
Citation: Zhong, Y.; Huang, B.; Tang,

C. Classification of Cassava Leaf

Disease Based on a Non-Balanced

Dataset Using Transformer-

Embedded ResNet. Agriculture 2022,

12, 1360. https://doi.org/10.3390/

agriculture12091360

Academic Editors: Xiuliang Jin,

Hao Yang, Zhenhai Li,

Changping Huang and Dameng Yin

Received: 8 August 2022

Accepted: 28 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Classification of Cassava Leaf Disease Based on a Non-Balanced
Dataset Using Transformer-Embedded ResNet
Yiwei Zhong, Baojin Huang and Chaowei Tang *

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
* Correspondence: cwtang@cqu.edu.cn

Abstract: Cassava is a typical staple food in the tropics, and cassava leaf disease can cause massive
yield reductions in cassava, resulting in substantial economic losses and a lack of staple foods.
However, the existing convolutional neural network (CNN) for cassava leaf disease classification is
easily affected by environmental background noise, which makes the CNN unable to extract robust
features of cassava leaf disease. To solve the above problems, this paper introduces a transformer
structure into the cassava leaf disease classification task for the first time and proposes a transformer-
embedded ResNet (T-RNet) model, which enhances the focus on the target region by modeling global
information and suppressing the interference of background noise. In addition, a novel loss function
called focal angular margin penalty softmax loss (FAMP-Softmax) is proposed, which can guide the
model to learn strict classification boundaries while fighting the unbalanced nature of the cassava
leaf disease dataset. Compared to the Xception, VGG16 Inception-v3, ResNet-50, and DenseNet121
models, the proposed method achieves performance improvements of 3.05%, 2.62%, 3.13%, 2.12%,
and 2.62% in recognition accuracy, respectively. Meanwhile, the extracted feature maps are visualized
and analyzed by gradient-weighted class activation map (Grad_CAM) and 2D T-SNE, which provides
interpretability for the final classification results. Extensive experimental results demonstrate that
the method proposed in this paper can extract robust features from complex non-balanced disease
datasets and effectively carry out the classification of cassava leaf disease.

Keywords: cassava diseases; intelligent agricultural engineering; convolutional neural network; focal
angular margin penalty softmax loss (FAMP-Softmax); transformer-embedded ResNet (T-RNet);
unbalanced image samples

1. Introduction

The root system of cassava grows on many continents, including Africa, Asia, and
South America [1] because of its ability to adapt to harsh soil conditions and complex
climates. In Africa, cassava is grown in large quantities for food supply and economic
consumption [2]. In addition, due to its rich protein and starch contents, cassava is widely
used for starch processing, paper production, feed production, and edible use [3]. Due to
its high economic and nutritional value, the utilization and development of cassava have
become a focus of contemporary tropical agricultural science and technology. However,
cassava leaf disease, such as cassava green mite (CGM), cassava bacteria blight (CBB),
cassava brown streak disease (CBSD), cassava mosaic disease (CMD), cassava American
latent leaf disease (CALD), cassava brown streak Uganda disease (CBSUD), and cassava
Colombian symptomless disease (CCSD), have seriously affected cassava production and
caused substantial economic losses [4]. Manual diagnosis of cassava leaf disease is a
costly and inefficient method of diagnosis. Therefore, to reduce the expenses of farmers
and increase cassava production, there is a need to find more accurate methods for the
classification of cassava leaf disease.

Techniques based on image processing can be effective for the timely diagnosis of plant
diseases. Among them, Smith et al. [5] developed an algorithm based on image processing
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that automatically identifies visual symptoms of plant diseases. This method analyzes
color images and extracts image features from disease sites to identify disease-causing
factors in plants. A. Meunkaewjinda et al. [6] also proposed an intelligent system based on
color image blending to classify scab, rust, and disease-free grape leaves. However, when
the images are affected by light and angle, it is not easy to extract the high-level semantic
information of the images by traditional methods, and the classification task will face a
considerable challenge.

