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Abstract: To ensure continued food security and economic development in Africa, it is very important
to address and adapt to climate change. Excessive dependence on rainfed agricultural production
makes Africa more vulnerable to climate change effects. Weather information and services are
essential for farmers to more effectively survive the increasing occurrence of extreme weather events
due to climate change. Weather information is important for resource management in agricultural
production and helps farmers plan their farming activities in advance. Machine Learning is one of
the technologies used in agriculture for weather forecasting and crop disease detection among others.
The objective of this study is to develop Machine Learning-based models adapted to the context of
daily weather forecasting for Rainfall, Relative Humidity, and Maximum and Minimum Temperature
in Senegal. In this study, we made a comparison of ten Machine Learning Regressors with our
Ensemble Model. These models were evaluated based on Mean Absolute Error, Mean Squared Error,
Root Mean Squared Error and Coefficient of Determination. The results show that the Ensemble
Model performs better than the ten base models. The Ensemble Model results for each parameter are
as follows; Relative Humidity: Mean Absolute Error was 4.0126, Mean Squared Error was 29.9885,
Root Mean Squared Error was 5.4428 and Coefficient of Determination was 0.9335. For Minimum
Temperature: Mean Absolute Error was 0.7908, Mean Squared Error was 1.1329, Root Mean Squared
Error was 1.0515 and Coefficient of Determination was 0.9018. For Maximum Temperature: Mean
Absolute Error was 1.2515, Mean Squared Error was 2.8038, Root Mean Squared Error was 1.6591
and Coefficient of Determination was 0.8205. For Rainfall: Mean Absolute Error was 0.2142, Mean
Squared Error was 0.1681, Root Mean Squared Error was 0.4100 and Coefficient of Determination
was 0.7733. From the present study, it has been observed that the Ensemble Model is a feasible model
to be used for Rainfall, Relative Humidity, and Maximum and Minimum Temperature forecasting.

Keywords: Africa; food security; weather forecasting; machine learning; regressors; ensemble model

1. Introduction

Globally there are growing worries about climate change. Developing countries,
mainly in Sub-Saharan Africa (SSA), are more vulnerable to the predicted effects of climate
change because of their excessive reliance on the climate for development, the main pillar of
which is agriculture [1]. Agricultural production is likely to be severely affected by climate
change [2]. It is clearly visible that climate change is already happening: unreliable and
unpredictable rainfall, prolonged dry spells, floods, rising temperatures, and the eruption
of crop pests and diseases among others [3–6]. Climate change is defined as “fluctuations
in the patterns of climate over long periods” [7].
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Most of the agricultural production in Africa comes from smallholder rainfed produc-
tion [8]. In Africa, agriculture remains the main source of food and economic development
making it a fundamental component of programs to reduce poverty and ensure food secu-
rity [9]. Consequently, meeting the demand for required food is a vital precondition for
successful economic development. Agriculture is vastly reliant on climate variables such as
rainfall, humidity and temperature; thus, agriculture is predicted to be the most affected
by climate change [7]. According to projections by the Food and Agriculture Organization
of the United Nations (2008) “by 2080, agricultural output in developing countries may
decline by 20 percent due to climate change and yields in developing countries could
further decrease by 15 percent on average by 2080”. In Africa, agriculture constitutes
more than 65 percent of the labor force, contributing over 30 percent of the gross domestic
product. Largely, climate change affects the four main areas of food security: availability,
stability, access, and utilization [10].

1.1. Weather Forecasting and Usefulness of Weather Information in Agriculture

Weather forecasting is defined as “foretelling the condition of the atmosphere for
a specific location using principles of physics, statistics, empirical techniques and tech-
nology. It also includes changes on the surface of the earth produced by atmospheric
circumstances” [10,11]. There are several conventional methods of weather forecasting
such as persistence forecasting, climatology forecasting, looking at the sky, using baro-
metric pressure, using the atmospheric model and ensemble forecasting [10]. Persistence
forecasting assumes a continuance of the present, and largely relies on the occurrence of a
stagnant weather pattern. Climatology forecast supposes that weather for a specific day
at a place does not vary much from year to year. Looking at the sky entails observing the
sky to forecast weather. For example, the inspissation of cloud cover could be a sign of
rain in the near future [11]. Using barometric pressure, a change in barometric pressure
results in a change in weather. For example, the greater the change in pressure, the greater
the change in weather. The atmospheric model contains a collection of equations that are
used to forecast the upcoming state of the atmospheric parameters. Whereas ensemble
forecasting requires the production of several forecasts in order to take into account the
uncertainty (errors in the observations and insufficient sampling) in the initial state of the
atmosphere [11].

