.e., all the terms in the functional decomposition are orthogonal. This leads to definitions
of the terms of the functional decomposition in terms of conditional expected values:

f0 = E(Y) (34)

fi(Xi) = E(Y|Xi)− f0 (35)

fij
(
Xi, Xj

)
= E

(
Y
∣∣Xi, Xj

)
− f0 − fi − f j (36)
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From this, it can be seen that fi is the effect of varying Xi alone (known as the main
effect of Xi), and fij is the effect of varying Xi and Xj simultaneously, in addition to the effect
of their individual variations. This is known as a second-order interaction. Higher-order
terms have analogous definitions.

Now, further assuming that the f(X) is square-integrable, the functional decomposition
may be squared and integrated to provide the following:

∫
f 2(X)dX− f0

2 =
d

∑
s=1

d

∑
i1< ...<is

∫
f 2
i1 ... is dXi1 . . . dXis (37)

Notice that the left-hand side is equal to the variance of Y, and the terms of the right-
hand side are variance terms, now decomposed with respect to sets of the Xi. This finally
leads to the decomposition of variance expression:

Var(Y) =
d

∑
i=1

Vi +
d

∑
i<j

Vij + . . . + V12 ... d (38)

Vi = VarXi

(
EX∼i (Y|Xi)

)
(39)

Vij = VarXij

(
EX∼ij

(
Y
∣∣Xi, Xj

))
−Vi −Vj (40)

The X∼i notation indicates the set of all variables except Xi. The above variance
decomposition shows how the variance of the model output can be decomposed into terms
attributable to each input, as well as the interaction effects between them. Together, all
terms sum to the total variance of the model output.

A direct variance-based measure of sensitivity Si, called the “first-order sensitivity
index”, or “main effect index”, is stated as follows:

Si =
Vi

Var(Y)
(41)

This is a contribution to the output variance of the main effect of Xi; therefore, it mea-
sures the effect of varying Xi alone, but averaged over variations in other input parameters.
It is standardized by the total variance to provide a fractional contribution. Higher-order in-
teraction indices, Sij, Sijk, and so on, can be formed by dividing other terms in the variance
decomposition by Var(Y). Note that this has the following implication:

d

∑
i=1

Si +
d

∑
i<j

Sij + . . . + S12 ... d = 1 (42)

Using the Si, Sij and higher-order indices given above, one can build a picture of
the importance of each variable in determining the output variance. However, when the
number of variables is large, this requires the evaluation of 2d−1 indices, which can be too
computationally demanding. For this reason, a measure known as the “Total-effect index”
or “Total-order index”, STi, is used. This measures the contribution to the output variance
of Xi, including all variance caused by its interactions, of any order, with any other input
variables. It is given as follows:

d

∑
i=1

STi ≥ 1 (43)

Due to the fact that the interaction effect between, e.g., Xi and Xj is counted in both STi
and STj. In fact, the sum of the STi will only be equal to 1 when the model is purely additive.
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3. Result and Discussion
3.1. Models Performance

In this study, environmental variables (climate and soil factors) are used as inputs, and
the unit yield of sugarcane is used as outputs to construct a prediction model. Based on
the original data set, 270 groups of sample values are obtained by filtering null values and
outliers. We consider selecting 230 sets of samples as the training set and the remaining
40 sets as the test set. The training and testing sets represent 85% and 15% of the entire
dataset, respectively. And the model is applied to two instances, the main difference
between these two instances is in dividing the samples, and the test set samples are
selected differently. The test set of the first instance is selected from the dataset with equal
variances, and the samples are selected mainly to verify the accuracy of the model with time
differences, that is, to predict the data of the remaining 2 years based on the data of 13 years
in each place. The test set of the second instance is selected from the last 40 samples of the
dataset to verify the accuracy of the model with regional differences, that is, to predict the
data of the remaining 2 regions with the data of 17 regions. The validity of the model in a
certain range of time and space is verified by different divisions.

In the process of modeling, we randomly sample the dataset and carry out ten-fold
cross-validation to reasonably balance the running time and accuracy of the prediction
model, reduce the contingency caused by the single division of the training set and valida-
tion set, and avoid selecting models without generalization ability due to special division.