Furthermore, a lot of methods combining computer vision, image processing, and
machine learning have been proposed by researchers in plant leaves disease classification.
Bracino et al. [7] used graph cut segmentation aided by lazy snapping process to separate
background from the apple leaf images, and it extracted a total of 12 color and texture
features from which only 3 features are selected using Neighborhood Component Analysis
(NCA). Pravin Kumar et al. [8] separated background and foreground by Gaussian Mixture
Model (GMM), which was used to model each pixel in the frame into Gaussian distribution.
Diseased regions are segmented using Particle Swarm Optimization (PSO) based Fuzzy
C-means algorithm. They proposed Multi-Kernel Parallel Support Vector Machine (MK-
PSVM) as a classifier. Emrullah Acar et al. [9] extracted cassava leaves multi-feature textures
using local binary pattern (LBP), histogram of oriented gradients (HOG), texture energy
map (TEM), Gabor Wavelet Transform (GWT), and gray level co-occurrence matrix (GLCM).
Then, the obtained feature vectors from relevant feature extraction algorithms were put
through a distributed structural-based k-NN classifier. However, as is known to all that
in the field of image recognition, extracting image features is the most critical part of
the pattern recognition system. The quality of feature extraction directly affects the final
recognition rate of the system. Most of the machine learning methods deal with data in
shallow structure. These structural models have only one or two layers of nonlinear feature
transformation at most, the features acquired from shallow structure are designed by hand.
It is difficult to make use of the advantages of big data by relying on the prior knowledge
and parameter adjustment experience of designers.

In recent years, besides these classical machine learning methods, deep learning tech-
niques based on CNN have occupied an important position in plant disease classification,
which provides a new approach to the development of disease classification for automated
classification systems. This approach uses multilayer neural networks and optimization
algorithms to train data to perform classification or regression tasks, among others, and
many research works applied CNN techniques to cassava leaf disease classification [10–13].
For example, Ramcharan et al. [11] employed the inception-v3 model for transfer learning
to identify three diseases and two instances of pest damage on a dataset of cassava disease
images taken in Tanzanian fields, where support vector machine (SVM) and K-nearest
neighbor algorithm (KNN) were used to evaluate the accuracy of the system for classifica-
tion. The detection results showed that the proposed method has good overall performance
in terms of the classification accuracy and the confusion matrix. However, its performance
and efficiency are low when dealing with unbalanced samples. Isaman Sangbamrung
et al. [13] creatively used the view of detection to localize disease images. By proposing
a multi-model cascade approach, high accuracy detection of CBSD diseases is achieved.
However, the primary deficiency is that the use of detection will increase the workload
of manual annotation and annotation error rate, and it is only used in cases of apparent
and bounded category features, and cannot effectively annotate other categories. Without
specific image feature patterns, it cannot effectively annotate other categories, such as CSBD,
CMD, and other diseases. In addition, this approach mainly focuses on classifying CBSD
diseases and lacks the ability to classify other disease categories, it is difficult to determine
the generalization and robustness of the model. G. Sambasivam et al. [12] used the synthetic
minority oversampling technique (SMOT) and focal loss function to train CNNs for cassava
disease classification. However, the author did not mention the effects of SMOT and focal loss
on the model performance, and the structure of the model proposed in the article is relatively
simple and challenging to apply to the complex cassava leaf disease dataset.
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Aiming at the plant leaves disease classification task, there are a number of works achieving
state-of-the-art performance, such as Inception-v3 [14], VGG [15], MobileNetV2 [16,17], and
DenseNet-121 [18,19]. However, for some cassava leaf diseases, such as CGM, CMD,
and CBB, leaves suffering from these diseases have similar symptoms and it is difficult to
distinguish disease category from image textures, furthermore many image samples contain
environmental background noise. Most of these regions include plants or leaves unrelated
to specific classes, this makes it difficult for convolutional neural network-based models
to learn accurate and discriminative features. These models do not effectively use global
information to focus on important target regions. In addition, due to the large imbalance
in the samples of multiple disease categories in the dataset, it will further increase the
difficulty of model training, resulting in overfitting of the model to categories with a large
number of samples.

Therefore, to solve the problems mentioned above, this study first introduces the
transformer into the cassava disease classification task to learn more robust disease fea-
tures by fusing local and global feature information. Because it can achieve long-range
information modeling and compensate for the deficiencies of CNNs, the model considers
typical local features of the disease and observes the information of adjacent or even global
image regions. Therefore, this study proposes T-RNet based on the transformer to prevent
the model from learning local features with background interference, which leads to the
model overfitting the local features and ignoring the critical target regions. In addition,
the dataset used in this paper has the problem of an unbalanced number of samples of
disease categories, which is not conducive to the feature learning of disease categories
with few samples. In order to better learn the feature differences between different disease
categories, inspired by the focal loss [20] and ArcFace loss [21], this paper proposes a fusion
loss function named focal angular margin penalty softmax loss (FAMP-Softmax). Because
of the inherited properties of focal loss, this loss function can help to distinguish between
complicated and simple samples, while also reduce the sample imbalance problem. At
the same time, using angle space instead of the Euclidean distance can further increase
the feature distance between disease categories and increase the clustering within classes.
Experimental results demonstrate that the FAMP-Softmax loss function can help the model
to combat the imbalanced sample problem.

