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Abstract: Post-harvest diseases are one of the main causes of economical losses in the apple fruit
production sector. Therefore, this paper presents an application of a knowledge-based expert system
to diagnose post-harvest diseases of apple. Specifically, we detail the process of domain knowledge
elicitation for constructing a Bayesian network reasoning system. We describe the developed expert
system, dubbed BN-DSSApple, and the diagnostic mechanism given the evidence provided by the
user, as well as a likelihood evidence method, learned from the estimated consensus of users’ and
expert’s interactions, to effectively transfer the performance of the model to different cohorts of users.
Finally, we detail a novel technique for explaining the provided diagnosis, thus increasing the trust
in the system. We evaluate BN-DSSApple with three different types of user studies, involving real
diseased apples, where the ground truth of the target instances was established by microbiological
and DNA analysis. The experiments demonstrate the performance differences in the knowledge-
based reasoning mechanism due to heterogeneous users interacting with the system under various
conditions and the capability of the likelihood-based method to improve the diagnostic performance
in different environments.

Keywords: post-harvest diseases of apple; expert system in agriculture; Bayesian network;
knowledge elicitation; likelihood evidence; explanation

1. Introduction

The domesticated apple (Malus domestica) is the third most produced fruit in the world
(after bananas and watermelons), with more than 87 million metric tons produced per
year [1]. Apple trees are widely spread in moderate temperate agricultural areas, and
their fruits can be stored for prolonged periods under controlled atmosphere conditions.
However, physiological disorders and pathogenic diseases might occur during post-harvest
storage and degrade crop quality and quantity, resulting in significant economic losses [2].
For example, pathogenic diseases were evaluated to cause production losses of up to 10%
in integrated agriculture and up to 30% in organic agriculture in northern Europe [3].
Therefore, an expert system capable of responsively and effectively suggesting a proper
diagnosis of the disease affecting the stored apples is crucial for this economic sector.
Determining the best immediate damage containment technique and/or recommending
a plant protection scheme for the following year is dependent on the identification of the
exact pathogen species [4]. The system should process various macroscopic but subtle
properties of the symptoms, such as texture, size, shape, and consistency of the rot, in
order to properly detect the disease class. Thus, the expert system should provide a user
interface able to extrapolate user feedback on visible symptoms of a diseased target apple,
guiding its reasoning toward a reliable and valid diagnosis. Therefore, we desdigned
BN-DSSApple a knowledge-based expert system developed on the framework of a Bayesian
network (BN) [5], constituting a probabilistic graphical model to support the reasoning
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about uncertainty relationships among symptoms, features, and apple diseases. The
user feedback (i.e., the evidence) is incrementally elicited through an adaptive question-
answering interface, illustrated by visual explanation of the requested information in order
to facilitate user understanding. Moreover, we developed of a diagnostic knowledge base,
which represents the core of the reasoning mechanism of BN-DSSApple, together with a
domain expert in phytopathology. We discussed the transferability problem of such an
expert model to a larger cohort of users with different expertise levels and constructed
a novel expert-users likelihood-based approach to deal with it. Finally, we created an
explanation technique tailored to this BN reasoning system, illustrating the suggested
diagnosis. We thoroughly evaluated BN-DSSApple under various experimental conditions,
simulated by three user studies in order to prove the effectiveness of the system and its
transferability across environments. The presented study builds upon and extends the
preliminary research presented in [6].

The rest of this paper is organized as follows: In Section 2, we provide some context in
the domain of post-harvest diseases of apple, and we analyze the related literature in the
field of expert systems in agriculture, with a particular focus on Bayesian techniques. In
Section 3, we detail the methodologies applied for the development of BN-DSSApple. The
paper is organized as follows:

(a) Section 3.1 gives a description of the application design and the implemented BN-
DSSApple system;

(b) In Section 3.2, the process of knowledge elicitation from domain expertise is illustrated;
(c) In Section 3.3, the diagnostic mechanism responsible for suggesting diseases given

user feedback is formalized;
(d) In Section 3.4, the transferability problem of knowledge-based models is defined and

an approach exploiting likelihood evidence proposed;
(e) In Section 3.5, a novel BN reasoning-related explanation technique for the provided

diagnosis is detailed.

Finally, Section 4 describes the performed user studies for system evaluation, and
Section 5 discusses the results and draws conclusions on the study, identifying limitations
and possible future improvements.

2. Background and Related Studies
2.1. Post-Harvest Diseases of Apple

The apple (Malus domestica) is cultivated on a global scale in temperate regions, reach-
ing a world gross production value of over USD 30 billion in 2020 [7]. Apple fruits provide
a valuable contribution to human nutrition and are available throughout the year, as mod-
ern apple cultivars can be stored for a period of up to twelve months under controlled
atmosphere conditions [2]. In the course of storage, however, apple fruit may deteriorate
due to physiological disorders or infectious post-harvest diseases [8]. The most important
post-harvest diseases of apple are caused by pathogenic fungi that can affect both the
quantity and quality of the produce, not only during storage but also at the time of packing,
shipment, and shelf life. The fungal species causing post-harvest diseases of apple can be
divided into two groups: latent and wound pathogens [4]. Latent pathogens infect the
apple fruit in the orchard, prior to the harvest, and remain asymptomatic for several months
during storage. The maturation of fruit and the change in physiological conditions can
finally favor the development of the pathogen and the onset of decay symptoms. Wound
pathogens, in contrast, enter the fruit through injuries, lesions, or cracks, or due to phys-
iological damage at harvest or at different post-harvest stages. In some cases, infections
can spread through the contact with decaying fruit, resulting in nests of rotten produce.
Some species of fungi not only induce direct post-harvest losses by rotting but are also
associated with the production of mycotoxins, which can contaminate fruit and raise safety
concerns [9]. As fungal post-harvest pathogens differ in their biological characteristics,
effective disease determination is crucial for containing damages, setting sales and market-
ing priorities, and implementing a sanitation program, or—in case of latent post-harvest
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diseases—to define pre-harvest plant protection measures for the following season. The
most accurate diagnostic methods are based on microscopic, microbiological, or molecular
genetic examinations, which require dedicated laboratories and trained staff. A method for
disease determination that requires the lowest technical effort and can be directly applied in
packing houses is based on the observation of decayed fruit for the presence of macroscopic
symptoms or fungal signs. The former include considering the appearance, color, texture,
and consistency of the rot induced on the peel and/or the pulp tissue, whereas the latter
comprise mycelium, fruiting bodies, or spore tufts. However, symptom-based disease
diagnosis requires a good knowledge of the diseases involved and a trained eye of the user.
Furthermore, symptoms can vary according to the cultivar, the stage of infection, as well
as the cultivation and storage conditions. Therefore, a computer-guided decision support
system would help practitioners to distinguish pathogens producing apparently similar
symptoms in order to diagnose post-harvest diseases of apple onsite.

