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Abstract: The production of row crops in the Midwestern (Indiana) region of the US has been fac-
ing environmental and economic sustainability issues. There has been an increase in trend for the
application of fertilizers (nitrogen & phosphorus), farm machinery fuel costs and decreasing labor
productivity leading to non-optimized usage of farm inputs. Literature describes how sustainable
practices such as profitability (return on investments), operational cost reduction, hazardous waste
reduction, delivery performance and overall productivity might be adopted in the context of precision
agriculture technologies (variable rate irrigation, variable rate fertilization, cloud-based analytics, and
telematics for farm machinery navigation). The literature review describes low adoption of Internet of
Things (IoT)-based precision agriculture technologies, such as variable rate fertilizer (39%), variable
rate pesticide (8%), variable rate irrigation (4%), cloud-based data analytics (21%) and telematics (10%)
amongst Midwestern row crop producers. Barriers to the adoption of IoT-based precision agriculture
technologies cited in the literature include cost effectiveness, power requirements, wireless communi-
cation range, data latency, data scalability, data storage, data processing and data interoperability.
Therefore, this study focused on exploring and understanding decision-making variables related to
barriers through three focus group interview sessions conducted with eighteen (n = 18) subject matter
experts (SME) in IoT- based precision agriculture practices. Dependency relationships described be-
tween cost, data latency, data scalability, power consumption, communication range, type of wireless
communication and precision agriculture application is one of the main findings. The results might
inform precision agriculture practitioners, producers and other stakeholders about variables related
to technical and operational barriers for the adoption of IoT-based precision agriculture practices.

Keywords: Internet of Things; wireless sensors; precision agriculture practices; barriers

1. Introduction

Row crop corn and soybean production in the Midwestern US region has economic
and environmental concerns, based on an increasing trends in the application of nitro-
gen and phosphorus fertilizers [1]. Operational costs and fuel consumption costs have
increased with a decrease in labor productivity [1]. As a result, sustainable practices such
as profitability (return on investments), operational cost reduction, hazardous waste reduc-
tion, delivery performance and overall productivity might be adopted through IoT-based
precision agriculture applications, namely variable rate irrigation, variable rate fertilization,
cloud-based analytics, and telematics for farm machinery navigation to improve agriculture
operations and net profitability. However, [2] note the low rate of adoption for variable
rate fertilizer (39%), variable rate pesticide (8%), variable rate irrigation (4%), cloud-based
data analytics (21%) and telematics (10%) amongst Midwestern US row crop producers.
The technical and operational barriers include operational costs, power consumption re-
quirements, communication range limitations, data latency, data scalability, data storage,
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data processing and data interoperability and are highlighted in the literature [3–5]. This
paper explores answers to the following questions: what are barriers to the adoption of
IoT-based precision agriculture (PA) practices among row crop producers, how are the
barriers operationally defined, and how are they related to each other? Section 2 highlights
research background, discussing related PA literature on technologies and barriers to the
adoption of IoT-based PA practices, Section 3 describes materials and methods adopted
for this study based on semi-structured focus group interviews conducted with subject
matter expertise (SME) (n = 18), Section 4 presents results from thematic content analysis
of interview data describing operational definitions of variables and their relationships,
Section 5 discusses results and significance in reference to previous studies, and Section 6
describes conclusions highlighting major takeaways, limitations and future research.

2. Background

This section highlights research background supported by literature review on PA
practices, barriers to the adoption of IoT-based PA practices, current adoption in the
Midwestern US region and IoT-based wireless sensor technologies.

2.1. Precision Agriculture (PA) Practices

Precision agriculture (PA) practices foster optimized application of agriculture inputs,
including seeds, fertilizers, water, pesticides and energy that result in savings on the input
applications, resulting in increased yield and improved profitability. Precision agriculture
(PA) practices potentially provide producers with improved tools to manage inputs and
optimize factors of production such as fertilizer, pesticides and seed application. The
definition of precision agriculture published by the National Research Council (1997)
defines precision agriculture as “a management strategy that uses information technology
to bring data from multiple sources to bear on decisions associated with crop production”.
Precision agriculture (PA) tools include information-gathering tools such as yield monitors,
targeted soil sampling and remote sensing tools; variable rate technology; and guidance
systems such as light bars and auto steer equipment. Precision agriculture technologies
include soil mapping, variable rate application, yield monitoring mapping, automatic steer
global position guidance systems and autonomous vehicles [6]. Management zones in the
field are developed by using crop and field information. Varying input rates increase yields
or reduce costs depending on the managers’ goal for the management zones [7].

The potential benefits of PA practices include an increase in the accurate placement
of inputs, reduction of machinery costs from an increase in machinery field capacity and
reducing greenhouse gas (GHG) emissions due to reductions in input usage for a given
level of production [8,9]. Precision agriculture (PA) practices have an impact on increasing
profitability, reducing operational costs, increasing labor productivity, reducing cycle times
of operation, optimizing fertilizer (nitrogen & phosphate application) and decreasing fuel
consumption in farm machinery [10]. These technologies may consist of variable rate
application (water & fertilizer), real-time kinematic (RTK) autosteer, guidance systems
(GPS-guided autosteers, yield monitors), submeter accuracy auto steering (SUB) and telem-
atics. In a study by [11], the authors note the impact of PA technologies, such as autosteer
guidance, automatic section control spray application and real-time kinematic precision
tractor operations on the carbon emission and economic operational cost in the corn and
soybean production in the US state of Kentucky. The findings indicate that automatic
section control spray application has the capability to spray more precisely, reducing the
over-application of inputs and giving a mean net return of 0.47% [11]. Real-time kinematic
precision tractor operations provided the most significant improvement in carbon footprint
ratio of 2.74% with increased technical efficiency in applying nitrogen and seeds more
accurately [11]. Labor productivity also increased, allowing more desirable production
practices to be employed [11]. Global navigation satellite systems-based autosteering
reduces overlap between tractor passes and overall operator fatigue increasing productiv-
ity [12]. A study conducted by [13] to assess the impact of implementation of PA practices in
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potato and olive production highlighted that variable rate application (VRT) of potassium
and phosphorus fertilizers lead to a strong reduction in nutrient use and an increase in
operational profits of 21%, with an increase in overall profits of 26%. Precision agriculture
(PA) can help in managing crop production inputs in an environmentally friendly way
by utilizing site-specific knowledge targeting rates of fertilizers, seed and chemicals in
improving soil conditions [14].