The main contributions are as follows:

• In the cassava leaf disease detection task, transformer structure is introduced for
the first time to pay attention to the global information and prevent the model from
overfitting to the local background noise regions, and a new convolution network
model (T-RNet) integrating the advantages of ResNet and transformer is proposed,
which can extract more discriminative features. Experimental results for performance
tests show that the proposed model has better classification performance than the
popular commonly used CNN model;

• A new loss function (FAMP-softmax) is proposed to solve the problem of class non-
balance in cassava leaf disease datasets. According to the accuracy and F1-score, the
FAMP-Softmax performance is better than cross-entropy and focal loss function based
on Resnet-50 and T-RNet;

• The interpretability of CNN feature extraction method for cassava leaf disease classification
is discussed by using Grad_CAM attentional map and T-SNE visualization technology.

2. Related Work
2.1. Attention Mechanism and Transformer

The attention mechanism, a vital component to improve the performance of CNNs,
is a simulation of biological attention mechanisms that enables CNNs to model the re-
lationships of all input elements. Attention mechanisms can enhance information-rich
features and suppress information-irrelevant features. Currently, many networks have
achieved strong results based on the attention mechanism. Among them, Hu [22] used
a fully connected layer to model feature-channel relationships; Wang et al. [23] used a
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one-dimensional convolution instead of a fully connected layer to reduce the parameters
of the model; and Woo et al. [24] used a combination of spatial and channel attention
mechanisms to further improve the performance of the model. In 2017, Google proposed
a transformer network model based on a self-attention mechanism. Instead of using a
long short-term memory (LSTM) model structure [25], the entire model is formed by the
self-attention module based on an encoder and decoder architecture. In natural language
processing (NLP) tasks, the transformer’s network performance far exceeds that of LSTM.
Afterward, many models began to use similar architectures and modules for NLP tasks, such
as GPT [26]. The transformer’s success in NLP tasks led researchers to employ it in computer
vision tasks to compensate for the shortcomings of CNNs, such as BoTNet [27], DETR [28],
VideoBERT [29], and VILBERT [30]. Inspired by this, this study introduces the transformer
module into the cassava leaf disease classification task, which enables the model to focus on
the interrelationships among information types in different regions to capture useful feature
information and to enable the network model to learn discriminative and robust features.

2.2. Classification Loss Function

The classification loss function is essential for guiding deep convolutional neural
networks (DCNNs) toward better training. Most classification tasks are based on DCNNs
and supervised by classification loss functions. The softmax loss function is considered
as the classical classification loss function and has been applied in many fields. How-
ever, the softmax loss function has several shortcomings. Most notably, the classification
boundaries is not strict enough [21]. Many researchers believe that softmax loss is effective
in optimizing interclass differences, but it cannot reduce intraclass differences [21,31–33].
In recent years, there have been many efforts to improve the softmax loss function for
classification. A-Softmax [33] normalizes the weights to make DCNN focus on the angle
information. L-Softmax [31] applies a multiplicative penalty factor to the angle between
weights and features. Wang et al. [32] applied some penalties to the cosine value to enhance
the intraclass compactness. However, Deng et al. [21] argued that a direct penalty on angles
would yield a better performance in the classification task, and they proposed an improved
softmax called Arcface loss [21]. The related improved softmax loss function focuses on
producing an acceptable classification margin by penalizing the cosine values or angles.

The improved softmax loss can increase the category spacing very well. However, it
still does not achieve satisfactory results for the data imbalance problem. This is because it
does not address the problem that the model will tend to predict the categories in which the
sample occurs more frequently [20]. Currently, in the field of deep learning, methods for
dealing with imbalanced samples can be broadly classified into two categories: balanced
sampling methods and weight adjustment methods. Hermans et al. [34] first proposed a
PK sampling strategy for the human reidentification task to solve the imbalanced sample
problem. Performing sampling strategies in classification tasks will undoubtedly increase
time and space resources. Focal loss was first proposed for unbalanced target detection,
which was based on a weight assignment strategy to address the problem with unbalanced
datasets. Currently, it has been widely used in related classification tasks.