2.2. Expert Systems and Bayesian Networks in Agriculture

Expert and knowledge-based systems have attracted the attention of researchers and
practitioners since the late 1980s. These systems aim at addressing complex diagnostic and
decision-making tasks with the support of an encoded knowledge base. In agriculture,
intelligent systems have been largely employed over the years to cope with the problem of
diagnosing and preventing diseases and disorders that might appear at different stages
of plant and fruit growth or parts of the plants and fruits, largely affecting the production
result [10,11]. In the early years, such applications were mainly designed as case-based
reasoning systems supported by static rules, for instance, encoded in the form of prolog-
like [12] or ifthen rules [13], addressing the specific use case of potato diseases. Similarly,
another stream of research has concerned the construction of expert systems for identifying
specific weeds, insects, and diseases of olive trees [14] and pepper plants [15]. In this case,
knowledge was collected by reviewing the technical literature and interviewing experts, as
in the study discussed in this article. Moreover, the system adopted the traditional ifthen
knowledge representation, and the application embedded digital images to help the user
through the identification process.

More recently, systems have evolved that exploit smart interfaces to incorporate dy-
namic knowledge bases and provide reasoning by means, for instance, of fuzzy logic. One
example is the web application for diagnosing oilseed crops, presented by Kolhe et al. [16].
A similar methodology was followed to support the handling of tomato diseases [17].
Authors exploited the object–attribute–value formalism for modeling the knowledge base,
and they enhanced it with fuzzy logic to deal with the reasoning. From the same research
group, an advisory expert system, called DIARES-IPM, with an integrated knowledge base,
designed as a set of ifthen inference rules [18] was later presented. The objective of the sys-
tem was to help non-experts to identify pests in crops and suggest appropriate treatments.
Another interesting example of an expert system supporting knowledge elicitation with
images was the Identificator system [19]. The framework takes advantage of macroscopic
features (symptoms) of strawberries to diagnose the potential disease. Users select a se-
quence of predefined images and descriptions of symptoms to finally arrive at the correct
diagnosis. Nevertheless, none of these methods were designed for the challenging task of
apple disease diagnosis, based on the interactive observation of macroscopic symptoms
on fruit. Furthermore, these approaches failed to model the knowledge in a probabilistic
manner, to allow uncertainty both in the knowledge base and the reasoning mechanism.

The Bayesian network was introduced in the early years of artificial intelligence to deal
with the problem of handling intrinsic uncertainty in the diagnostic process, especially in
medical domain [20,21]. A Bayesian network (BN) [5,22] is a probabilistic graphical model
defined by two components: a qualitative part, represented by its graphical structure; and
a quantitative part, consisting of conditional probabilities. Formally, a BN is represented
as a directed acyclic graph (DAG) G = (N, E), where N = {n1, n2, . . . , nl} denotes the
set of l nodes, and E ⊆ N × N is the set of directed edges between pairs of nodes. Each



Agriculture 2023, 13, 177 4 of 18

node ni ∈ N in the DAG G is mapped one-to-one with a random variable Xi ∈ X ,
where X denotes the set of random variables involved in the model. A random variable
Xi ∈ X is constituted by a set of exclusive values (or states) in which the variable might be
observed Val(Xi) = {x1

i , x2
i , . . . , xm

i }, where xj
i ∈ Val(Xi) denotes the jth value of variable

Xi. We use the notation Xi = xj
i for an observed event to express that variable Xi ∈ X

is observed (or instantiated) in the state xj
i ∈ Val(Xi). A conditional probability table

(CPT) is associated with each random variable Xi ∈ X . The CPT specifies the conditional
probability distribution P(Xi|pa(Xi)) ∈ P over the states of Xi, where P represents the
set of conditional probabilities in the model, and pa(Xi) ⊂ X denotes the set of parents of
the variable Xi associated with node ni in the DAG G (i.e., the nodes directly connected
with an incoming edge to ni). Those CPTs allow probabilistic computation of the joint
distribution (i.e., the reasoning) over the space of the variables X in the BN model through
the probability factorization P(X ) = ∏l

i=1 P(Xi|pa(Xi)), usually referred to as the chain
rule for Bayesian networks [22].

In the agricultural sector, BN models have been adopted by researchers and prac-
titioners for a wide range of applications, but few of them were specifically designed
for post-harvest or in-field disease diagnosis. For instance, Bayesian modeling has been
exploited to investigate the dependencies between yam planting practices, early growth
variables, and crop yields in west Africa [23]. Similarly, Villordon et al. focused on pre-
dicting storage root initiation, growing degree days to harvest, and yield grades in sweet
potato grown in Louisiana [24]. BN models learned from data were developed to diagnose
different crop infections, such as coffee rust disease [25] and maize diseases [26]. Finally,
Yu et al. developed a generalized two-layered BN model for diagnosing crop and animal
diseases, founded on a noisy OR assumption [27]. With our study, we aimed at merging
these different practices by providing an expert system with a dynamic interface able
to support apple disease diagnosis under uncertainty and based on a BN derived from
domain knowledge.