2.2. Adoption of Precision Agriculture Practices among Midwestern Row Crop Producers

The Midwestern (Indiana) region of the US has been facing environmental and eco-
nomic sustainability issues. There has been an increase in trends for the application of
fertilizers (nitrogen & phosphorus) and in farm machinery fuel costs and a decrease in labor
productivity leading to non-optimized usage of farm inputs [1]. Precision agriculture (PA)
technologies foster optimized application of agriculture inputs, including seeds, fertilizers,
water, pesticides and energy, resulting in savings in the input applications, resulting in
increased yield and improved profitability [12]. The adoption of PA technologies among
row crop producers in the US Midwest region has been increasing [2]. The study conducted
by [2] notes the adoption of different precision agriculture technologies among Midwest
region producers. Yield monitoring technology has the highest adoption rates as 69% of
farmers reported adopting it. Variable rate fertilizer (39%), variable rate pesticide (8%), vari-
able rate irrigation (4%), cloud-based data analytics (21%) and telematics (10%) all reported
lower adoption rates [15–17]. Different types of IoT sensors (temperature, humidity, light,
pressure, wind speed) receive and collect data managed by cloud information management
systems for data analysis solutions through application programming interfaces (API) [17].
A wireless sensor IoT framework for PA applications consists of: (1) perception layer,
(2) communication layer, (3) processing layer and (4) application layer [4]. Therefore, it is
important to understand the barriers and related decision factors involved in developing
IoT-based PA applications.

2.3. Barriers to Adoption of IoT-Based Precision Agriculture

Multiple studies note socio-economic factors (farmers’ educational level, age), agro-
ecological factors (soil quality, farm size, ownership of land), farmers’ perception (perceived
benefits vs. profitability), technological factors (computer education, data aggregation)
and informational factors (extension services) as factors having a positive relationship
with adoption [16,17]. The research study focuses on cost, technical, operational and
data management barriers highlighted in Figure 1 and validated in the study conducted
by [3–5,7]. The factors include enumerating cost, power consumption, communication
range, data latency, data scalability, data storage and data interoperability [3–5,8]. A more
recent study conducted by [5,6,8] highlighted cost of equipment, less benefit, training,
data scalability, communication range and time of implementation as the IoT precision
agriculture barriers. Figure 1 highlights cost, operational, technical and data management
barriers explored in this study.

Figure 2 highlights the different layers of IoT framework [4] for PA practices. This
framework was used to develop the semi-structured interview questionnaire highlighted
in Appendix B, where questions related to barriers are categorized under these framework
layers: (1) perception layer, (2) communication layer, (3) data processing and (4) applica-
tion layer.

Structured literature review (SLR) methodology described in the following section was
used to identify technical and operational barriers to adoption of IoT-based PA practices. In-
ternet of things (IoT) wireless sensors-based PA technologies, namely monitoring row crop
diseases, smart irrigation, smart fertilizing, cloud-based analytics and telematics for farm
machinery navigation, have a low rate of adoption among Midwestern (Indiana) region
row crop producers. These barriers include technical (power limitations, communication
range), operational (data scalability, sensor distribution, data latency), management (data
storage, data interoperability & data processing) and finance (cost, return on investment).
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3. Materials and Methods

This section describes the research methodology approaches adopted for this study.
Structured literature review conducted for this study is described in Sections 3.1 and 3.2
describes semi-structured focus group interviews conducted with (n = 18) subject matter
expertise (SME), Section 3.3 describes thematic content analysis approach and Section 3.4
highlights validity and reliability of research methods.

3.1. Structured Literature Review

The research methodology framework followed a structured literature review and
thematic content analysis of semi-structured focus group interviews conducted with subject
matter expertise. Content analysis is defined as “content analysis is a research technique for
the objective, systematic and quantitative description of the manifest content of communica-
tion” [18]. The four-step process model of content analysis by [19,20] delimits the material
to be analyzed by defining a unit of analysis, creating analytical categories, defining the
material collection (creating and defining categories), pretesting the categories defined, re-
fining through pretesting categories and analyzing the data by coding for thematic analysis.
The first step was defining the unit of analysis, i.e., sample size of relevant peer reviewed
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journals and data reports. The period of analysis chosen was 1990–2019, and in the initial
review a sample of n = 90 journals was selected. The peer-reviewed literature was selected
from top-tier publishers Elsevier, Emerald, IEEE, Taylor Francis and Inderscience.