Focal loss solves problems with unbalanced datasets, but it does not produce stricter
classification boundaries. The improved softmax loss function considers classification
boundaries, but it is not suitable for handling balanced datasets. Therefore, there is an
urgent need to explore a loss function that can handle unbalanced datasets and optimize
stricter classification boundaries. This study propose a novel loss function, focal angular
margin penalty softmax loss (FAMP-Softmax), by combining two types of classification loss
functions to meet our task challenge.

3. Proposed Methods

This section will first present the overall architecture of the proposed method of this
study, then present the specific details of the proposed network model, and finally present
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the details of the ideas and principles of the proposed loss function. The overall framework
of the proposed method of this study is shown in Figure 1.

Figure 1. The overall architecture of our method. The images are sequentially processed by the
backbone (first two stages of ResNet18) and GE, and the extracted features are then fed into the fully
connected layer and our proposed loss function FAMP-Softmax loss to obtain the final classification
results. 512 × 512 denotes the size of the input images, and 64 × 64, 32 × 32, and 16 × 16 denote the
size of the feature map.

3.1. The General Architecture of T-RNet

Similar characteristics exist between different disease categories, such as leaf wilt and
shrinkage symptoms in both CGM and CBB, white or white patchy symptoms in CMD and
CGM, and yellow patches in CBSD and CMD. Additionally, environmental background
noise is present in a large number of samples in the dataset, which makes it difficult for
the model to accomplish correct classification. The current mainstream approaches are
based on CNNs, such as VGG16 [15], ResNet-50 [35], DenseNet121 [18,19,36], Xception [37],
and Inception-v3 [14]. The results achieved by these networks for this tricky task are not
satisfactory because CNNs have a strong ability to extract local information. However, we
believe that too much local feature information is likely to mislead the model learning, and
there is background noise in the image, which can cause the model to learn the wrong
information and ignore the important region information. To change the model’s excessive
focus on the wrong local region perspective, this study proposes guiding the model to learn
a more robust feature representation from a more global region feature, thus requiring
the model to display long-range global information. To solve this problem, this study
proposes a novel network model called T-RNet to increase the model’s ability to focus on
global information. GE (global information extraction module) is mainly responsible for



Agriculture 2022, 12, 1360 6 of 18

extracting global information and channel information to enhance the feature representation
and to improve the classification effect of the model. Specifically, the transformer is
introduced into the GE module to help the model to extract the long-range information
and to combine it with the CNNs to extract local features to obtain a more powerful feature
representation. The DCE module introduces the channel attention mechanism to obtain
better channel feature information and uses deep separable convolution to further reduce
the model parameters, which is beneficial for edge deployment. In the proposed whole
network architecture of this study, the images are first fed into the backbone (ResNet18)
and pretrained on ImageNet with layer 3 and layer 4 removed. Then, the feature vectors
learned through GE and the fully connected layer are sent to our proposed loss function to
obtain classification results.

The structure of the GE module is shown in Figure 1a, which aims to extract lo-
cal and global information with a convolution and a transformer. For a given input
tensor X ∈ RH×W×C, GE applies a 1 × 1 convolution to generate XK ∈ RH×W×2C.
The 1 × 1 convolution projects the tensor to a high-dimensional space to obtain high-
dimensional channel information. Then, it changes XK into N nonoverlapping tensor blocks
XG ∈ RN×P×C for transformer module learning by dimensionality change. Here, P = w× h
and h, w are the width and height of the feature map of each tensor block, respectively.
N = H×W

P is the number of tensor blocks. To learn the relationship between N nonover-
lapping tensor blocks, each tensor block is encoded and sent to the transformer module to
obtain the output XO ∈ RN×P×C.

XO = Trans f ormer(XG) (1)

The transformer structure is shown in Figure 2, which consists of a norm layer, a
multiheaded attention (MHA) layer, and a feedforward transmission layer. The norm layer
mainly performs the normalization operation on the input feature codes, and the MHA
layer mainly learns the weight assignment of different dimensions of the feature codes to
obtain the interrelationships between different codes. Finally, the feedforward transmission
layer performs feature mapping, while preserving the feature vector dimension alignment.
Because it has a self-attentive structure, it is commonly used in vision tasks to learn different
image block feature encodings to obtain attentional information about the whole image [38].
Once the information encoding is obtained, this study uses a symmetric 1× 1 convolutional
structure to obtain the feature tensor in the same dimension as the input. However, unlike
convolution, GE transforms the feature map into different tensor blocks and goes through
the transformer to learn the relationships between the different tensor blocks to obtain
more detailed information about the feature map. In this case, the size of the feature map is
usually extremely small, and it is not too costly in terms of model computation.