According to the above model construction method, BPNN, RF, and LSSVM of machine
learning algorithm are used to construct prediction models, respectively, and five evaluation
indexes, RMSE, MAE, R2, SMAPE, and MAPE, are used to compare the advantages and
disadvantages of various algorithms. The calculation results are shown in Figure 5. In
instance 1 (Figure 5a), the RMSE of three algorithms are approximated with the estimated
error values ranging from 6 to 7.5 ton/ha, while R2 of LSSVM is 40.79% and 3.97% higher
than BPNN and RF, respectively, indicating a higher degree of fitting of LSSVM algorithm.
In instance 2 (Figure 5b), though the RMSE value of LSSVM is slightly larger than that
of RF, its R2 is 76.96% and 83.13% higher than that of the other two models. Combined
with the two graphs, the model constructed by the LSSVM algorithm has higher prediction
accuracy and generalization ability and is more suitable for sugarcane yield prediction.
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Another thing that needs to be explained is that by comparing the two Figure 5a,b, it
is found that the prediction model fit (R2) for studying geographical differences is generally
poor, which may be due to the fact that the geographical span leads to large differences
in raw data such as climatic factors and soil factors, making the raw data highly random
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and volatile, and the singular values are not easily detected, which brings challenges to the
stability and accuracy of the prediction model.

3.2. Comparison of LSSVM Models with Different Kernel Functions

Compared with other algorithms, LSSVM has higher accuracy and generalization
ability, so this study uses the prediction model constructed by LSSVM. LSSVM algorithm
transforms data into high-dimensional space by introducing kernel function, which makes
data linearly separable, reduces misclassified data points, and increases the generalization
ability of the model. In this study, linear kernel function, polynomial kernel function, and
Gaussian radial basis kernel function are applied to support vector machines to evaluate
the prediction ability of the model. The expressions of each kernel function are as follows:

Linear kernel function (lin_kernel):

K(x, µ) = xT ·µ (44)

Polynomial kernel function (poly_kernel):

K(x, µ) =
(

axTµ+ c
)q

, q > 0 (45)

Gaussian radial basis kernel function (RBF_kernel):

K(x, µ) = exp

(
−‖ x− µ‖ 2

σ2

)
(46)

The final results of each model are shown in Figure 6, where it can be seen that the
R2 corresponding to the lin_kernel, poly_kernel, and RBF_kernel in instance 1 are 0.4098,
0.2622, and 0.6629, respectively, and the RMSE are 7.158, 8.852, and 5.534, respectively.
The R2 comparison of three kernel functions in instance 2 is 0.1679, 0.1657, and 0.3147,
respectively, and RMSE is 4.962, 6.509, and 4.803, respectively. In conclusion, RBF_kernel
has higher prediction performance, and RBF kernel function is superior to other functions
in terms of fit degree, fitting error, and generalization ability of the model.
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3.3. WCA Optimization Results

After determining the use of the LSSVM prediction algorithm and radial basis kernel
function, the prediction accuracy of the LSSVM algorithm is closely related to the penalty
value c and gamma value g in the kernel function. Among them, penalty value c is used to
control the balance between margin maximization and error minimization, and gamma
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value g affects the mapping from sample space to feature space. Therefore, how to select c
and g to optimize the prediction ability of the model needs special study.

In the past, the values of C and g were usually derived directly from experience [39].
In this paper, WCA is adopted to optimize the selection of two parameters by taking the
error value of the sugarcane prediction model MSE as the fitness function.

Figure 7 shows the process and results of applying the water cycle algorithm to find
the best for each of the two instances. At first, WCA forms populations via the rainfall
process, uniformly and randomly distributed in the two-dimensional plane formed by the c
and g values, and then forms location updates via the confluence processes such as streams
flowing into rivers and rivers flowing into the ocean, causing the population value (c, g) to
move toward the minimum value of MSE in the set range and eventually gather around the
minimum value. The c value range is set to (1,110) and the g value range is set to (1,1000).
Figure 7a,c show the distribution of the population in the c-g two-dimensional plane after
generating the initial population. Figure 7b,d show that the original population gathers
near the optimal value of the model via the continuous iterative updating of the position
after water cycle optimization. The final results show that the optimal value of instance 1 is
clustered around (105,115.798), and that of Instance 2 is clustered around (78.428,80).
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3.4. WCA-LSSVM Model Performance

In this study, the LSSVM algorithm optimized by WCA (WCA-LSSVM) is used to
predict sugarcane yield. To verify the effectiveness of the proposed model, we build the
LSSVM model without optimization and the LSSVM model with particle swarm opti-
mization (PSO-LSSVM), and then apply the three models to two instances to compare the
prediction accuracy and fitting ability of the different models.