3. Materials and Methods
3.1. System Design

The proposed expert system, dubbed BN-DSSApple, was designed as an interactive
application allowing users with varying levels of domain expertise in the field of apple
production (e.g., growers, quality controllers, and storage workers) to diagnose post-harvest
diseases of apple fruit, based solely on macroscopic symptoms observed on harvested
fruits. The system is composed of a dynamic user interface that collects feedback from users
(i.e., the evidence) on an apple fruit instance (i.e., the target apple), and a reasoning engine,
which proposes a diagnosis (i.e., a ranked list of suitable diseases) based on the collected
evidence. The reasoning mechanism is supported by a BN with an ad hoc knowledge base,
developed in collaboration with a domain expert (as described in Section 3.2).

In detail, the system gathers user feedback on the target apple by asking a series
of multiple-choice questions regarding the macroscopic features of the symptoms they
might observe (e.g., the size of the rot, color of the fungal growth, etc.). Each question is
accompanied by illustrative images to aid even non-expert users in their comprehension.
Each question is mapped to a specific random variable Si ∈ S in the BN model, where S
refers to the set of symptom variables. This component of the system is dynamic, because
it progressively modifies the question path based on users’ prior responses. For instance,
when the application collects evidence that fungal growth is visible on the diseased apple,
it inquires about additional characteristics of these fungi and spores (i.e., distribution, color,
and origin). Furthermore, interaction with the system is highly flexible, allowing users to
walk the question path back and forth, rethink prior responses, submit multiple answers to
a single question, or skip “difficult” questions. Figure 1 depicts an example of the interface
of BN-DSSApple.
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Figure 1. A round of feedback collection of BN-DSSApple, where the application asks about the origin
of fungal growth.

Having finished evidence collection, the user receives the diagnosis result. Namely, the
application displays a short list of suitable diseases (typically three) based on the informa-
tion gathered. Each candidate disease is ranked in the diagnosis list on a score representing
the confidence in the diagnosis computed by the BN-DSSApple reasoning system. The score
is defined by the posterior probability of a disease given the evidence collected for the BN
model. Moreover, each suggested disease is supplied with an explanation, motivating the
suggestion in light of the user feedback, namely, the most peculiar answers given by the
user to the system related to that disease.

3.2. Knowledge Elicitation

Two alternatives exist for developing a diagnostic reasoning system based on a BN (i.e.,
defining both the network structure and the CPTs): learn it from data or elicit information
from domain literature and experts, or any mix of the two. To the best of our knowledge,
no large datasets for learning significant connections between apple post-harvest diseases
and visible symptoms are publicly available. We overcame this issue by directly involving
a domain expert (i.e., a professor in the field of apple phytopathology) in the process
of constructing the BN-DSSApple knowledge base. Namely, we articulated this process
into two distinct phases: in the first phase, we identified the random variables (i.e., the
macroscopic symptoms) that are relevant for the disease diagnosis, and we determined the
network structure; during the second phase, we quantitatively estimated the probability
distributions (i.e., the CPTs) connecting the diseases to the observable symptoms.

We first asked the domain expert to elicit the variables related to visible signs and symp-
toms characteristics that she considered relevant to the diagnosis of post-harvest diseases of
apple. After some rounds of interview, we agreed on a set of 27 discrete random variables
(12 boolean and 15 categorical) related to macroscopic attributes that can be observed on
infected apple skin and pulp, together with two hidden (target) variables, namely Disease
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and Stage. We assumed that a target apple can be infected by only one disease, which is
a strong yet realistic assumption, allowing us to drastically reduce the complexity of our
BN model by imposing mutual exclusivity among diseases. We also postulated that the
symptom variables are conditionally independent given the Disease variable, as formalized
in the naïve Bayes algorithm [22]. Thus, the random variable Disease encodes the whole
set of fungal diseases in our study, namely the seven diseases Val(Disease) = {alternaria_rot,
alternaria_spot, bitter_rot, blue_mold, bulls_eye, grey_mold, mucor_rot}. The Stage random vari-
able was introduced to better formalize the progression of the disease during the process
of knowledge elicitation. The variable represents three discrete and symbolic stages of
advancement of post-harvest infection, namely Val(Stage) = {early, medium, late}. Finally,
we exploited the collected domain knowledge to identify conditional independence across
variables and hence prune the graph from unnecessary edges. For example, we modeled
the fact that variables related to lesion origin are conditionally independent from the stage
of the disease.

Figure 2 displays the BN-DSSApple graph. The two hidden diagnosis variables, namely
Disease and Stage, are represented by the bolded and empty nodes in the center of the
network. The nodes concerning the lesion properties are colored grey at the top of the
network. The rot properties are colored yellow on the right-hand side, and the lesion-origin
nodes are colored green on the left-hand side. Finally, the nodes relating to lesion type
and other traits are colored orange in the central-bottom section, with nodes reflecting the
attributes of other traits colored blue underneath them. The detailed list of all the random
variables and their states included into the BN model are reported in Appendix A.

Figure 2. The Bayesian network graphical structure.