The second step defined screening categories with inclusion and exclusion criteria.
Preliminary research criteria were defined based on the broader research objectives, screen-
ing the selected unit of analysis, relevant theories, and a review of the initially selected
sample journal articles. Internet of Things (IoT)-based precision agriculture technologies
were used as initial inclusion or screening criteria. Abstract, introduction and findings
of the initial sample were analyzed as per the research objectives, and 20 articles were
screened out of 90 articles not meeting the initial screening criteria. The third step was
pretesting and refining categories in which the sample of n = 70 articles was carefully
analyzed for progressive refining and validating of the category scheme. The fourth and
the last step was coding and analyzing the themes, as per defined categories in the pre-
vious step. The content themes identified for this study were based on keywords from
the research questions explored in this research, i.e., “precision agriculture technologies”
and “Barriers to adoption of IoT-based precision agriculture practices” were also used to
develop the semi-structured focus group interview questionnaire in Appendix B

3.2. Focused Group Semi-Structured Interviews

The data collection methods included focus group semi-structured interviews. In
this study, a purposive sampling was adopted [21] (p. 94) to collect data from the SME’s
involved in three focus groups interview sessions. The focus groups were categorized
based upon the knowledge and expertise of the participants in three layers of IoT wireless
sensors framework: (1) perception layer, (2) communication layer, and (3) data processing
& application layer. The credentials of the participants and their current roles and expertise
in the IoT framework layer are highlighted in Appendix A. The researcher contacted 22
individuals, of which 18 participated (response rate of 81%) in 3 focus group interview
sessions (See Supplementary Material) with 6 participants in each session. Each of the
focus groups consisted of at least one expert representing each layer of the IoT wireless
sensor framework to reduce bias. The study conducted by [22] defined the term “focus
group” to apply to a situation in which the interviewer asks group members very specific
questions about a topic after considerable research. Focus groups are used in the studies
to investigate complex systems where the research can interact with participants and
there is further opportunity to ask for clarification questions. The study by [21] (p. 18)
defines a focus group as a “carefully planned discussion designed to obtain perceptions
in a defined area of interest in a permissive, non-threatening environment”. The critical
element of focus group interviews is the involvement of people where the information
encourages a nurturing environment [23]. Diagnosing potential problems, programs,
services, products and stimulating new ideas results in frameworks for further validation
with empirical research [24,25]. Because the characteristic of focus group interviews helps
to investigate complex systems where the research may interact with the participants
providing an opportunity to further ask for clarification questions, it was appropriate to
adopt these research methods [21] (p. 18). The studies conducted by [23,24] highlighted
that purposive sampling may be employed for focus group interviews that consist of
representative members of larger populations. Most focus groups interviews consist of
between 6–12 participants [25]. The study conducted by [25] suggests that “the size of the
group is governed by the objectives of the research as well.” Smaller groups (4–6 people)
are preferable when participants share information about the topic [21] (p. 24). The study
also highlighted that the typical focus group interview might have up to 10–15 questions,
depending upon the length of the interview and research objectives. The semi-structured
interview questionnaire in Appendix B, developed for this study, consisted of 12 questions
structured in four sections, namely (1) demographics (2) perception layer (3) communication
layer and (4) data processing & application layer.
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3.3. Thematic Content Analysis

Data analysis is the part of qualitative research that mostly distinctively differentiates
from quantitative research methods [26]. Qualitative data analysis is a more dynamic,
intuitive and creative process of inductive reasoning, thinking and theorizing [27]. Data
analysis in qualitative research is defined as the process of systematically searching and
arranging the interview transcripts. The process of analyzing qualitative data involves
coding or categorizing of data, which reduces the volume of raw information, followed by
identifying significant patterns drawing meaning from the data, developing a logical chain
of framework or adding to grounded theory [28]. The NVivo coding software was used to
code the data from interviews. Inter-reliability of the coding thematic analysis of the data
was checked with another rater to ensure the reliability kappa value k > 0.70 for acceptable
reliability [29,30].

3.4. Validity and Reliability

Validity and reliability of the research design for this study follows a triangulation
method, which is a typical practice for rigor in qualitative research methodologies [29,30].
Triangulation may involve combining multiple data sources (data triangulation), using
multiple research methods to analyze the same problem (methodological triangulation)
or using multiple investigators [31]. In this study, the approach of triangulation was
followed by the researcher collecting and analyzing data from different sources, i.e., the
SLR (n = 70) and the three focus group interview sessions. The content analysis from the
focus group interviews was triangulated by three non-subject matter expertise appraisers
for inter-reliability.

4. Results

This section highlights the results and findings from thematic content analysis con-
ducted on the focused group interviews (See Supplementary Material). The frequency of
emerging themes from content analysis conducted on focus group interviews is shown
in Figure 1. How the variables are defined in the context of barriers and their potential
relationships with each other are described in Table 1. Subsequently operational definitions
for variables identified and defined through content analysis are highlighted in Table 2.

Table 1. Variable Relationships and Descriptive Content Analysis.

Variable Relationship Participant Response Avg. Kappa Value
(Inter-Reliability) Descriptive Analysis

Data interoperability-
Data storage

P2: “You know interoperability of formats and
everything, something that will happen as add

data gets larger and you might want to go between
different cloud environments, so we have some

technology that we are developing to do some of
that not entirely pivoted to other, but multi cloud is

for example”
P3: “Data interoperability it’s more at the software

like application level. Different software
companies may need to talk to each other to make
sure the results generated by them can be used by

each other.”

0.33 (Weak
agreement)

Data storage tends to depend upon the
data interoperability requirement. The

interoperability between sensors,
wireless communication technologies

and cloud storage-end. The
requirements for storage less or more

tend to depend upon the compatibility
of storage (sensors, wireless

communication gateway, cloud) with
each other and precision agriculture

application requirements.