Machine Learning (ML) models can be used in many areas in the workflow of weather
forecasting such as observations, data assimilation, numerical weather forecasting, and
post-processing and dissemination [12,13]. Machine Learning has the potential to address
the challenges of complexity and volume when dealing with meteorological data while
using less computing power. Among others, notable advantages of ML models in weather
forecasting are increasing accuracy and speed. Machine Learning is a subset of Artificial
Intelligence (AI). Machine Learning is the “study of algorithms and statistical models that
computer systems mainly use to perform a specific task without using explicit instructions
or being programmed” [14].

Availability of weather information support farmers to make reasonable choices in
agricultural production. This allows farmers to better choose strategies that take into
account climate variability, change and adaptation. Additionally, weather information is
important for resource management in agricultural production. To ensure maximum crop
yield, it is necessary to adapt and respond properly to climate change [15–17].

1.2. Problem Statement

Africa is more prone to climate change because of over-reliance on smallholder rain-
fed agriculture. Mostly, agricultural activities are controlled by rainfall quantities and
distribution. Clearly, climate change is no longer a future problem as it is already negatively
affecting agricultural productivity and food security in the world and particularly in Africa,
and therefore requires prompt attention.



Agriculture 2022, 12, 1473 3 of 23

1.3. Objectives

To ensure food security and economic development in Africa, tackling and adapting
to climate change is paramount. The main objective of this study is to develop ML-based
models adapted to the context of daily weather forecasting (Rainfall, Relative Humidity,
and Maximum and Minimum Temperature) in Senegal. These parameters are considered
to be primary weather attributes required for crop production. The goal is to determine if
the ML models will be able to forecast weather in accordance with the spatial distribution
and the annual cycle in Senegal. To achieve the main objective, the study will focus on the
following sub-objectives:

1. To determine the spatial weather distribution in Senegal;
2. To determine the weather annual cycle in Senegal.

1.4. Brief Literature Review

Several studies [18–20] have used ML Regressors for weather forecasting. In Nilgiris
district, Tamil Nadu, India, a study was conducted by [18] to predict rainfall intensity based
on humidity, wind direction, daily temperature, wind speed and cloud speed. Data from
2005 to 2014 was collected from India Meteorological Department. In this work, Decision
Tree (DT), Support Vector Regression (SVR) and Random Forest (RF) were used. Models
were evaluated using the Coefficient of Determination (R2) and adjusted R2. Results for
SVR are R2 0.814 and adjusted R2 0.806, DT are R2 0.904 and adjusted R2 0.900 and RF are
R2 0.981 and adjusted R2 0.980.

Authors in [19] compared 36 Regressors for indoor temperature forecasting for three
consecutive hours in a smart building based on every 10 min real data collected from
a smart building and a weather station. The ML models used include Random Forest,
Extra Trees and Gradient Boosting Machine. The models were evaluated using Root Mean
Squared Error (RMSE) and correlation coefficient. The results show that the Extra Trees
regressor obtained a higher correlation coefficient of 0.97 and a lower RMSE of 0.058.

A study by [20] was conducted in Ethiopia to predict daily rainfall using three ML
Regressors: Multivariate Linear Regression (MLR), Random Forest (RF), and gradient
descent XGBoost. A dataset was obtained from the weather station comprised of features
such as rainfall, humidity, maximum temperature, evaporation, minimum temperature,
sunshine, wind speed, year, month and date from 1999 to 2018. The Mean Absolute Error
(MAE) results for RF, MLR and XGBoost are 4.49, 4.97, and 3.58, respectively. The RMSE
results for RF, MLR and XGBoost are 8.82, 8.61, and 7.85, respectively.

1.5. Description of the Study Area and Data Source

Senegal is one of the sub-Saharan African countries found in westernmost Africa.
Senegal shares borders with Mauritania in the north, Guinea Conakry and Guinea Bissau
in the south and Mali in the east. Gambia river constitutes an enclave nearly 300 km deep
within Senegalese territory. Senegal experiences a Sudano-Sahelian climate: the climate
is tropical in the south and semi-desert in the north. The dry season is experienced from
November to mid-June and a humid and hot season from mid-June to October. Rainfall
decreases from the south to the north with yearly variations. It goes from 1200 mm in the
south to 300 mm in the north [21–23].