In the second phase, we interviewed a domain expert to extrapolate the quantitative
probabilistic dependencies among variables. Given the conditional (in)dependencies de-
fined in the previous stage, we elicited the conditional probabilities of symptom variables
given the states of both the hidden variables (i.e., Disease and Stage) or just the Disease
variable. We refer to the Disease variable as D ∈ D, where D is the set of hidden variables
for the model. Val(D) = {d1, d2, . . . dn} represents the set of states of the variable D, where
di is the ith state of the Disease variable (i.e., the ith disease in the knowledge base). The
Stage variable is defined as T ∈ D, and Val(T) = {t1, t2, . . . tm} represents the set of states
of variable T, where ti is the ith state of the Stage variable. All other (observed) variables
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in the model are referred to as symptom variables and belong to the set S . Generally,
a symptom variable Si ∈ S is represented by its set of states Val(Si) = {s1

i , s2
i , . . . sq

i },
where sj

i is the jth state of the symptom variable Si. Moreover, we adapted the procedures
described in [28] for eliciting expert probabilities of our network. Specifically, we opted for
a mixed symbolic questionnaire to allow the expert to express the conditional probability
of each symptom with respect to a given disease. In more detail, two techniques were
applied depending on the support of the variable. For boolean variables (for each symptom
variable Si ∈ S such that Val(Si) = {true, f alse}), the expert was systematically requested
to answer the following question: “How frequently do you observe symptom Si = true,
given that you have an apple infected by disease D = dl at stage T = tj?”. We allowed her
to choose the response on a pre-defined 6-point scale including always (A), very often (V),
often (O), sometimes (S), rarely (R), and never (N). The expert had to provide the answer
for each combination of dl ∈ D× tj ∈ T. This symbolic scale was converted into an actual
probability value P(Si = true|D = dl , T = tj) according to the scheme reported in Table 1,
adapted from similar studies in the medical domain literature [28,29].

Table 1. Scale to convert expert answers into probability values.

Answer P(Si = true|dl , tj)

Always (A) 0.999
Very often (V) 0.8
Often (O) 0.6
Sometimes (S) 0.3
Rarely (R) 0.01
Never (N) 0.001

For categorical variables (i.e., each symptom variable Si ∈ S , such that Val(Si) = {s1
i ,

s2
i , . . . , sm

i }, where m > 2), the described probability elicitation process would have been
too burdensome for the expert. Thus, we decided to use a simplified approach. For each
categorical symptom variable Si ∈ S , given a disease D = dl at stage T = tj, the expert was
asked to simply report which values of Val(Si) are likely to be observed and with which
frequency (i.e., commonly, less commonly, rarely). This approach is justified by the fact that
many symptoms are never observed under specific conditions (i.e., combination of disease
and stage) and hence, can be ignored to speed up the elicitation process.

We want to stress that the described process of knowledge elicitation, despite being
designed for our particular application, can be easily extended to other domains in which
experts are involved in the construction of a BN reasoning mechanism.

3.3. Diagnosis Computation

In this section, we describe how the system suggests a ranked list of suitable dis-
eases (i.e., a diagnosis) after user feedback elicitation on a target apple is terminated. The
BN reasoning system was implemented with the Python package pomegranate (https:
//pomegranate.readthedocs.io/en/latest/ (accessed on 10 May 2021). The BN framework
allows performing the inference, namely, to compute the posterior probability distribution
on a target unobserved variable (i.e., the Disease variable D), given any set S ∈ S of
observed variables inputted by the user (i.e., the evidence E) by answering the proposed
questions. The evidence set E is incrementally built by the system. At each step, the
application invites the user to answer a multiple-choice question related to a symptom
variable Si ∈ S . When the user submits the observed value sj

i ∈ Val(Si), BN-DSSApple

includes the new information into the evidence set, E ∪ Si = sj
i . The BN inference mech-

anism is robust to missing values, and the user is not forced to provide observations for
every single symptom variable Si ∈ S in the model. Therefore, the user can always skip
a problematic question related to a variable Sm ∈ S , which will not be appended to the
evidence set E, i.e., Sm /∈ E. Eventually, at the end of the elicitation process, the system

https://pomegranate.readthedocs.io/en/latest/
https://pomegranate.readthedocs.io/en/latest/
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has gathered the whole information E available for the user, and the reasoning system is
able to compute the probability distribution over the set of candidate diseases as follows.
We estimate the posterior probability distribution P(D|E) through the loopy belief prop-
agation algorithm [30], as implemented in pomegranate. Loopy belief propagation is an
approximate message-passing method used to perform inference on graphical models.

The posterior probability computed for target apple a when evidence E is collected
is considered a diagnosis score s(di)a for each disease di ∈ D. Namely, this probability
distribution represents the confidence of the system over each disease di ∈ D being the
correct diagnosis for the target apple a. Formally, given the evidence set E = {S1 = so

1,
S2 = sp

2 , . . . Sl = sq
l }, the diagnosis score related to target apple a for disease di ∈ D is

computed as:

s(di)a = P(D = di|E) (1)

The ranked list of the k suggested diseases Rk = {d1, d2, . . . , dk} shown to the user
is then based on the score for each disease, such that s(di) ≥ s(di+1). The parameter k
controls for the capability of the system to show more or less candidate diseases to the user.
In our evaluation, the parameter was set to k = 3.

3.4. Knowledge Model Transferability

In knowledge-based modeling, and similarly in standard machine learning, we fre-
quently confront the difficulty of transferring a built model to a different environment (i.e.,
providing external validity). This issue is known as the transferability problem [31]. It may
be challenging to allow a large number of users, with varying levels of competence, to
properly and effectively use a diagnostic expert model, built on domain-specific knowledge.
The knowledge base of the BN-DSSApple application was constructed with the information
gathered from the knowledge and the experience of a domain expert. However, different
groups of users, with less experience in the field, might perceive the same attributes (i.e., the
symptom characteristics) differently. User perception is influenced by their own experience
and personal knowledge biases. This behavior may mislead the user during the feedback
elicitation process and hence corrupt the diagnostic effectiveness of BN-DSSApple. In this
section, we formally define the problem of transferability in our context, and we suggest a
practical approach to bridge the gap between the expert model and user perception.