Data interoperability
-Type of sensors

P4: “If I install sensor A and now, I’m stuck with
this product and I can’t use this one over here

because they just don’t talk to each other. I mean
like if we’re really going to get people to adopt,

there needs to be choice and it needs to be
some flexibility.”

P5: “Data interoperability is important to find it’s a
very hard thing to define. You’ve seen things like at
Gateway. Try and maybe they went too far and got
really specific in the weeds. There’s probably some
middle ground. You know that that needs to be the
first step. It’s like how do we identify the 90% most

important data and just come up with formats
for that?”

0.44 (Fair Agreement)

Data interoperability tends to depend
upon the type of sensors as

interoperability might mean data
coming from different types of sources.
Participants reported that there will be

more data interoperability between
the same category of sensors as they
get integrated well with a particular

type of wireless communication
protocol (LoRA, Zigbee, Sigfox, BLE,

Wi-Fi, GPRS 3G/4G).
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Table 1. Cont.

Variable Relationship Participant Response Avg. Kappa Value
(Inter-Reliability) Descriptive Analysis

Data interoperability-
Type of Wireless
communication

P2: “I think open source obviously has its own
benefits. There is the NB- IoT is definitely nice. You

can have NB IoT tier towers, but it is more
expensive. I think I know that they are connected
by doing Lora-WAN connectivity which will be

nice. It will have this open-source thing
in addition”

P5: “As long as this server has the ability to talk to
the sensor using the correct wireless

communication technology, it doesn’t matter much
like which technology you are using. Just establish
the link and the data flows along the link so in that

sense the communication is like a very low level,
almost like you don’t need to worry about it as

long as it’s there. For data interoperability it’s more
at the software like application level.”

0.67 (Good
Agreement)

Type of wireless communication
technology tends to not depend upon

the data interoperability and vice
versa. The participants highlighted
that data interoperability is more

adaptable at the user interface, i.e.,
software or cloud storage end.

Data
interoperability-Type of

Precision application

P6: “Annotated data set so that you can exactly
find out what is the disease and you can use that

annotated data set into training your different
machine learning or deep learning model. So that
is one of the missing pieces, because although we

reached out to Plant Village plant dog datasets, but
then we had to do the annotation by ourselves. So,
a very large-scale annotated data set is still needed

and that is one area”
P7: “Flow rate, pressure, pH of that so that it is
very hard to join that piece of information. The
Fertilizing team for the different sections of the

farm. So as previously mentioned, integrating like
different heterogeneous sensors.”

0.67 (Good
Agreement)

Data interoperability tends to depend
upon the type of precision agriculture

application, type of sensors and
cloud-data storage user interface. For

instance, as the participants
mentioned for monitoring row crop
diseases, application of open-source

field topography, soil and satellite data
apart from the sensors might be used

easily to develop robust row- crop
disease models.

Data Latency-
Autonomous applications

P4: “Depending on how latency sensitive that
specific activity is, and in general I don’t think the
latency thing is ever at the millisecond level or the

second level. It’s always at a higher level of
granularity because you know if you’re like sensor

monitoring, for example soil monitoring. The
comparison that I’m making compared to

self-driving cars. I guess some of the latency
sensitive mapping from the self-driving car

industry comes in where you might have to do on
device analytics to take care of that latency issue.”
P3: “Drone that is sensing and at the same time

spring then I think it becomes important to at that
sub millisecond level that you would actually have

to do the computation.”

0.75 (Excellent
Agreement)

Autonomous applications tend to
have low latency requirements in

miliseconds or seconds specifically
mentioned by participants for farm

machinery navigation systems using
GPS and accelerometer sensors. The

smart irrigation and smart fertilization
where the data from soil moisture, Ph
and Nitrate sensors tends to have data
latencies requirements in minutes or
hours. The monitoring applications

specifically for row crop diseases
where data latency requirements may

be in days or weeks.

Data latency- Data
scalability

P7: “If there is remote sensing or otherwise you
know yes there is time to move that to the right

place. Do the computation, generate the
prescription, and then send it out. But, also

increasingly there are machines that on the front of
the machine they sense what needs to happen here

and on the back of the machine it happens so in
that case there really is no latency like it’s. You
know it’s gotta be within a fraction of a second
depending on the speed of the vehicle, certainly

anything that’s navigation related if it’s
autonomous, has to be sub millisecond.”

P8: “So, for autonomous applications one of if
you’re thinking of autonomous driving in terms of
tractors or whatever, you can have a lot of data and
you can offline train the model right. So, if you can

train the model offline using various kinds of
temporal datasets that have been taken overtime,

it’s going to just enable decisions to be taken at real
time faster. Currently it is right you don’t want it to
make bad decisions, especially for things related to
autonomous driving, so I think it’s latency sensitive

and plus the cost of a bad decision is high.”

0.67 (Good
Agreement)

Data latency tends to not depend upon
the data scalability requirements as it
depends upon the type of precision

agriculture application requirements.
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Table 1. Cont.

Variable Relationship Participant Response Avg. Kappa Value
(Inter-Reliability) Descriptive Analysis

Data latency-Power
consumption

P3: “Lora-WAN maybe more specific would be
appropriate for like one of these, you know,

hundreds or thousands of sensors spread out over
a huge area. You know something like that would

typically be power or battery, small battery or
energy harvested kind of thing. The sensors,

probably by nature, not a very fast update rate, or
don’t measure very often. And so, it maps to that

technology well, but LoRA won’t solve the
problem in the space, one would be just machine
automation. You’ll never be able to have a cloud

connected machine that’s maybe utilizing the
cloud’s ability to do real time computations and
have that connected through LoRA like this is
probably just never work for latency reasons.”