Senegal is substantially hotter and since 1975 temperatures have increased by almost
0.9 °C. Global warmers have increased the occurrence of droughts, reducing crop yields
and pasture availability. Agriculture is the main source of food and economic development.
Agriculture employs over 70 percent of the population and accounts for about 12.4 percent
of the gross domestic product. Largely, agriculture is rainfed and depends on seasonal
rainfall. Food staples include maize, millet, rice and sorghum, and usually, groundnut and
cotton are cultivated for export [21–23]. Figure 1 presents a map of the study area.
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Figure 1. Map of Senegal with its ten data source locations (at left).

1.6. Dataset

The dataset used in this study was from ten selected stations from the South, Center
and North of Senegal as presented in Figure 1. The dataset was obtained from the NASA
Langley Research Center’s POWER Project, funded by NASA Earth Science/Applied
Science Program (https://power.larc.nasa.gov/data-access-viewer/) (accessed on 26 July
2021) and spans from 1982 to 2020. The following steps were followed to access the
dataset: selecting user community, specifying temporal average, entering latitude and
longitude of the location, specifying period, specifying file output format and selecting
parameters. Parameters accessed were Year, Month, Day, Relative Humidity at 2 Meters
(%), Precipitation (mm/day), Minimum Temperature at 2 Meters (°C) and Maximum
Temperature at 2 Meters (°C). Longitude and Latitude details of selected locations are
summarized in Table 1.

Table 1. Summary of Latitude and Longitude of selected locations.

Station Latitude Longitude

Rosso 16.5 N −15.817 W
Saint-Louis 16.05 N −16.483 W
Cap-skiring 12.4 N −16.75 W

Diourbel 14.65 N −16.233 W
Kaolack 14.133 N −16.067 W

Kedougou 12.567 N −12.217 W
Kolda 12.883 N −14.967 W

Linguere 15.367 N −15.117 W
Matam 15.617 N −13.25 W

Tambacounda 13.767 N −13.683 W

1.7. Exploratory Data Analysis

In this study, exploratory data analysis was performed to observe the spatial weather
distribution and annual cycle. In this regard, exploratory data analysis for one station from
each geographical region will be presented. The selected locations are Kolda from the south,
Kaolack from the center and Matam from the north as presented in Figure 2. The parameters
of interest are Rainfall, Relative Humidity, Maximum and Minimum Temperature.

https://power.larc.nasa.gov/data-access-viewer/
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Figure 2. Map of Senegal showing locations for exploratory data analysis.

1.7.1. Spatial Weather Distribution

In Senegal, there are four notable rainfall zones constructed on cumulative rainfall
characteristics. There is a northern zone (NZ), central north zone (CN), central south zone
(CS) and southern zone (SZ). The average yearly cumulative rainfall is below 400 mm in
NZ, between 400–600 mm in CN, between 600–800 mm in CS and more than 800 mm in SZ.
Comparatively, it is noted that rainfed agricultural production is very difficult in the NZ
because of repeated rainfall shortfalls [4].

In general, rainfall increases from north to south. As presented in Figure 3, yearly
cumulative rainfall in Kolda is mostly above 800 mm, mostly between 600–800 mm in
Kaolack and mostly below 400 mm in Matam.

Figure 3. Annual cumulative rainfall variation for Matam, Kaolack and Kolda (1982–2020).

Generally, in Senegal, temperatures are between hot to extremely hot from the south to
the north. This is because the northern part has a warm desert climate. Relative Humidity
is considerably high in the south with an annual average of above 50 percent, an annual
average of below 50 percent in the center and below 40 percent in the north [4]. Figures 4–6
summarize annual average Maximum Temperature, Minimum Temperature and Relative
Humidity, respectively.
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Figure 4. Annual average Maximum Temperature for Matam, Kaolack and Kolda (1982–2020).

Figure 5. Annual average Minimum Temperature for Matam, Kaolack and Kolda (1982–2020).

Figure 6. Annual average Relative Humidity for Matam, Kaolack and Kolda (1982–2020).
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1.7.2. Annual Weather Cycle

There are two major seasons that describe the climate in Senegal. Roughly, the rainy
season starts from June to October and the dry season is from October to May. As reported
by [24] rainfall events in Senegal are expected to occur from June to October. Figure 7 shows
that all the three geographical regions share the same annual rainfall cycle (June–October)
with the month of August being the highest.