Figure 2. The structure of the transformer module.

Meanwhile, to make full use of the information of the feature maps, the feature maps
containing the information of original features and channel features are obtained by the DCE
convolution module for the above branch. Finally, the feature maps of different branches are
stitched together in the channel dimension by a 1 × 1 convolution operation to interact with
different information. The GE module combines the convolution and transformer to obtain a
better feature representation, which is beneficial for easier model convergence.

The DCE module is shown in Figure 1c, which introduces deep separable convo-
lution (DW) and squeeze-extraction (SE) blocks to extract features, while reducing the
number of model parameters compared to traditional convolution. The DCE module is
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used to obtain richer channel and semantic information to complement the global infor-
mation. Deep separable convolution is an important module in many CNNs models [16].
Standard convolution inputs an hi × wi × d tensor Xd and applies a convolution kernel
K ∈ Rk×k×d×l to obtain the output ho × wo × l tensor Xl . The overall computational cost
is hi × wi × d× d× k× k. Using deep separable convolution instead of standard convolu-
tion, the computational cost can be reduced to hi × wi × d(k× k + l). Experience shows
that the performance can often reach the same level as that of the standard convolution.
Therefore, applying the deep separable convolution to the DCE module can greatly reduce
the computational consumption of the model and facilitate the deployment of the model.

Given an input tensor X ∈ RH×W×C, the DCE module first performs a dimensionality
change by a 1 × 1 convolution and then obtains a new tensor X1 ∈ RH×W×4C by a
deep separable convolution when there is no information interaction for each channel
of the tensor. Meanwhile, the DCE module uses the squeeze-extraction network (SENet)
module to interact with the channel features and obtains a new channel relationship feature
tensor X2 ∈ RH×W×4C of the same size as the input. It mainly learns the weight of the
channel features through the fully connected layer and then multiplies this weight with
the feature tensor to filter out the important channel information. The extra branch is used
in combination with the idea of ResNet residuals to add the input, which can further help
the module achieve the utilization of multidimensional features and resolve the gradient
disappearance problem. The final result Xo ∈ RH×W×4C is then obtained by performing
a 1 × 1 convolution to obtain a better nonlinear representation. In addition, the 1 × 1
convolution can also control the size of the feature map by downsampling as needed. This
helps the subsequent module output the recognition result.

3.2. Focal Angular Margin Penalty Softmax Loss

The traditional Softmax is defined as follows:

so f tmax =
eWT

yi
fi

∑c
j=1 e

WT
yj

fi

=
e‖Wi‖ ‖fi‖cosθi

∑c
j=1 e‖Wj‖ ‖fi‖cosθj

(2)

where fi is the feature vector belonging to the i category before the last fully connected
layer. WT

yi
or Wi is the weight corresponding to the feature vector fi. cosθi is the cosine

value, and θi is the interval between the weight Wi and the feature fi. WT
yi

fi is often referred
to as the target Logit.

Softmax implements the optimization task on θ and W. This optimization direction is
somewhat vague and nonstrict for the classification task. If the optimization objective is
focused on a specific variable (θ or W), then the optimization direction will become more
explicit and eventually improve the performance. The main intention of this paper is to
obtain tighter classification boundaries. We believe that the accomplishment of this goal
depends on intraclass and interclass interactions. Therefore, this study defines two classes
of angular kernel functions, including the intraclass kernel function ψ(θi) and the interclass
kernel function Φ

(
θj
)
. ψ(θi) and Φ

(
θj
)

can be expressed as follows:

ψ(θi) = cos(θi + m) (3)

Φ
(
θj
)
= cos

(
θj −m

)
(4)

where m ∈ [0, π] denotes the angle margin, and the weights and feature vectors are normal-
ized according to [21,31,33] to optimize the DCNN by cosine similarity. Referring to [21,31],
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an adaptive variable s > 0 is introduced on ψ(θi) and Φ
(
θj
)
, which are automatically

learned by the model. Thus, FAMP-Softmax is defined as follows:

pFAMP−i =
es·ψ(θi)

es·ψ(θi) + ∑c
j=1,j 6=i es·Φ(θj)

(5)

where s is the scale factor that amplifies the difference in sample distribution. pFAMP−i is
the predicted probability value of class i.