P5: “LoRA gateways consume huge amounts of
power so that their clients don’t have to. You know.

I mean, it’s a balance. You can only get so much
data latency for a certain amount of power.”

0.67 (Good
Agreement)

Data latency tends to depend upon the
power consumption requirements as
lower the latency requirements from
sensors and wireless communication

technologies higher the power
consumption. LoRA is a low power

and higher latency wireless
communication technology. The

3G/4G/5G and wireless WIFI might
have more power consumption as they
have low latencies-high data transfer

rate and are used for autonomous
applications. Bluetooth wireless BLE is

a low power- low latency option for
shorter communication range

precision applications such as for
RFID, GPS and other short

communication range sensor
precision applications.

Type of Wireless
Communication- Power

consumption

P14: But for power we did a comparison for some
of the different wireless technologies. We were
interested in the power consumption for data
transfer and our goal was to decrease the data

transfer for it’s obviously much lower. Especially
Bluetooth low energy, right. So, 85.8% for LoRA it
is 99.9% for LoRA and SigFox. So, I think just to

map to a higher granularity, BLE is quite a bit
lower. So, you may have to consider that if you’re

thinking of data transfer using these different
wireless technologies”

P18: “The latency requirements and the power
consumption. So, we actually have found that if

the latency requirements are low and you basically
want to consume the power, and that’s where we

did this comparison between the different wireless
technologies that LoRA is much more power

consuming than Bluetooth. Depending on what
networking modality you will have and the battery

requirements of that sensor, you might want to
kind of bound the amount of data transfer that is

happening from the sensor to the gateway.”

0.67 (Good
agreement)

Type of wireless communication
technology tends to depend upon the
power consumption requirements as

lower latency requirements of the
precision application such as

autonomous tends to have higher
throughput rate and higher

power consumption.

Data Storage-Power
consumption

P4: “Here’s the rest API that you can pull the data
in from so we can’t quantify what the power

consumption is for that. But then you have it on
the plant side. Sometimes you might have sensors
where you could determine how often you want

this data. So, then that determines the power
consumption that’s going to be drawing. And so

that’s to give like different perspectives on
sometimes you might not know how it’s affecting
the power consumptions. And sometimes you can
see immediately that the battery level is one of the

sensors that you were looking at and how the
power is being drained.”

1 (Excellent
agreement)

Data storage tends not to depend upon
the power consumption requirements.
Power consumption tends to depend

upon the data latency requirements as
mentioned by participants.

Data Scalability-Cost

P7: “If you get, you know that data all the time and
then you know if you want to record with ISO-Blue.

If you want your real data at the end of the year,
you know you don’t need that. By the 2nd, get that

at the end of the year, you know that the high
bandwidth data you don’t necessarily need

you know.”

0.70 (Good
Agreement)

Data scalability tends to depend upon
the cost requirements as data from

different types of sensors might
require more storage capacity that

involve costs. However, the increase in
storage at the cloud-end or wireless
communication gateway might not

contribute significantly to cost
increase. Deploying large scale and

different types of sensors might
contribute significantly to the input

variable cost.



Agriculture 2023, 13, 163 9 of 16

Table 2. Operational Definitions.

Variable (Themes) Supporting Participant Quotes Definition’s Interpretations-Content
Analysis

Cost

P11: “You have to go out there and take
subsamples and that isn’t near detailed enough to
address the variability that’s in the field. And so,

to me, the big game changer that we really need is
some kind of a low-cost accurate phosphorus

potassium soil Ph type of a sensor”.
P2: “The coverage using wireless technologies and

for soil sensors LoRA will be great. For typical
applications, Wi-Fi will be cheaper. It’s like it can

support higher throughput; cellular is very
promising, but it can cost a lot”.

Fixed cost (sensor cost, communication
gateway technology cost). Variable cost (sensor
batteries cost, power consumption cost, cloud

storage subscription cost).

Types of Sensors

P14: “So, if you’re talking about a piece of
autonomous farm equipment, at least of the data

latency requirements, they are going to be
significantly higher. Anything that involves safety

typically requires high data rates and often has
redundancies.”

Monitoring row crop diseases (weather sensors
(temperature, humidity, light, pressure, soil

moisture), remote sensing (drones, GPS,
LiDAR image sensors), smart fertilization (Ph,

nitrate soil sensors), smart irrigation (soil
moisture, Ph level), farm machinery

autonomous operations (GPS, accelerometers,
proximity, fuel level, sound).

Type of Wireless
Communication

P18: “The latency requirements and the power
consumption, we actually have found that if the
latency requirements are low and you basically

want to consume the power, and that’s where we
did this comparison between the different wireless

technologies that LoRA is much more power
consuming than Bluetooth.

3G/4G/5G, LoRaWAN, Sigfox, TVWS (long
communication range > 5–10 miles), mid-range
(<1 mile) Zigbee, Wi-Fi, short range (10–1000

m), Bluetooth (BLE), GPRS.

Type of Precision
Agriculture application

P10: “Autonomous areas don’t really care about
data that happened previously and you’re not

really going to need to store historical data, with
the exception of the monitoring applications So I

don’t imagine there being a very high data storage
requirement.”

Monitoring applications (row crop diseases),
autonomous applications (smart irrigation,

smart fertilization, farm machinery navigation
autonomous operations.