Temperatures start to rise in February with the highest levels expected from April
to early June. In the north, heat spikes of over 40 °C are observed [25]. Overall, Relative
Humidity starts to rise from June to early October. These months are considered as hot
and humid periods, especially in the south, whereas in the north, moist and rainy days
alternate with hot and dry days [26]. Figures 7–10 summarize monthly average Rainfall,
Maximum Temperature, Minimum Temperature and Relative Humidity, respectively.

Figure 7. Monthly average rainfall variation for Matam, Kaolack and Kolda (1982–2020).

Figure 8. Monthly average Maximum Temperature for Matam, Kaolack and Kolda (1982–2020).
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Figure 9. Monthly average Minimum Temperature for Matam, Kaolack and Kolda (1982–2020).

Figure 10. Monthly average Relative Humidity for Matam, Kaolack and Kolda (1982–2020).

2. Materials and Methods

The general approach behind this study is the Knowledge Discovery in Databases
(KDD) process. The Knowledge Discovery in Databases process is defined as “an itera-
tive multi-stage process for extracting meaningful patterns from data. The Knowledge
Discovery in Databases process draws methods from diverse fields such as ML, AI, and
Database Management. Steps in the KDD process are: Data Selection and Integration,
Data Cleaning and Preprocessing, Data Transformation, Data Mining, Pattern Evaluation
and Interpretation“ [27]. Figure 11 presents a summary of the entire study in a form of a
flowchart.

Daily Rainfall forecasting was performed using Relative Humidity, Maximum Temper-
ature, Minimum Temperature and Day of the Year as predictors. Predictors were selected
based on the correlation with the target variable. Correlation describes the relationship of
one or more features to each other. Features can have a positive or negative relationship of
between −1 and +1. We observed the correlation of features using a heatmap as presented
in Figure 12. A heatmap helps to visualize the strength of correlation among features and
identify features that are best for training a Machine Learning model [28]. It is observed
that there is a moderate to weak correlation between Rainfall with other features. Relative
Humidity, Minimum Temperature and Day of the Year have a positive correlation with
Rainfall of 0.5, 0.28 and 0.16, respectively. Maximum Temperature has a negative correlation
with Rainfall of −0.33. Correlation scores are summarized in Figure 12.
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Figure 11. Flowchart summarizing the entire study.

Figure 12. Correlation summary for Rainfall, Relative Humidity, Maximum Temperature, Minimum
Temperature and Day of Year.
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Daily forecasting for Relative Humidity, Maximum and Minimum Temperature was
conducted by using five lagged values for each feature. This was the case because the
autocorrelation for these parameters was strong. Autocorrelation measures “the degree
of correlation of past values of a time series”. Autocorrelation can be positive or negative.
For example, an autocorrelation of +1 signifies a strong positive correlation, whereas an
autocorrelation of −1 signifies a strong negative correlation [29]. As seen in Figure 13,
the autocorrelation score for Relative Humidity, Maximum Temperature and Minimum
Temperature is above 0.8 up to five lags. Autocorrelation scores of features are summarized
in Figure 13.

Figure 13. Autocorrelation summary for Relative Humidity, Maximum Temperature, Minimum
Temperature and Rainfall.

2.1. Data Pre-Processing and Transformation

The objective of the data pre-processing phase was to detect and impute missing
values and ensure that all parameters are converted into the right data types and format
and normalized. Normalization ensures that features are within a given range.

For rainfall forecasting, we realized that the correlation of Rainfall with the predictors
was not strong to ensure better prediction. Hence, to improve the correlation, additional
features were derived through feature engineering: fourteen polynomial features from
the four features (Relative Humidity, Maximum Temperature, Minimum Temperature
and Day of the Year). Further, the Rainfall parameter was transformed by performing
log transformation to have a less skewed distribution. Creating polynomial features and
transforming the target variable increased the correlation of features and the target variable
as presented in Figure 14.

Figure 14. Correlation of features after feature engineering and data transformation.

For the forecasting of Relative Humidity, Maximum Temperature and Minimum
Temperature, a dataset was restructured into input variables and output variables by using
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lagged values as input variables and using the next time step as the output variable. This
technique is called a sliding window with one-step forecasting. With this technique, the
order of the time series observations is maintained and the number of lagged values is
called the window size. In this study, observations for the past five days were used as inputs
for the next day’s forecast. Figure 15 summarizes how the Relative Humidity, Maximum
Temperature and Minimum Temperature dataset was restructured using a sliding window
with a one-step forecasting technique.

Figure 15. Summary of sliding window with one-step forecasting technique.