In our application scenario, the transferability problem is defined as the mismatch
between the BN probability distributions (CPTs) defined by the expert, and the probability
distributions produced by the usage of the system. The expert, during the knowledge
elicitation phase (as described in Section 3.2), implicitly stated a complete probability
distribution set P exp = {P(S|D = d1), P(S|D = d2), . . . P(S|D = dn)} ⊆ P , given the set
of symptom random variables S and a target disease D = di. During testing, the users of the
BN-DSSApple application generated a set E = {(E1, d1), (E2, d2), . . . (Eu, du)} ⊆ S ×D, of u
observations, where Ei = {S1 = so

1, S2 = sp
2 , . . . Sl = sq

l } represents the evidence submitted
by a user during the ith diagnostic session (i.e., a set of observed symptom variables), and di
is the corresponding ground-truth disease. From E , another set of probability distributions
Pusr = {P(S|D = d1), P(S|D = d2), . . . , P(S|D = dn)} ⊆ P can be derived. However,
this set of distributions is typically different from the one defined by the expert, namely
Pusr 6= P exp. Thus, the problem is to find a transferability function T(.) that can be applied
to the expert model such that Pusr = T(P exp).

The transferability problem is well known in machine learning and statistics and it
has been framed in causal terms, referred to as transportability [32,33], as well as in the
context of supervised learning, where it is also named covariate shift or sample selection
bias [34,35]. One of the most popular approaches applies a direct correction to the learned
probability distribution based on the test set estimation [31]. Inspired by the previous
work on likelihood evidence [36], we designed a methodology tailored to our BN-based
diagnostic application to adjust the expert-defined distributionP exp toward the one derived
by user interactions Pusr. The presented technique can be easily generalized to other
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domains, where the transfer learning of BN parameters is a problem to be addressed
(e.g., when the users struggle to correctly identify the observable evidence produced by a
phenomenon). We define the likelihood evidence (or likelihood finding) for each symptom
variable Si ∈ S of the BN-DSSApple model. Specifically, when a symptom variable Si
is observed and instantiated by a user during a diagnosis, we assume that a degree of
uncertainty is associated with it, which can be practically explained as the difference in
perception and experience between the user and the expert. Thus, we assign the actual user
observation to an auxiliary random variable Oi, such that Val(Oi) = Val(Si), to distinguish
it from the variable Si as it should be observed by an expert in the same diagnostic context.
We represent the uncertainty degree with a likelihood ratio L(Si) as:

L(Si = sj
i) = P(Oi = ol

i |Si = sj
i) (2)

which defines the probability of a user observing value ol
i ∈ Val(Oi) given that, in the

same context, the expert would have observed sj
i ∈ Val(Si). Thus, we enriched our

BN by adding, for each symptom variable Si, a virtual likelihood evidence node Oi that
encodes the likelihood ratio L(Si) with pa(Oi) = {Si}. The added set of random variables
O = {O1, O2, . . . Ot} is now the one observed by the user while submitting the evidence
E on the questions proposed by the application. Finally, we needed to estimate a new set
of conditional probability tables P(Oi|Si) for each pair (Si, Oi) ∈ S ×O. We developed a
direct estimation technique from the observed interactions of users with a set of apples A,
whose actual observed value by the expert is known. Namely, for each state sj

i ∈ Val(Si) of
each variable Si ∈ S , we define the subset A

sj
i
⊆ A, whose observed value by the expert

for symptom Si is Si = sj
i . The conditional probability of the users observed value Oi = ol

i
is defined as:

P(Oi = ol
i |Si = sj

i) =
1
|A

sj
i
| ∑

ai∈Asj
i

1ai (o
l
i) (3)

where 1ai (o
l
i) is an indicator function that is equal to 1 if the user observed Oi = ol

i in
apple ai, and 0 otherwise. The defined conditional probability for the likelihood ratio is
also referred as consensus among expert and users. We replicate this procedure for all
the observable states in Val(Oi) and for all the possible subsets in A in order to generate
the desired set of likelihood evidence L(Si) for each symptom variable Si and, hence, the
transferability function T(P exp).

3.5. Diagnosis Explanation

Explanation is a crucial element in modern artificial intelligence. In real-world ap-
plications, a suitable explanation increases trust in the model by allowing its decisions to
be understood by humans [37]. This is especially relevant in cases where decisions can
have significant economical consequences, if not on human well-being (e.g., in the medical
area). Previously presented methods in the area of BN explanation were reviewed by
Lacave et al. [38]. The authors classified the explanation approaches into three categories:
explanation of reasoning, explanation of the model, and explanation of evidence, according
on the BN components interested in the explanation.

Following this nomenclature, we present a novel BN reasoning-related explanation
technique, which is inspired by the forward feature selection algorithm [39]. The purpose
of our method is to decide which subset of the collected evidence better justifies a specific
diagnosis (i.e., a suggested disease). In formal terms, given the full set of evidence E
submitted by the user, we want to find the subset Bd

n ⊆ E, with size n, which represents
the best explanation (i.e., the most representative evidence set) toward the diagnosed
disease d ∈ D. Our algorithm receives as input the user’s evidence E = {e1, e2, . . . , ek}, a
target diagnosis d ∈ D, and an integer number n ≤ k, namely, the size of the subset of
evidence that should explain the diagnosis d. A piece of evidence ei ∈ E corresponds to
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the observation of a symptom random variable Si = sj, as submitted by the user to the
application. The complete procedure is formalized in Algorithm 1. At the beginning, the
algorithm initializes an an empty set Bd

0 = ∅ and, at each iteration t, it searches for the
best piece of evidence e∗ to be added to the set Bd

t−1. Specifically, the best evidence set at
time t is identified by maximizing the likelihood function L(E′, d) of evidence E′ toward
diagnosis d, where the temporary set E′ is iteratively constructed as E′ = Bd

t−1 ∪ ei for each
ei ∈ E. It is important to mention that when a piece of evidence ei is selected at around t
and added to Bd

t , it is consequently removed from E. This process iterates until the best
subset of evidence Bd

n of cardinality n for diagnosis d is constructed.