Data Storage

P11:“Keeping terabytes of data costs next to
nothing on the cloud side or on the edge side. We
have 500 gigabyte SSD’s that doesn’t cost too much

and is smaller than a credit card, so that’s more
than enough for us”.

Data storage platforms consists of wireless
communication gateway-end and cloud
storage (user-end application interface).

Data Scalability

P16: “Something on the leaves of crops, then you
would use satellite aerial or drone typically, and so,

I mean these are sensors or few in number, but
they’re collecting a lot of data over a wide area.”

The scale or amount of data transferred for
storage and processing from different types

(number) of sensors to edge (communication
gateway-end) or cloud (user-end application

interface) for developing precision agriculture
applications.

Data Latency

P14: “If your variable doesn’t change too often
then it’s overkill to be sampling 8 every second so
you can’t save a lot and probably this is one of the
biggest advantages of LoRa. You can cover a big

range and send a very low rate.”

Refers to the data transfer rate (bits/secs,
bytes/secs, kbps, mbps) requirements defined

for sensors and wireless communication
technologies integrated with sensors for

transferring data.

Communication Range

P18: “Something like LoRa-WAN maybe more
appropriate for hundreds or thousands of sensors
spread out over a huge area. Something like that

would typically be a small battery or energy
harvested kind of thing. The sensors, by nature,

not a very fast data transfer rate required, or don’t
measure very often.”

Defined as the communication distance
between the sensor node (the device integrated
with different types of sensors) and wireless

communication gateway technology.

Data processing

P10: “So, if you see noisier data, you can do more
dimensionality reduction or noise removal. So that

is one way of doing differential analytics. The
other is related to latency, so if you’re concerned
about latency you might want to do more of the
processing on the device or on the edge or in the
cloud depending on the latency requirements.”

Defined as the amount of data (bits/secs,
bytes/secs, kbps, mbps) processed by the

communication gateway technology and cloud
storage-end.
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Table 2. Cont.

Variable (Themes) Supporting Participant Quotes Definition’s Interpretations-Content
Analysis

Power consumption

P4: “Sometimes you might have sensors where
you could determine how often you want this data.
So, then that determines the power consumption

that’s going to be drawing”.
P5: “LoRA gateways consume huge amounts of
power so that their clients don’t have to. I mean,
it’s a balance and you can only get so much data

latency for a certain amount of power.”

Defined as power consumption by sensors,
wireless communications technology

integrated with sensors along with backhaul
networks (Wi-Fi, GPRS, 3G/4G/5G). The
operating battery voltage for sensor nodes

having different types of integrated sensors is
the indicator for power consumption used in

the empirical analysis for this research.

Data interoperability

P2: “You know interoperability of formats and
everything, something that will happen as data
gets larger and you might want to go between

different cloud environments, so we have some
technology that we are developing to do some of
that not entirely pivoted to other, but multi cloud

is for example.”

Defined as the ability of cloud storage
(user-end application interface) to store and

process data from different sources (different
types of sensors, wireless communication

mobile gateway edge, remote sensing, other
open-source data) and communicate well with
heterogeneous sensors and farm machinery for

data transfer.

4.1. Themes from Content Analysis

Figure 3 highlights the reference frequency of emerging themes identified and analyzed
following the content analysis approach on the focus group interviews (See Supplementary
Material). The themes analyzed were as per the research questions based on identifying,
exploring and defining variable relationships related to cost, technical (power consumption,
wireless communication, communication range), operational (data scalability, data latency)
and data management (data storage, data processing, data interoperability) barriers.
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The emerging themes identified through content analysis in decreasing order of their
reference frequency are as follows. Data latency—type of wireless communication (9), data
latency—autonomous applications (8), data storage—type of precision application (8), data
interoperability—type of wireless communication (6) and data storage—type of sensor (6)
were the most recurring themes identified. Data latency—power consumption (4), data
interoperability—data storage (4), data interoperability—type of precision application (4)
and data latency—data processing (4) were the other recurring themes identified. The
emerging themes were explored further for descriptive analysis, and findings are reported
in the following section.

4.2. Variable Relationships

The variable relationships identified as themes through the content analysis approach
were further explored. The participants’ quotations in the context of variable relationships
are reported in Table 1, along with descriptive analysis findings. The Kappa value for each
of the themes analyzed through content analysis shows the reliability of findings. Cohen’s
Kappa coefficient is a statistical measure of inter-rater reliability, which many researchers
regard as more useful than the percentage agreement since it considers the amount of
agreement that could be expected to occur through chance [30]. NVivo calculates the Kappa
coefficient individually for each combination of emerging themes [31]. If the two users are
in complete agreement about which content of the source should be coded at the node, then
the Kappa coefficient is 1. A value between 0 and 1 indicates the scale of agreement. The
Kappa (k) value ≤0.40 means weak agreement, between 0.40–0.75 means good agreement
and above 0.75 means excellent agreement [31]. The average Kappa (k) value is calculated
for each individual node by using the mean k value calculated for each comparison rating
between individual raters (n = 3 raters) involved, as per the typical practice mentioned in
the studies [30,31].

The descriptive analyses for the variable relationships are interpretations from the
participants’ quotes. For instance, data latency requirements tend to depend upon power
consumption, type of wireless communication technology and type of precision application,
which might be important to consider before designing an IoT-based data pipeline for preci-
sion agriculture applications. Similarly, data scalability depends upon power consumption
and cost requirements, which might be critical to understand for cost- and energy-efficient
IoT wireless sensors-based data pipeline design.