This study notes that focal loss is beneficial for learning unbalanced samples and can
resolve the problem of an unbalanced dataset. Therefore, FAMP-Softmax is integrated into
the focal loss. In this way, both the imbalance problem and the interclass and intraclass
problem can be resolved to some extent. In other words, this study focus not only on the
inter/intraclass embedding feature space but also on the imbalanced dataset. The final
classification loss can be expressed as follows:

LFAMP = − 1
N ∑ N

i at(1− pFAMP−i)
γlog(pFAMP−i) (6)

at = log
∑c

k=t Gk

∑c
k 6=t Gk

(7)

where t denotes the true label of the current sample, k denotes a category, at denotes the
weight value corresponding to the category to which the current sample belongs, and Gk
denotes the number of samples in different categories. In the training process, to avoid the
model favoring a certain category, γ = 2 can make the model learn the samples that are not
easily classified.

Figure 3 shows the difference between the optimization of softmax and FAMP-Softmax
loss in the binary classification case. For traditional softmax, the classification boundaries
is Bs, i.e., W1BS = W2BS. For FAMP-Softmax, since the weights and feature vectors are
normalized, the classification boundaries is determined by cos(θ1 + m) = cos(θ2 −m) and
cos(θ2 + m) = cos(θ1 −m). The classification boundaries are BF1 and BF2. We argue that
the FAMP-Softmax loss relies on the intraclass and interclass penalty factors m to produce
a classification effect with the margin, which acts to separate the classification boundaries
more, thus achieving a better classification effect than the softmax loss. The proposed loss
function of this study fully incorporates the advantages of focal loss and inter/intraclass
margins, allowing the network to not only learn difficult samples and mitigate the effects
of sample imbalance but to also better learn larger interclass distances, which is beneficial
for the model to improve in classifying the data of different diseases.

Figure 3. (a) Classification boundaries for Softmax (b) Classification boundaries for FAMP-Softmax.

4. Experiments and Analyses

Based on the proposed network model and loss function, this study conducts a large
number of experiments to evaluate the effectiveness of the proposed method. The details
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are divided into the following sections. First, this study introduces the experimental dataset
of this paper in Section 4.1. Section 4.2 describes the performance evaluation metrics used
in this paper. The experimental configuration and implementation details of this paper are
presented in Section 4.3. In Section 4.4, the performance comparison between the proposed
network T-RNet and other mainstream models in terms of various performance metrics
is presented, while the performance advantage of the proposed loss function over other
loss functions is experimentally verified. Finally, in Section 4.5, the effectiveness of the
proposed method in classifying various diseases is verified by visualizing the attention
graph and t-SNE visualization techniques.

4.1. Datasets

The image dataset used in the experiments is from the 2021 Kaggle competition. The
competition provided a cassava leaf disease dataset containing five disease categories with
21,397 annotated images collected during regular surveys in Uganda. Most of the images
were crowdsourced from garden photographs taken by farmers and annotated by experts
from the National Crop Resources Research Institute (NaCRRI) in collaboration with the
Artificial Intelligence Lab at Makerere University in Kampala. The cassava leaf disease
dataset consists of images of cassava bacterial blight (CBB), cassava mosaic disease (CMD),
cassava brown streak disease (CBSD), cassava green spot (CGM), and healthy individuals.
Figure 4 shows four images of diseased and healthy cassava leaves. The correspondence
between the label and the symptom images assigned in this dataset is shown in Table 1.

Figure 4. Images of healthy and unhealthy cassava mosaic diseases. (a) CBB, (b) CBSD, (c) CGM,
(d) CMD, (e) healthy. Dataset URL: https://www.kaggle.com/c/cassava-leaf-disease-classification/
data (accessed on 1 June 2022).

Table 1. Correspondence between disease categories and labels.

Category Label

CBB (Cassava Bacterial Blight) 0
CBSD (Cassava Brown Streak Disease) 1

CGM (Cassava Green Mottle) 2
CMD (Cassava Mosaic Disease) 3

Healthy leaf 4

The numbers of leaves in each category of cassava leaves in the training and test
datasets are shown in Table 2. A large portion of the data contains CMD and CBSD disease
images, and only a small portion of the data includes healthy images. There is a category
imbalance in this dataset. In addition, as shown in Figure 5, the t-SNE visualization of
the dataset reveals that the distribution of different categories of the dataset is scattered
and blended together, and the dataset shows a highly nonlinear separable situation, where
different colors represent different categories of samples, thus it is challenging for the
model to correctly classify the disease.

https://www.kaggle.com/c/cassava-leaf-disease-classification/data
https://www.kaggle.com/c/cassava-leaf-disease-classification/data
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Table 2. Cassava leaf dataset detail.