Algorithm 1 The BN-DSSApple explanation algorithm.
Input: E = {e1, e2, . . . , ek}; n ≤ k; d ∈ D
Output: Bd

n ⊆ E
1: Initialize Bd

0 ← ∅
2: t← 1
3: while t ≤ n do
4: for each ei ∈ E do
5: L∗ ← 0
6: E′ ← Bd

t−1 ∪ ei

7: compute L(E′, d) = 1
P(d)P(d|E′)

8: if L(E′, d) > L∗ then
9: L∗ ← L(E′, d)

10: e∗ ← ei
11: end if
12: end for
13: Bd

t ← Bd
t−1 ∪ e∗

14: E← E \ e∗

15: t← t + 1
16: end while

We define the likelihood function L(E′, d) for a subset of evidence E′ ⊆ E with respect
to a target disease d ∈ D, as its measure of normalized likelihood (NL) [22]. Thus, we
compute NL(E′, d) with the following equation:

NL(E′, d) =
P(E′|d)
P(E′)

=
P(d|E′)

P(d)
(4)

NL(E′, d) measures the degree of significance of a subset of evidence E′ ⊆ E on the
target disease d. By comparing the normalized likelihoods of different subsets of the
evidence, we compare the impact of these subsets on the target variable D. Investigating
the impact of various subsets E′ of the evidence on states d ∈ D helped to determine
which of those subsets are providing an explanation in favor of (or against) each possible
hypothesis state (i.e., suggested disease) d ∈ D.

4. Experiments and Results
4.1. Experimental Study Setup

We conducted a wide user-centered evaluation to test the effectiveness of BN-DSSApple
in identifying and suggesting the correct diagnosis. Specifically, we elaborated three distinct
user studies to test the system behavior under different circumstances. The task proposed
to the users was identical in all cases. Each user received a “bucket” of diseased apples,
for which she had to find the correct diagnosis leveraging the BN-DSSApple application.
Each target apple was simulated with a pair of high-resolution photos depicting an interior
and an exterior view of the apple in analysis, and for which the (hidden) ground-truth
disease was obtained in a laboratory by microbiological analysis. During each diagnostic
round, the user had to carefully scrutinize the target apple and interact with the system
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by answering the proposed questions and providing information (i.e., the evidence) about
the symptom and sign characteristics they were able to identify on the apple. At the end,
BN-DSSApple proposed a ranked list of three suggested diagnoses, i.e., the three diseases
with the highest posterior probability given the evidence, as computed by the BN.

The three user studies differed in the number of users, their expertise level, and the
number of distinct target apples involved. We incrementally increased the complexity of the
environment in which the system was tested to evaluate its robustness and transferability.
In details, we performed:

• Single-Expert Study (SES): A single domain expert (a professor in phytopathology)
leveraged the BN-DSSApple application to diagnose 21 target apples in a time-span of
around 2 weeks.

• Single-User Study (SUS): A single user (a M.S. student in biology) interacted with
BN-DSSApple application during the course of an internship, lasting around 1 month,
to diagnose 131 target apples.

• Multiple-User Study (MUS): A group of 11 students from a phytopatology class
interacted with the application to diagnose a bucket of 7 target apples each; the apples
were randomly sampled with stratification over disease from the same set of 21 apples
used for SES, and the activity lasted 4 h (in-class activity).

In Table 2, we summarize the metadata of the three conducted user studies.

Table 2. Metadata of the three user studies: Single-Expert Study (SUS), Single-User Study (SUS), and
Multiple-User Study (MUS).

# Users Expertise # Apples Time-Span

SES 1 high 21 2 weeks
SUS 1 medium 131 1 month
MUS 11 medium–low 21 4 h

4.2. Results

In Table 3, we summarize the results of the three user studies in terms of recall@k. We
define recall@k as the share of diagnoses (i.e., the ranked list Rk of k recommended diseases)
correctly identifying the ground-truth disease for a given target apple. We benchmarked
the presented results with the ZeroR baseline (i.e., a naïve classifier that always selects the
most prominent class), averaged across the three studies.

Table 3. Recall@k for the three user studies performed, Single-Expert Study (SES), Single-User Study
(SUS), Multiple-User Study (MUS), and the ZeroR benchmark.

SES SUS MUS ZeroR

recall@1 0.905 0.489 0.286 0.143
recall@2 1.0 0.656 0.403 0.286
recall@3 1.0 0.763 0.571 0.429