The comparison results of the three models are shown in Figure 8. Among them,
change rate 1 is the rate of change in WCA-LSSVM with respect to each indicator of
LSSVM, and change rate 2 is the rate of change in WCA-LSSVM with respect to each
indicator of PSO-LSSVM. In Figure 8a, WCA-LSSVM shows a significant improvement in
all indicators compared with LSSVM, especially in terms of model accuracy and fit degree.
RMSE decreased from 6.716 to 5.385, R2 increased from 0.497 to 0.665, and the change rates
reached 15.03% and 30.62%, respectively. Compared with PSO-LSSVM, WCA-LSSVM also
has a slight improvement in each index, with an increase of 5–7%. In Figure 8b, compared
with LSSVM, WCA mainly improved the accuracy of the model, with RMSE, MAE, and
SMAPE dropping from 6.414, 4.803, and 0.0678 to 5.032, 4.017, and 0.0561, respectively.
And RMSE had the largest change rate, reaching 17.22%. Compared with PSO-LSSVM,
WCA-LSSVM greatly improved the fitting accuracy of the model. R2 was improved from
0.291 to 0.378, with an increase of 29.73%. Other indicators were also improved at different
ranges, with an increase of 5–8%. Therefore, combined with Figure 8 and Table 3, it can be
seen that WCA-LSSVM has a good improvement in both the error accuracy and the fitting
degree of the model.
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Table 3. Evaluation index values of each model in two instances.

Type
Instance 1 Instance 2

RMSE MAE R2 SMAPE MAPE RMSE MAE R2 SMAPE MAPE

BPNN 7.489 6.092 0.353 0.0885 0.0886 6.579 5.462 0.178 0.0744 0.0766
RF 6.724 5.496 0.478 0.0801 0.0817 5.685 4.708 0.172 0.0658 0.0641
LSSVM 6.716 5.301 0.497 0.0766 0.0774 6.414 4.803 0.315 0.0678 0.0657
PSO_LSSVM 5.726 4.738 0.622 0.0683 0.0691 5.310 4.265 0.291 0.0598 0.0589
WCA_LSSVM 5.385 4.496 0.665 0.0642 0.0649 5.032 4.017 0.378 0.0561 0.0545

Table 3 is a comparison of the five evaluation indicators of different models. R2

(Determination Coefficient) and RMSE (Root Mean Square of Error) are the most commonly
used metrics for evaluating the performance of a predictive model. The closer R2 is to 1,
the better the fit of the predictive model; the smaller RMSE is, the higher the predictive
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accuracy of the model. Moreover, MAE (Mean Absolute Error), MAPE (Mean Absolute
Percent Error), and SMAPE (Symmetric Mean Absolute Percentage Error) are also effective
indicators for evaluating the prediction accuracy of models. It can be seen that the prediction
performance of the WCA_LSSVM prediction model is superior to other comparative models.
Simultaneously, among other prediction models applied to sugarcane production areas
in Guangxi [40], the lowest RMSE value is 10.34 and the lowest MAPE value is 0.0685. In
comparison, it is evident that the WCA_LSSVM prediction model proposed in this article
surpasses others applied to the Guangxi sugarcane production area in terms of prediction
accuracy. In Figures 9 and 10, Figures 9a and 10a show the intuitive comparison between
the output value predicted by each algorithm and the real value, Figures 9b and 10b show
the absolute value of the error of the model. In addition, we introduce relative error (RE),
that is, the percentage of absolute error in the true value, to intuitively show the prediction
level of each model. The calculation formula is as follows:

RE(%) =

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100 (47)

where ŷi is the predicted value of the model output and yi is the true value. The calculation
results are shown in Table 4.
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Figure 9. Comparison diagram of evaluation index of three different optimization methods in instance
1. (a) The intuitive comparison between the output value predicted by each algorithm and the real
value in instance 1. (b) The absolute value of the error of the model in instance 1.
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Table 4. The relative error distribution of each optimization model in two instances.