Machine Learning Models

In this study, we compared our Ensemble Model with ten ML regressors: Light Gradi-
ent Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor, Extreme Gradient
Boosting, Random Forest Regressor, Orthogonal Matching Pursuit, Extra Trees Regressor,
K Neighbors Regressor, AdaBoost Regressor and Decision Tree Regressor. The Ensemble
Model was developed by stacking the top three regressors: CatBoost Regressor, Gradient
Boosting Regressor and Light Gradient Boosting Machine. Machine Learning regressors are
trained to understand the relationship between features and the target variable or outcome.
This is referred to as Supervised Machine Learning. Then, the models are leveraged to
predict the outcome of new and unseen input data or to impute missing data. While
Ensemble Models combine predictions from two or more base models. Ensemble Models
are used to achieve the best performance on a predictive modeling project. The study was
implemented using Pycaret [30] Python library.

The following metrics with 10-folds cross-validation were used to evaluate the models:
Mean Absolute Error, Mean Squared Error (MSE), Root Mean Squared Error and Coeffi-
cient of Determination. Mean Absolute Error is the “average of the absolute difference
between the actual and predicted values in the dataset” [31]. The Mean Absolute Error is
expressed as:

MAE =
1
N

N

∑
i=1
|yi − ŷ| (1)

where N is the number of samples, yi is the ith observed value in the dataset and ŷ is the
predicted value.

Mean Squared Error is the “average of the squared differences between predicted and
expected target values in a dataset. The squaring has the effect of inflating large errors” [31].
Mean Squared Error is expressed as:

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (2)

where N is the number of samples, yi is the ith observed value in the dataset and ŷ is the
predicted value.



Agriculture 2022, 12, 1473 12 of 23

Root Mean Squared Error is the “square root of the average of squared errors” [31].
Root Mean Squared Error is expressed as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (3)

where N is the number of samples, yi is the ith observed value in the dataset and ŷ is the
predicted value.

The coefficient of determination is defined as the “proportion of the variance in the
dependent variable that is predictable from the independent variables” [32]. The coefficient
of determination is expressed as:

R2 =
RSS
TSS

(4)

where RSS is the Residuals Sum of Squares and TSS is the Total Sum of Squares.
The dataset from 1982 to 2008 was used for training and from 2009 to 2020 was used

for testing the models.

3. Presentation of Results and Discussion

The results presented are average scores for MAE, MSE, RMSE and R2 across the
10-folds cross-validation. Then, we analyze the performance of the best model for each
weather parameter.

3.1. Relative Humidity

From Table 2, the comparative analysis shows that the Ensemble Model is found
to have a lower score of MAE, MSE and RMSE: 4.0126, 29.9885 and 5.4428, respectively.
The Ensemble Model proved to achieve the highest accuracy in predicting the Relative
Humidity with R2 score of 0.9335. Table 2 summarizes performance of models.

Table 2. Model performance for Relative Humidity Forecasting.

Model MAE MSE RMSE R2

Ensemble Model 4.0126 29.9885 5.4428 0.9335
Light Gradient Boosting Machine 4.0693 30.6936 5.5040 0.9317

CatBoost Regressor 4.0619 30.7052 5.5046 0.9317
Gradient Boosting Regressor 4.0863 30.8061 5.5140 0.9314
Extreme Gradient Boosting 4.1601 32.1831 5.6292 0.9280
Random Forest Regressor 4.2284 32.9041 5.7005 0.9270

Orthogonal Matching Pursuit 4.2385 33.1158 5.7223 0.9268
Extra Trees Regressor 4.2533 33.3111 5.7349 0.9260

K Neighbors Regressor 4.4810 36.5971 6.0138 0.9184
AdaBoost Regressor 5.7023 48.4746 6.9384 0.8954

Decision Tree Regressor 5.9400 65.2236 8.0390 0.8553

We analyze the performance of the Ensemble Model by analyzing the goodness of
fit and residuals as presented in Figure 16. Residual is the difference between the actual
value of y and the predicted value of y. A comparison of the model’s best fit prediction
with a dashed 45-degree line in Figure 16A shows that the model performed well. We
observe that there are many points close to the identity line meaning that the prediction
error is close to zero. Figure 16B shows that the residuals are proportionally dispersed
along the zero axis which would mean lower errors. The residuals do not follow any
specific pattern. Nevertheless, we can also perceive some cases where higher Relative
Humidity was observed but the model predicted lower Relative Humidity or where lower
Relative Humidity was observed but the model predicted higher Relative Humidity. We
further observe some outliers which might contribute to the high value of MAE. We believe
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that adding more features can help to reduce these estimator errors. The histogram in
Figure 16B demonstrates that model regularization was performed well considering the
spectrum and residual distribution of the predictions on the training and testing set. This
shows that the model generalizes well.