4.3. Operational Definitions

The operational definitions of variables identified through the content analysis ap-
proach are highlighted in the table. The operational definitions are stated as findings of
content analysis from focus group interviews. The supporting participant quotes are also
mentioned in Table 2. Therefore, the subjective interpretations for operational definitions
are limited in the context of this study.

5. Discussion

The variable relationships in the contexts of technical and operational barriers iden-
tified through this research might help to inform precision agriculture practitioners, re-
searchers and producers. The findings are based on potential dependency relationships
between cost, data latency, data scalability, data storage, data interoperability, type of sen-
sors, type of wireless communication, type of precision agriculture application and power
consumption, which might help to understand barriers from an IoT systems perspective.
The findings suggest that data latency requirements depend on the type of precision agri-
culture application. For autonomous applications, specifically farm machinery navigation,
the latency requirements are lower (ms or s) as compared to monitoring applications (days
or weeks). Data latency further depends upon power consumption as low latency means
higher power consumption. This is an important finding as it suggests that Wi-Fi/5G/4G
are the suitable wireless communication technologies for low-latency autonomous appli-
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cations. This finding is supported by the studies [3,4,15] where a comparative analysis
based on power consumption and communication range is conducted for different types of
wireless communication technologies. Another key finding based on data interoperability
depends upon the data storage requirements as data collected from different types of
sensors require more cloud storage compatibility to interoperate and perform data pro-
cessing for different types and structure of data [32–34]. This finding resonates with the
studies conducted by [4,32,33] which highlights the compatibility of cloud data storage
platforms to interoperate for different types and structures of data coming from different
types of sensors [32–34]. In addition, the findings of the study suggests that monitoring
row crop diseases applications require data from multiple type of sensors (soil moisture,
temperature, humidity, topography, satellite imagery data) which require more data inter-
operable cloud storage platforms [35,36]. The operational definitions for variables defined
in Table 2, through descriptive analysis of interview data, are significant results to help
digital agriculture practitioners, producers and researchers to understand the adoption
barriers. Understanding the variable relationships highlighted in Table 1 might help to
design cost- and energy-efficient solutions for IoT-based precision agriculture applications.

6. Conclusions

The dependency of data latency requirements on power consumption, type of wireless
communication and precision agriculture applications is an important finding to consider
for designing IoT-based wireless sensors autonomous applications (i.e., smart irrigation,
smart fertilization and farm machinery navigation) [34–36]. Low data latency requirements
for autonomous applications and comparatively higher data latency for monitoring appli-
cations is an important takeaway which might help to design energy- and cost-efficient
IoT systems [32,33,35]. Higher data latency means low power consumption, and therefore
using low-power wider-coverage technology such as Lora WAN holds significance. Data
interoperability depends upon compatibility of cloud storage to store and process different
formats and structures of data collected from different types of sensors [36,37].

Data scalability depends on cost as large data require more storage and processing
capabilities at the cloud end; the cost might be insignificant but the cost of more sensors
collecting data is significant [37,38]. Further dependency of types of wireless communica-
tion on data latency, communication range and power consumption are another critical
finding to inform stakeholders for cost- and energy-efficient wireless communication pro-
tocol technologies [32,34,35]. The decision variables identified and operationally defined
through this study might be explored further for dependency relationships and to develop
an empirically validated framework for sustainable IoT. Interpretation of research findings
following qualitative content analysis approaches are subjective and have limitations in
context generalizability. However, researchers have tried to reduce biases, keeping high
rigor for reliability and validity of findings. The findings of this research define and describe
potential relationships between variables which might help digital agriculture practitioners
and researchers to develop cost- and energy-efficient IoT systems for adoption of precision
agriculture practices.
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Appendix A. Participants Current Role and Expertise Area

Participants Current Role Expertise in IoT Wireless Sensor Framework Layer

Participant 1 (P1) Digital Agriculture Technology
Consultant Wireless Communication technologies (Communication Layer)

Participant 2 (P2) Program Coordinator in
Agriculture Technology

Big Data Telematics, Data Analytics, Aerial Imagery
(Perception Layer)

Participant 3 (P3) Global Technology consultant Wireless Communication technologies (Communication Layer)

Participant 4 (P4) Graduate Research Assistant
UAV-aided wireless communication systems, Intelligent
transportation system applications in Digital agriculture

(Communication Layer)

Participant 5 (P5) Precision agriculture technologies
consultant and Farm-owner

Digital agriculture practitioner, Smart irrigation & Autonomous
precision agriculture application (Application Layer)

Participant 6 (P6) Academic Faculty Wireless Communication Technologies for Agriculture, Signal
processing, Sensor network design (Communication Layer)

Participant 7 (P7) Cloud technologies consultant Cloud computing platforms for Digital Agriculture (Data
processing Layer)

Participant 8 (P8) Graduate Research Assistant Wireless Communication technologies, Embedded systems &
edge-computing (Communication Layer)

Participant 9 (P9) Academic Faculty Decision Support System, Cloud Computing, Mobile Apps
(Application Layer)

Participant 10 (P10) Graduate Research Assistant Autonomous precision agriculture applications
(Application Layer)

Participant 11 (P11) Digital Agriculture Consultant Internet of Things (IoT) for Farm machinery autonomous
applications (Application Layer)

Participant 12 (P12) Graduate Research Assistant Software engineering, API for crop monitoring applications (Data
processing Layer)

Participant 13 (P13) Wireless communications
Technology consultant

Wireless communication networking, long range and wide area
networks (LoRa) for digital agriculture applications

(Communication Layer)

Participant 14 (P14) Graduate Research Assistant Internet of Things sensors applications for precision agriculture
(Perception Layer)

Participant 15 (P15) Extension program coordinator Digital Agriculture practitioner, Rural area sensor networking
(Perception Layer)

Participant 16 (P15) Digital Agriculture
practitioner & Farmer

Digital agriculture technologies adoption and practitioner
(Perception Layer)

Participant 17 (P17) Software engineer Cloud computing, Big Data Analytics for IoT in Agriculture (Data
processing Layer)

Participant 18 (P18) Application Programming Interface
(API) developer

Software developer for Precision agriculture applications,
Cloud-back end (Data Processing layer)

Appendix B. Interview Script

Hello, my name is and I am a Purdue University graduate stu-
dent conducting this focused group interview with on (date/time).