CBB CBSD CGM CMD Healthy Total

Training 869 1751 1909 10,527 2061 17,117
Testing 218 438 477 2631 516 4280
Total 1087 2189 2386 13,158 2577 21,397

Figure 5. Dataset visualization using t-SNE.

4.2. Evaluation Metrics

This study used the following most common evaluation metrics, including accuracy,
precision, recall, and F1-score, to evaluate the performance of the proposed model and the
current state-of-the-art models on the cassava leaf disease dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

where TP denotes true positive, FP denotes false positive, FN denotes false negative, and
TN denotes true negative. Precision is a measurement of the true positive value of accurate
prediction in relation to the total number of positive prediction observations. Recall is a
measure of the number of positive predictions for all positive predictions. The F1-score is a
metric that balances precision and recall, and these metrics can be specifically classified as
macro average and weighted average estimates. In an unbalanced dataset, the weighted
average is considered a good metric for precision, recall, and F1-score. Macro measures
calculate the precision, recall, and F1 scores for each category and returns the mean without
considering the proportion of each category in the cassava leaf disease dataset, in contrast
to the weighted average, which considers the proportion of each category in the dataset.

4.3. Experimental Environment

This study conducted a set of experiments on the Cassava Leaf dataset, which was based
on PyCharm 2020, using a server with an Intel Xeon Scalable Silver 4210 CPU @ 2.20 GHz× 8,
GeForce GTX 2080TI 11 GB × 4 and 128 GB RAM, a 500 GB SSD (solid-state drive) hard
disk, and a 64-bit Ubuntu 16.04 LTS (Xenial Xerus) OS server. Anaconda IDE (Integrated
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Development Environment) and all necessary libraries, including Python 3.8, Matplotlib,
OpenCV-Python, Scikit-learn, Numpy, and PyTorch-1.7.0, were installed on the server.

The improvement of the model’s performance depends mainly on the tuning of the
parameters. For optimization, this study used stochastic gradient descent with a hot restart
(SGDR) to learn the set of weights and biases that minimize the loss function. To avoid
excessive fluctuations in the model parameters, the initial learning rate for all layers is 0.0002,
and the optimization strategy controls the variation of the learning rate. All experiments were
based on training for 50 epochs, and the batch size was set to 32. In addition, random cropping,
random flipping, random brightness contrast, random rotation, random panning, random
scaling, random inversion, clipping, and normalization were used for data enhancement
during training in this paper to mitigate the overfitting of the model.

4.4. Experimental Verification

On the cassava leaf dataset, this study used the current mainstream models VGG16,
ResNet-50, InceptionV3, Xception, and DenseNet121 to construct five different classifiers
for training and compared them with our network, T-RNet, with respect to different
performance evaluation metrics, such as precision, recall, F1-score, accuracy, and model pa-
rameters. These five pretrained classifiers all use weights trained on ImageNet beforehand,
which speeds up the convergence of the model and improves the recognition accuracy.
In addition, each classifier was trained using the five-fold cross-validation method, and
the final results were the average of five tests to ensure the reliability of the results. The
performance results are shown in Table 3.

Table 3. Performance comparison of different classification methods on the cassava disease dataset.

CBB CBSD CGM CMD Healthy
ACC Par. *

Model P R F P R F P R F P R F P R F

Xception 62.9 65.1 63.9 83.6 80.6 82.0 84.5 74.2 79.0 95.1 96.2 95.6 70.8 76.0 73.3 88.07 21
VGG16 66.2 64.7 65.4 80.8 81.9 81.4 82.2 79.4 80.8 95.1 96.5 95.8 75.1 71.5 73.3 88.50 134

Inception-v3 62.3 66.0 64.1 86.7 78.7 82.5 81.6 77.3 79.4 94.8 95.8 95.3 71.8 75.0 73.4 87.99 22
ResNet-50 70.8 60.5 65.3 86.9 80.3 83.5 85.8 74.0 79.5 93.5 97.6 95.4 75.0 77.7 76.3 88.93 25