Figure 16. Accuracy of Ensemble Model for Relative Humidity forecasting.

3.2. Minimum Temperature

As presented in Table 3, it is observed that Ensemble Model performed well with a
lower score of MAE, MSE and RMSE: 0.7908, 1.1329 and 1.0515, respectively. Additionally,
Ensemble Model got the highest R2 score of 0.9018. Table 3 summarizes performance
of models.

We consider the goodness of fit and residuals as presented in Figure 17 to analyze
the performance of the Ensemble Model. Generally, the model performed well as seen
in Figure 17A, model’s best fit prediction is closer to the dashed 45-degree line. This
implies that the prediction error is close to zero. Figure 17B shows that the residuals
are proportionally dispersed along the zero axis, the residuals do not follow any specific
pattern. However, we observe a few cases where the model has predicted higher or lower
than the observed Minimum Temperature. Further, we notice some cases of outliers which
might help to explain the value of MAE. Adding more features can help to reduce these
estimator errors. The histogram spectrum and residual distribution of the predictions on
the training and testing set in Figure 17B demonstrate that the model generalizes well.

3.3. Maximum Temperature

Comparatively, as seen in Table 4 Ensemble Model performed well with a lower score
of MAE, MSE and RMSE: 1.2515, 2.8038 and 1.6591, respectively. In terms of R2 score,
Ensemble Model got the highest with 0.8205. Table 4 summarizes performance of models.

We analyze the performance of the Ensemble Model by considering the goodness of
fit and residuals as presented in Figure 18. A comparison of the model’s best fit prediction
with a dashed 45-degree line in Figure 18A shows that overall the model performed well.
However, we observe a few cases where the model predicted higher or lower than the
observed Maximum Temperature. Further, we notice some cases of outliers which might
help to describe the value of MAE. Adding more features can help to reduce these estimator
errors. Overall, residuals are proportionally dispersed along the zero axis as seen in
Figure 18B. This means lower errors and residuals do not follow any specific pattern.
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Figure 17. Accuracy of Ensemble Model for Minimum Temperature forecasting.

Table 3. Model performance for Minimum Temperature Forecasting.

Model MAE MSE RMSE R2

Ensemble Model 0.7908 1.1329 1.0515 0.9018
Gradient Boosting Regressor 0.7953 1.1481 1.0582 0.9006

Light Gradient Boosting Machine 0.7966 1.1508 1.0595 0.9004
CatBoost Regressor 0.7983 1.1554 1.0614 0.9001

Extreme Gradient Boosting 0.8107 1.1893 1.0771 0.8971
Orthogonal Matching Pursuit 0.8199 1.2034 1.0840 0.8956

Random Forest Regressor 0.8248 1.2200 1.0922 0.8942
Extra Trees Regressor 0.8301 1.2326 1.0982 0.8931

K Neighbors Regressor 0.8793 1.3646 1.1573 0.8815
AdaBoost Regressor 0.8961 1.4137 1.1727 0.8787

Decision Tree Regressor 1.1877 2.4335 1.5515 0.7865

Table 4. Model performance for Maximum Temperature Forecasting.

Model MAE MSE RMSE R2

Ensemble Model 1.2515 2.8038 1.6591 0.8205
Light Gradient Boosting Machine 1.2618 2.8418 1.6694 0.8176

Gradient Boosting Regressor 1.2678 2.8478 1.6725 0.8175
CatBoost Regressor 1.2624 2.8501 1.6716 0.8171

Extreme Gradient Boosting 1.2878 2.9636 1.7031 0.8095
Random Forest Regressor 1.3031 3.0114 1.7195 0.8071

Extra Trees Regressor 1.3116 3.0473 1.7298 0.8048
Orthogonal Matching Pursuit 1.3240 3.1079 1.7519 0.8016

K Neighbors Regressor 1.3811 3.3403 1.8128 0.7865
AdaBoost Regressor 1.4331 3.3870 1.8281 0.7841

Decision Tree Regressor 1.8775 6.1235 2.4593 0.6098
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Figure 18. Accuracy of Ensemble Model for Maximum Temperature forecasting.