Instance Type
Number

RE < 5% 5% ≤ RE
<10%

10% ≤ RE
<15%

15% ≤ RE
<20% RE ≥ 20%

Instance 1
LSSVM 15 14 5 2 1
PSO_LSSVM 17 14 7 2 0
WCA_LSSVM 17 13 9 1 0

Instance 2
LSSVM 17 14 7 1 1
PSO_LSSVM 20 12 6 2 0
WCA_LSSVM 22 13 5 0 0

In Figure 9 and Table 4, it can be seen that LSSVM has better error accuracy and fitting
accuracy when training data, RMSE can reach 0.1507, but when testing the set prediction,
LSSVM has the largest prediction error and the worst fitting degree, with the maximum
relative error reaching 27%. This may be because it produces the overfitting in the previous
training, leading to the prediction effect not being ideal. In Figure 9b, it can be seen
intuitively that both PSO-LSSVM and WCA-LSSVM performed better than LSSVM in the
test, but the absolute error value of WCA-LSSVM accounted for 95% in the range [0, 10],
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with a maximum value of 12.75, while the absolute error value of PSO-LSSVM reached
a maximum value of 15.86. And RE of WCA-LSSVM is basically controlled within 15%,
which has higher prediction accuracy.

In Figure 10 and Table 4, the prediction curve of instance 2 is described. It can be
seen that for the training data PSO-LSSVM, it is difficult to effectively follow the target
value, the fitting degree is poor. Its absolute error value is much higher than LSSVM and
WCA-LSSVM. The maximum absolute error value is 17.648, and the training effect is lower
than the other two algorithms. However, in the test set verification results of the model, the
prediction curve of LSSVM fluctuates greatly, and the prediction effect is not as good as
PSO-LSSVM and WCA-LSSVM. In addition, the absolute error of WCA-LSSVM is basically
controlled within 10, while the maximum absolute error of LSSVM and PSO-LSSVM is
13.87 and 11.99. Combining the tables, the error values of the three models of LSSVM,
PSO-LSSVM, and WCA-LSSVM in the interval of RE < 5% account for 42.5%, 50%, and
55%. Moreover, the maximum relative error of LSSVM is 28.789%, that of PSO_LSSVM is
16.701%, and that of WCA_LSSVM is all within 15%.

In summary, the comparison of various models shows that parameter optimization
using WCA significantly improves the prediction accuracy and generalization ability of
LSSVM, and makes the algorithm converge to the optimal value more easily. Compared
with other models, WCA-LSSVM is more competitive and applicable for different times
and locations within a certain range.

3.5. Sensitivity Analysis

Sensitivity analysis is to use a randomly generated sequence as the prediction input to
fit the prediction model and calculate the influence degree of each parameter on the model
output by the ratio of variance, which ultimately improves the accuracy and reliability of
the sugarcane yield prediction model. The results are shown in Figure 11. The variables
in the figure are divided according to the different growing stages of sugarcane and it
can be seen that, firstly, temperature (average temperature, maximum temperature, and
minimum temperature) has a decisive influence on sugarcane yield. Low temperatures
and reduced rainfall can stress the growth rate of sugarcane at the length and maturity
stages and reduce sugarcane yield. However, the minimum temperature had less effect
on the growth of sugarcane in this study. This is attributed to the fact that the minimum
temperature is higher than the biological zero of sugarcane almost all year round under the
climatic conditions of Guangxi, so the effect is not as strong as other temperature factors
in the sensitivity analysis. Variations in rainfall had a greater impact on the elongation
stage of sugarcane growth, followed by the tillering stage, and had the least impact at the
maturation stage. This is consistent with the study of sugarcane growth characteristics in
Guangxi by Qin N et al. [41]. In terms of soil moisture, M1_SoilM and M2_SoilM correspond
to soil moisture at 0–10 cm depth and soil moisture at 10–40 cm depth, respectively. It
can be seen that M1_SoilM has a great influence in the seeding stage, and M2_SoilM has
a higher influence in other stages after the seeding stage. This is because the growth of
sugarcane is closely linked to the absorption of nutrients and water in the soil. Despite
the fact that soil moisture fluctuates more significantly at the surface, the root distribution
density of sugarcane is higher within the 10–40 cm depth range of soil [42], rendering it
more vulnerable to variations in soil moisture, which can ultimately lead to alterations
in yield. The variation in soil moisture was related to both total evapotranspiration and
rainfall during the growth cycle. Total evapotranspiration during the growth cycle is shown
in Figure 11, which has a large effect on the stage of tillering and maturation, but the change
in total precipitation has a large effect on the elongation stage. This is attributed to the high
water demand during the elongation stage of sugarcane growth, where the amount of water
stored in the soil after precipitation is much higher than the evapotranspiration loss from
the stems and leaves. In contrast, the total diffuse evapotranspiration of sugarcane at the
leaf tillering and maturation stages is susceptible to variations in a number of factors and
thus affects the growth process due to the high leaf area. The high effect of solar radiation
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intensity on the tillering stage is accounted for by the highly effective utilization of diffuse
radiation by the high leaf area, which in turn results in the variation in sugarcane yield.
Some of these conclusions have been summarized by other researchers [43–45], which also
verified the validity of the prediction model in this paper.
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4. Conclusions