The purpose of this research study is to explore the lean (cost, power, data scalability,
data processing and user-experience) and green (energy and hazardous waste reduction
precision agriculture applications) Internet of things (IoT) wireless sensors framework for
the adoption of precision agriculture applications (monitoring row crop diseases, smart
irrigation, smart fertilizing, and farm-machinery efficient navigation) amongst row crop

https://drive.google.com/drive/folders/11DFWtBlYQfwTR472UpWljBhxtxk-mIDa?usp=sharing
https://drive.google.com/drive/folders/11DFWtBlYQfwTR472UpWljBhxtxk-mIDa?usp=sharing
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producers in Indiana region. A content analysis will be conducted through focused groups
semi-structured interviews with subject matter experts in open-agriculture technological
systems (OATS), Digital agriculture experts (Professors, Graduate Students & Purdue
ACRE extension members). The findings of the content analysis from the focused group
interviews will be used to inform the multiple Farm beats sensor boxes deployment at
Purdue Agronomy Center for Research and Education (ACRE) farm facility following
action research. The goals of this study are as follows:

Identify the different types of sensor combinations that can be used to gather the data
for developing precision agriculture applications (monitoring row crop diseases, smart
irrigation, smart fertilizing, and farm-machinery efficient navigation) for an average size
row crop farm in the Indiana region.

• Understand the efficient (cost, power, data scalability, data management) and effective
(communication range, data latency, data interoperability, data processing) wireless
communication technologies that can be integrated with sensors for developing preci-
sion agriculture applications (monitoring row crop diseases, smart irrigation, smart
fertilizing, and farm-machinery efficient navigation) for an average size row crop farm
in Indiana region.

• Understand and identify the efficient (cost, power, data management) and effective
(data latency, data interoperability and data management) data storage and processing
application programming interfaces for developing precision agriculture applications
(monitoring row crop diseases, smart irrigation, smart fertilizing and farm-machinery
efficient navigation) for an average size row crop farm in Indiana region.

• Understanding the dependencies of variables namely type of sensors, type of
wireless communication technologies, no. of devices-data scalability, communica-
tion range, data latency, data interoperability of application programming inter-
faces with cost, power consumption and type of precision agriculture applications
(monitoring & autonomous).

To participate in this research, we ask for approximately (1 h) of your time through a
guided semi-structured focused group interview. All research carries risks, but the risks
associated with this study are minimal and no more than found day to day. The minimal
foreseeable risks are that your identity might be accidentally revealed to parties other than
the researchers, should there be a confidentiality breach. However, we are taking several
measures to protect your identity. There are few direct benefits to you from participating
in this research, but the research results will benefit: row crop farmers, digital agriculture
practitioners and open agricultural technology researchers. This interview will be recorded
for transcription as data collection for subsequent analysis. We do appreciate your time as
your experience, background & expertise are critical to the success of this study.

Do you all consent to participating in this study? May we record our conversation?
Demographics

1. What is your educational background and current role in the organization you work?
2. What is your experience with digital agriculture?

Perception Layer (Types of Sensors)

1. What are the different types of sensors that can be used to develop applications for
monitoring row crop diseases on an average size farm in the Indiana region?

2. What are the different types of sensors that can be used to develop applications for
smart irrigation applications on an average size row crop farm in the Indiana region?

3. What are the different types of sensors that can be used to develop applications for
smart fertilizing on an average size row crop farm in the Indiana region?

4. What are the different types of sensors that can be mounted on farm- machinery for
efficient navigation during planting and harvesting operations?
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Communication Layer (Wireless Communication Technologies)

1. How can we efficiently (cost, power, scalability) and effectively (communication range,
data latency, data storage and processing) integrate different types of sensors with
wireless communication technologies for monitoring row crop diseases precision
application on an average size farm in the Indiana region?

2. How can we efficiently (cost, power, scalability) and effectively (communication range,
data latency, data storage and processing) integrate different types of sensors with
wireless communication technologies for smart irrigation autonomous application on
an average size row crop farm in the Indiana region?

3. How can we efficiently (cost, power, scalability) and effectively (communication range,
data latency, data storage and processing) integrate different types of sensors with
wireless communication technologies for smart fertilizing autonomous application on
an average size row crop farm in the Indiana region?

4. How can we efficiently (cost, power, scalability) and effectively (communication range,
data latency, data storage and processing) integrate different types of sensors with
wireless communication technologies for farm- machinery efficient navigation on an
average size row crop farm in the Indiana region?

Data Processing & Application Layer (Data Storage, Management and Processing
Applications)

1. How can we (cost, power, scalability) and effectively (communication range, data
latency, data interoperability) store and process data for developing monitoring of
row crop diseases and precision application interfaces?

2. How can we (cost, power, scalability) and effectively (communication range, data la-
tency, data interoperability) store and process data for developing autonomous (smart
irrigation, smart fertilization & Farm machinery navigation) alert application interfaces?
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