The results presented in Table 3 show that the theoretical effectiveness of the BN-
DSSApple model is very high. Specifically, an expert (SES), with strong knowledge in
phytopathology of apples and an appropriate capability of identifying symptoms on a
diseased apple was able to achieve a recall@1 above the 90% with the help of BN-DSSApple.
The performance of the system reached 100% recall when evaluated at a larger cut-off k.
We stress that in the SES evaluation, we were in the ideal situation in which the user was
perfectly able to understand and identify on the target apple the symptoms properties
requested by BN-DSSApple. A more realistic situation is depicted by the SUS evaluation. In
this case, a single user with a medium level of expertise had weeks of time to interact with
the system and train herself by evaluating a very large set of apples (131). The performance
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of BN-DSSApple for the recall@1 was still convincing (49%), i.e., the correct disease was
recognized and suggested in approximately half of the trials. The other metrics testified
how the system is not perfectly able to scale-up by extending the diagnosis list cut-off,
achieving 66% on recall@2 and 76% on recall@3 (the correct disease was within the first
three suggestions in 3/4 of the trials). Finally, in a situation such as the MUS assessment,
where users have limited knowledge and training, as well as a limited amount of time (a
few hours) to used the system, BN-DSSApple presented major flaws. In addition to the
time and skill factors, a lack of intrinsic motivation to engage with the system as accurately
as possible might be a factor explaining such behavior. In this study, the measured recall
of the system was significantly lower than in the two previous evaluations. Specifically,
recall@1 was below 30%, while the best result was achieved by recall@3 with 57%, meaning
that slightly more than half of the diagnoses include the correct disease in the top three
suggestions. Nevertheless, despite the poor performances of BN-DSSApple in MUS, the
collected results were still superior to those of the ZeroR benchmark. In the comparison
with ZeroR, the MUS evaluation for BN-DSSApple showed a doubling in recall@1 (28.6%
against 14.3%), while the difference in recall@2 and recall@3 was lower but still significant
(+12% and +14%, respectively). The major cause of the reported mismatch in performance
among expert and averaged users might be studied in the transferability problem of the
knowledge model. In the remaining part of this section, we empirically analyze this
phenomenon and evaluate alternative approaches to correct and alleviate it.

First, we investigated the impact of each attribute in the transferability of the model. In
Table 4, we rank the list of attributes based on the likelihood ratio (i.e., consensus or level of
agreement) computed between the logged interactions of the users of MUS and the expert
of SES (considered as ground truth) in the task of recognizing the symptom characteristics
on the same set of 21 target apples. The users were effective in identifying the principal
symptoms and signs, included in the application as boolean variables. Namely, Sclerotia
(99%), Rot (96%), and Spot (95%) presented a very high level of agreement with the expert,
while consensus onMycelium_spores (81%) and Halo (78%) was quite high. On the other
hand, some qualitative attributes related to the appearance or the consistency of the lesion
and the rot were among the hardest to correctly recognize by the users (i.e., users achieved
a poor consensus with the expert). For example, Lesion_appearance and Rot_consistency
had a level of agreement below 50%, while the agreements for Lesion_margin, Lesion_area,
and Rot_transparency were below 65%. Nevertheless, other categorical variables, related to
quantitative aspects of the lesion, were easier to be correctly recognized. This was the case
for the variables Lesion_size, Lesion_surface, Lesion_form, and Lesion_intactness, which
showed a consensus between 84% and 79%. The behavior of the variables belonging to the
Lesion origin category is relevant to analyze. The majority of them were straightforward to
be correctly identified by the users, with an expert agreement above 90%. Nonetheless, two
of them, Wound and Lenticel, were equally difficult to be distinguished, with a consensus
of around 59%. This may have been due to the fact that the two origins may be perceived as
similar and can be easily mistaken without a more careful examination of the target apple.
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Table 4. Attributes ranking based on the consensus of users in the MUS with the domain expert
of SES.

Rank Attribute Consensus

1 Sclerotia 0.988
2 Calyx 0.985
3 Rot 0.964
4 Spot 0.950
5 Stalk 0.926
6 Core 0.917
7 Fungal_distribution 0.872
8 Lesion_size 0.837
9 Lesion_surface 0.837
10 Number_lesions 0.817
11 Mycelium_spores 0.809
12 Lesion_form 0.792
13 Lesion_intactness 0.790
14 Halo 0.782
15 Rot_shape 0.760
16 Rot_moisture 0.755
17 Halo_color 0.750
18 Rot_margin 0.740
19 Fungal_color 0.731
20 Fungal_origin 0.694
21 Lesion_margin 0.636
22 Lesion_area 0.623
23 Rot_transparency 0.607
24 Wound 0.594
25 Lenticel 0.588
26 Lesion_appearance 0.417
27 Rot_consistency 0.321

In Figure 3, we display the recall@kobtained by BN-DSSApple for MUS and SES, by
incrementally including the attributes in the model, based on the agreement ranking in
Table 4. On the x-axis, we indicate the number of attributes in each model configuration.
Namely, i represents the BN model constituted by the attribute set Ai = {a1, a2, . . . ai−1, ai},
where rank j of attribute aj is defined by the consensus, as reported in Table 4. From the
graph in Figure 3a for MUS evaluation, we see how the model obtained the best perfor-
mances for recall@1 and recall@2 with around 7–8 attributes. A larger set of attributes is
counter-effective, causing a drop of recall of at least 10% in both situations. The perfor-
mance seems to recover with the models based on 21–22 attributes. For the recall@3 metric,
the model with 20 attributes achieved the optimum, with a significant improvement of
roughly 10% over the other configurations of the model including fewer attributes. The
graph in Figure 3b reveals the opposite considerations for the SES evaluation. The recall@k
linearly correlated with the number of attributes, and the best results were always obtained
when all the attributes are used. This means that the expert was able to correctly instan-
tiate even the harder variables, with a correct comprehension of the status of an infected
apple. Moreover, these hard-to-recognize attributes are required to considerably increase
the model’s diagnostic efficacy and obtain the best recall@k result. For both recall@2 and
recall@3, the BN model achieves roughly a +20% improvement by including the entire set
of 27 attributes rather than just 21 attributes (i.e., by discarding the six “hardest” attributes,
with lowest consensus).
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(a)

(b)
Figure 3. Recall@k by incremental selection of attributes based on ranking of Table 4 for MUS (a) and
SES (b).