This study collected environmental information from four provinces in Southern
China and sugarcane yield data, preprocessed the original data via filtering outliers and
normalized analysis, and different machine algorithms were selected to build prediction
models for comparison. The best-performing LSSVM was selected, and the prediction
model was applied to two instances after optimizing the LSSVM parameters using WCA.
The results show that the model proposed in this paper can reach RMSE of 5.385 and
5.032 and MAPE of 0.0649 and 0.0545 when applied in two instances, whereas the lowest
RMSE is 10.34 and the lowest MAPE is 0.0685 in the other models for the prediction of
sugarcane yield in Guangxi. A comparison of this paper’s model is more accurate in
predicting the sugarcane yield in Guangxi. Comparing the Particle Warm Optimization
and Water Cycle Optimization methods, the RMSE values of the two instances after Particle
Warm Optimization are 5.726 and 5.310, and the MAPE are 0.0691 and 0.0589, respectively.
Despite the improvement in the accuracy, the effect is still not as effective as that of the
Water Cycle Optimization algorithm. It can be seen that the model is more susceptible to
converging to the optimal value when optimizing the model using the WCA optimization
method, achieving a further improvement in accuracy.

In addition, the environmental variables of sugarcane growth are divided accord-
ing to the growth stage, and the sensitivity of each variable is calculated by fitting the
WCA-LSSVM prediction model. It was found that although the main influencing factors
of sugarcane production were temperature and precipitation, which was the same as the
results of other papers, soil moisture at different depths also had a great impact on crop
yield. The investigation results of this paper are of great research significance for the pre-
diction of sugarcane yield in the Guangxi region. Meanwhile, it can provide an important
reference for the government to formulate relevant policies and a decision-making basis for
farmers to guide sugarcane planting, so as to improve the yield and quality of sugarcane
and promote the development of the sugarcane industry.

Nonetheless, the results of this study are highly dependent on climatic data and do not
take into account the effects of disturbances such as soil nutrients, varietal improvement,
technological advances, changes in cultivation management, and social factors on sugar-
cane production. All these factors can lead to bias in the prediction results of sugarcane
yield. Therefore, more variables such as remotely sensed vegetation indices (e.g., NDVI,
SAVI, GNDVI, etc.) need to be included in the consideration of input variables, and the
correlations of all input variables need to be screened in order to optimize the predictive
effectiveness of the model. Meanwhile, in order to further improve the accuracy of studying
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the effects of climate change on sugarcane yield in the Guangxi region, future research
should incorporate a comprehensive simulation with factors such as environment, genet-
ics (varieties), and management measures, such as adjusting the sowing time as well as
management-to-management relationships. This will also provide a more comprehensive
and scientific theoretical basis for improving the quantity and quality of sugarcane in
sugarcane production areas.
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Nomenclature

R2 Determination Coefficient
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
SMAPE Symmetric Mean Absolute Percentage Error
NOAA National Oceanic and Atmospheric Administration
NCEI National Centers for Environmental Information
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF Re-Analysis 5
GLDAS Global high-resolution Land Surface Simulation System
GSFC Goddard Space Flight Center
NCEP National Centers for Environmental Prediction
BPNN Back Propagation Neural Network
RF Random Forest
SVM Support Vector Machine
ML Machine Learning
WCA Water cycle algorithm
LSSVM Least squares support vector machine
PSO-LSSVM Particle Warm Optimization of LSSVM
WCA_LSSVM WCA of LSSVM
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