3.4. Rainfall

Relatively, from Table 5 it is observed that the Ensemble Model performed well with a
lower score of MAE, MSE and RMSE: 0.2142, 0.1681 and 0.4100, respectively. For R2 score,
Ensemble Model got the highest with 0.7733. Table 5 summarizes performance of models.

We use the goodness of fit and residuals as presented in Figure 19 to analyze the
performance of the Ensemble Model. In Figure 19A, we observe a high density of errors
on point zero of the x-axis which means that the model predicted rains on a day when no
rainfall was actually observed. In some cases where rainfall was actually observed, the
model made over or under predictions. Further, we notice some cases of outliers which
might help to explain the value of MAE. Residuals in Figure 19B show the model struggled
to predict the extremely low observed rainfall. This requires adding more features, further
data transformation and feature engineering to improve the correlation of features. Further,
this can be attributed to the highly non-linearity of weather and rainfall.

Table 5. Model performance for Rainfall Forecasting.

Model MAE MSE RMSE R2

Ensemble Model 0.2142 0.1681 0.4100 0.7733
CatBoost Regressor 0.2150 0.1691 0.4112 0.7719

Light Gradient Boosting Machine 0.2146 0.1695 0.4117 0.7714
Gradient Boosting Regressor 0.2221 0.1752 0.4185 0.7638
Extreme Gradient Boosting 0.2178 0.1752 0.4185 0.7638
Random Forest Regressor 0.2212 0.1797 0.4238 0.7578

Extra Trees Regressor 0.2246 0.1851 0.4302 0.7504
K Neighbors Regressor 0.2316 0.2022 0.4496 0.7272

AdaBoost Regressor 0.3803 0.2851 0.5325 0.6147
Orthogonal Matching Pursuit 0.4127 0.3336 0.5775 0.5502

Decision Tree Regressor 0.2910 0.3452 0.5875 0.5343
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Figure 19. Accuracy of Ensemble Model for Rainfall forecasting.

Comparatively, other studies have reported similar results. Table 6 summarizes our
results and results from other studies.

Table 6. Summary of our results and results from other studies.

Authors Model Parameter MAE RMSE

Our results

Relative Humidity 0.1873 0.1369
Ensemble Model Minimum Temperature 0.1881 0.1429

Maximum Temperature 0.1898 0.144
Rainfall 0.2987 0.1787

[20]
Random Forest 4.49 8.82
Multivariate Linear Regression Rainfall 4.97 8.61
XGBoost 3.58 7.85

[33] XGBoost Rainfall 8.8 2.7

[34] Linear Regression Maximum Temperature 3.10 1.78

[35] Indoor Air Temperature 0.3535 0.476
Random Forest Indoor Relative Humidity 1.47 2.429

4. Prediction on the Test Dataset

As presented in Section 1.3, the objectives were to observe if the model would correctly
make predictions according to spatial weather distribution and annual cycle.

4.1. Spatial Weather Distribution

In order to observe spatial distribution, forecasting was performed to compare three
geographical regions: south, center and north. One location from each region was selected
as presented in Figure 2. Kolda from the south, Kaolack from the center and Matam from
the north.

4.1.1. Relative Humidity

As seen in Figure 20A, the observed Relative Humidity increases from the north to the
south. The model forecast has followed the same trend as seen in Figure 20B. The observed
and model forecasts are high for Kolda almost throughout the year with a maximum of
above 90% from 2009 to 2020. As seen in Figure 20A,B, comparatively, the model forecast
is closer to the observed values. Figure 20 summarizes the daily observed and forecasted
Relative Humidity.
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Figure 20. Observed and Forecasted Relative Humidity for Matam, Kaolack and Kolda (2009–2020).

4.1.2. Maximum and Minimum Temperature

In Senegal, temperatures vary from hot to extremely hot from the south to the north
due to the warm desert climate in the north. As presented in Figure 21A, the observed
Maximum Temperature from 2009 to 2020 is expected to be high in Matam with a huge spike
of above 45 °C. As presented in Figure 21B, the model has forecasted the same trend with
the Maximum Temperature in Matam of about 44 °C from 2009 to 2020. Figures 21 and 22
summarize the daily observed and forecasted Maximum Temperature and Minimum
Temperature, respectively.

Figure 21. Observed and Forecasted Maximum Temperature for Matam, Kaolack and Kolda (2009–2020).
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Figure 22. Observed and Forecasted Minimum Temperature for Matam, Kaolack and Kolda (2009–2020).