Finally, in Table 5, we compare the results of the adapted versions of the BN model
for the MUS evaluation in order to cope with the transferability problem discussed in
Section 3.4 that emerged from the previous analysis. First, the trained BN model (TRAIN-
BN), where the network parameters were fine-tuned on the MUS data with a maximum
likelihood estimation (MLE) algorithm [5], provided a marginal enhancement. The recall@1
improvement was minimal (around +2.5%), while recall@2 showed a +6.5% improvement
with respect to the original BN model. We already discussed the significant benefit obtained
by picking the optimal attribute set (BEST-ATTR model), with a gain in recall ranging
between +14% and +21%. Nonetheless, this analysis was extrapolated a posteriori, with the
ideal number of attributes fixed after the evaluation of the results. Thus, the performance of
the model equipped with likelihood evidence (LH-EV, methodology detailed in Section 3.4,
where expert ground-truth data were derived from SES) was even more surprising. For
recall@1, the LH-EV marginally outperformed TRAIN-BN by around +4%, while being
slightly inferior to BEST-ATTR (−8%). Nevertheless, for recall@2, the likelihood evidence
method obtained the best result,outperforming BEST-ATTR by a small margin (around
+2.5%). Finally, for recall@3, the LH-EV model significantly outscored TRAIN-BN (+13%),
while obtaining comparable results to BEST-ATTR.
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Table 5. Recall@k for MUS considering the original expert-defined BN-DSSApple (BN), the BN-
DSSApple trained on MUS data (TRAIN-BN), the incremental best attribute selection (BEST-ATTR),
and the BN-DSSApple refined by likelihood evidence (LH-EV). For the BEST-ATTR column, we
report the results for the optimal attribute set, with the number of selected attributes in parentheses.

BN TRAIN-BN BEST-ATTR LH-EV

recall@1 0.286 0.312 0.429 (8) 0.351
recall@2 0.403 0.468 0.597 (7) 0.623
recall@3 0.571 0.636 0.779 (20) 0.766

5. Discussion and Conclusions

We presented BN-DSSApple, a knowledge-based expert system for the diagnosis of
post-harvest apple diseases. This study focused on the process of knowledge elicitation
from a domain expert in order to craft a BN-based reasoning mechanism. The effectiveness
of BN-DSSApple was thoroughly tested under different conditions in three user studies. The
model showed high diagnostic accuracy when a single user with sufficient domain expertise
was using the system. Nevertheless, a transferability problem emerged when multiple
users with different understandings of the domain were involved in the study. Thus, we
further investigated the impact of the model’s attributes on the system performance, and we
proposed an ad hoc adaptation of the likelihood evidence technique [36], which we proved
was capable of increasing the accuracy of BN-DSSApple when used by a heterogeneous
cohort of users. Despite being focused on a specific application scenario, the presented
methodology can be generalized to other domains. For instance, the knowledge extraction
process can be easily applied to similar diagnostic expert models [16,19,27], where the
intervention of an expert is required to learn an effective reasoning mechanism. Moreover,
the presented use case provides further evidence toward explicitly leveraging de-biasing
techniques (such as the proposed adaptation of likelihood evidence) to cope with the
problem of transferability in a knowledge-based model [31]. The major limitation of the
study is that the knowledge base was fully constructed on qualitative probability elicitation
from a single human expert; hence, the extracted parameters might be biased toward her
perception. In future work, we plan to extend the knowledge elicitation procedure to a
panel of experts [28]. The parameters’ elicitation based on their consensus will contribute
to alleviating diagnostic model bias. Furthermore, the transferability problem of the crafted
BN must be additionally investigated in different environments, and other techniques
based on causal transportability [32] might be explored. In future work, the integration
of additional evidence such as the automated processing of microscopic images of fungal
spores will be considered. Currently, we are focusing on the development of a hybrid
version of the application including pictures of diseased apples with which to interact
[40,41], as well as on the deployment of the application for in-field evaluations.
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Appendix A. Variables and States

Table A1 lists all variables included in the BN-DSSApple model as described in the
graph in Figure 2.

Table A1. Random variables and states included in the BN-DSSApple model, grouped by category.

Category Variable States

Diagnosis Disease
{alternaria_rot, alternaria_spot,
bitter_rot, blue_mold, bulls_eye,
grey_mold, mucor_rot}

Diagnosis Stage {early, medium, late}
Lesion type Rot {true, false}
Lesion type Spot {true, false}
Lesion type Scab {true, false}
Other symptoms Halo {true, false}
Other symptoms Mycelium_spore {true, false}
Other symptoms Sclerotia {true, false}
Other symptoms Odor {true, false}
Lesion origin Lenticel {true, false}
Lesion origin Wound {true, false}
Lesion origin Calyx {true, false}
Lesion origin Stalk {true, false}
Lesion origin Core {true, false}
Lesion properties Number_lesions {single, few, multiple}
Lesion properties Lesion_form {circular, irregular}
Lesion properties Lesion_margin {sharp, indistinct}
Lesion properties Lesion_area {plane, flat, sunken, collapsed}
Lesion properties Lesion_appearance {dry, watery, baked}

Lesion properties Lesion_surface {unwrinkled, slightly_wrinkled,
wrinkled, corky}

Lesion properties Lesion_crack {uncracked, cracked, parchment}
Lesion properties Lesion_size {xs, s, m, l, xl}
odor properties Odor_type {sweet_cider, earthy_musty, bandage}
Halo properties Halo_color {brown, red, yellow, light_green}

Spore properties Spore_color {white, grey, dark_grey, pink, yellow,
brown, green_blue, peppered}

Spore properties Spore_distribution {random, concentric}
Spore properties Spore_origin {wound, lenticels, cracks}
Rot properties Rot_shape {conical, rounded, irregular}
Rot properties Rot_margin {sharp, indistinct}
Rot properties Rot_texture_dry {dry, moist, juicy}
Rot properties Rot_texture_opaque {opaque, glassy}
Rot properties Rot_texture_pressure {firm, spongy, soft}
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