4.1.3. Rainfall

In Senegal, rainfall increases from north to south. As presented in Figure 23A, the
observed annual cumulative rainfall from 2009 to 2020 in Kolda is mostly expected to be
above 800 mm, between 600–800 mm in Kaolack and below 500 mm in Matam. The model
forecast as presented in Figure 23B shows the same trend from 2009 to 2020 with Kolda
above 800 mm, Kaolack between 600 mm to 800 mm, and Matam mostly below 400 mm.
Figure 23 summarizes the annual observed and forecasted Rainfall.

Figure 23. Observed and Forecasted Rainfall for Matam, Kaolack and Kolda (2009–2020).
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4.2. Annual Weather Cycle

In order to observe the annual weather cycle, monthly average forecasting was per-
formed to compare three geographical regions: South, Center and North. One location
from each region was selected as presented in Figure 2. Kolda from the south, Kaolack
from the center and Matam from the north.

4.2.1. Relative Humidity

In all the geographical regions, Relative Humidity is expected to start to rise from
June to early October. These months especially in the South are considered hot and humid.
Figure 24 shows the monthly average observed and model forecast Relative Humidity.
Generally, as seen in Figure 24B the model was able to reasonably forecast according to the
annual cycle with the peak expected around August in Kolda and September in Kaolack and
Matam. Entirely, the model forecast is closer to the observed values as seen in Figure 24A.
Figure 24 summarizes the observed and forecasted monthly average Relative Humidity.

4.2.2. Maximum Temperature and Minimum Temperature

The highest levels of temperatures are expected from April to early June in all the
geographical regions with the noticeable heat spikes of over 40 °C in the North as seen
in Figure 25A. Generally, the model was able to reasonably forecast according to the an-
nual cycle with the peak expected around May in all the regions as seen in Figure 25B.
Relatively, the model forecast is closer to the observed values. Figures 25 and 26 sum-
marize the monthly average observed and model forecast Maximum temperature and
Minimum Temperature.

4.2.3. Rainfall

As expected, the rainy season start from June to October and the dry season from
roughly October to May as seen in Figure 27A. Substantially, the model predicted rainfall
events in Kolda, Kaolack and Matam from the month of June to October as presented in
Figure 27B. These results agree with the fact that all three geographical regions share the
same annual rainfall cycle (June–October). Figure 27 summarizes the monthly average
observed and model forecast Rainfall.

Figure 24. Monthly Average Observed and Forecasted Relative Humidity for Matam, Kaolack and
Kolda (2009–2020).
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Figure 25. Monthly Average Observed and Forecasted Maximum Temperature for Matam, Kaolack
and Kolda (2009–2020).

Figure 26. Monthly Average Observed and Forecasted Minimum Temperature for Matam, Kaolack
and Kolda (2009–2020).
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Figure 27. Monthly Average Observed and Forecasted Rainfall for Matam, Kaolack and Kolda
(2009–2020).

4.3. Conclusions and Recommendations

In this study, we compared ten ML Regressors and our Ensemble Model for daily
Rainfall, Relative Humidity, and Maximum and Minimum Temperature forecasting in
Senegal. The results indicate that the Ensemble Model outperformed the Regressors. The
notable results for Relative Humidity were MAE 4.0126, MSE 29.9885, RMSE 5.4428 and R2

0.9335. Minimum Temperature were MAE 0.7908, MSE 1.1329, RMSE 1.0515 and R2 0.9018.
Maximum Temperature were MAE 1.2515, MSE 2.8038, RMSE 1.6591 and R2 0.8205. Rainfall
were MAE 0.2142, MSE 0.1681, RMSE 0.4100 and R2 0.7733. This study has shown that
Machine Learning models can be adapted to daily weather forecasting. Further, the study
has shown that Machine Learning models can learn and forecast weather in accordance
with spatial distribution and annual cycle.

Given these findings, the potential role of technologies in ensuring that farmers adapt
and develop resilience to negative climate change effects in Africa will not occur without
concerted and decisive policy action to adopt such technologies. To enhance food security,
the challenges facing the agricultural sector due to climate change effects in Africa need to
be quickly addressed.

4.4. Limitation of the Study

Weather and climate processes are closely connected with greenhouse gasses. This study
did not take into account the effect of greenhouse gasses in weather forecasting. An in-
creasing number of features and more feature engineering could have possibly helped to
improve the performance of the models.

4.5. Future Work

Our future work will be to perform long-term weather forecasting and develop an
Expert Decision Support System that will utilize the weather forecasts to provide a platform
where farmers and researchers will have access to localized weather information, expert
recommendations and insights for farmer decision support and action.
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