DenseNet-121 65.1 70.1 67.5 88.0 75.3 81.1 81.0 80.7 80.8 94.5 96.7 95.6 74.6 72.8 73.7 88.50 27.2
T-RNet 68.3 69.2 68.8 87.4 81.1 84.1 86.1 80.7 83.3 95.6 97.8 96.7 79.9 79.6 79.7 90.63 14

T-RNet * 72.5 74.8 73.6 84.8 85.6 85.2 88.6 82.8 85.6 96.3 97.0 96.7 80.0 80.5 80.2 91.12 14

P: Precision (%); R:Recall (%); F:F1-score (%); ACC: Accuracy (%); T-RNet * indicates the combination of T-RNet
and FAMP-Softmax loss; Par. * indicates the number of model parameters (in millions); bold: the highest values.

In Table 3, it can be seen that the accuracy, recall, and F1-scores of all models with
respect to CBB categories are generally lower in the test set because the number of CBB
categories is the lowest among all categories. In contrast, the number of CMD categories is
more than ten times greater; thus, the models learned the features of CMD to a large extent
in training, which is why the accuracy and recall F1-scores of all of the models were high
with respect to CMD categories. Nevertheless, T-RNet still achieved the highest F1-score
value among all models in CBB category classification. It also achieved relatively close
accuracy and recall scores without large performance fluctuations similar to other models,
which indicates that T-RNet can learn more robust features in categories with sparse sample
sizes. Once the amount of data increases, T-RNet will likely achieve higher scores as well. In
addition, T-RNet far outperformed other models in terms of accuracy, recall and F1-scores
for the health category. Because other models were more likely to classify health categories
as disease categories, these models were somewhat confused by local information similar
to disease features and did not learn more robust category features.

In contrast, the T-RNet model can better suppress this interference. The model does not
overfit disease-like local features because this study introduces the transformer structure
into the GE module to help to model the long-range information and combine it with the
CNNs to extract local features to obtain a more powerful feature representation compared
with other studies. The transformer-based architecture helps convolution increase the global



Agriculture 2022, 12, 1360 12 of 18

perspective of the model, while extracting disease features, forcing the model to learn more
information and integrated feature representations. In addition, in Figure 6, it can be
found that T-RNet achieved an overall average classification accuracy of 90.63%, which was
much higher than other models, indicating that T-RNet effectively enhanced the feature
representation and improved the classification accuracy. Notably, this study innovatively
proposed a novel loss function called FAMP-Softmax, when T-RNet was trained with a
FAMP-Softmax loss, the F1-scores of all five categories improved. In particular, the score
of the CBB category, which had the smallest sample size, improved by 4.8% because the
loss function introduced category number weights, which would suppress the influence of
the CMD category on the feature learning of other categories to some extent. Meanwhile,
the marginal-based idea requires the model to map different category features into a
feature space with more explicit category feature intervals, and the model generates more
substantial losses due to classification errors, which fully illustrates that the FAMP-Softmax
loss can concentrate on learning fewer sample categories and resolve the sample imbalance
problem. In addition, the F1-score achieves the best performance on other categories,
indicating that FAMP-Softmax loss can help the model learn feature spaces with tighter
classification boundaries. Additionally, the model parameters of this study are the lowest
in the test set because the DCE module introduces the channel attention mechanism to
obtain better channel feature information and uses deep separable convolution to further
reduce the model parameters, which is beneficial for edge deployment.

Figure 6. Accuracy comparison of different classification methods on the cassava leaf disease dataset.
(T-RNet * indicates the combination of T-RNet and FAMP-Softmax loss).

Because of the sample imbalance problem in the cassava leaf dataset, this study further
estimated the results by macro averages and weighted averages, whose performance results
for all models are shown in Table 4 and Figure 7. The existing mainstream models, such as
Xception, VGG16, Inception-v3, ResNet-50, and DenseNet-121, all achieved relatively high-
quality results. However, T-RNet achieved higher performances on both macro averages
and weighted averages, which further validates the effectiveness of our proposed network
T-RNet for the cassava disease classification task, and based on T-RNet and FAMP-Softmax
loss, the proposed method in this paper achieved the best results in terms of both metrics
and performance.



Agriculture 2022, 12, 1360 13 of 18

Table 4. Performances of different classification methods in terms of precision (%), recall (%), and
F1-score (%). (Macro: Macro avg; Weighted: Weighted avg; T-RNet * indicates the combination of
T-RNet and FAMP-Softmax loss; bold: the highest values).

Model Type Precision Recall F1-Score

Xception Macro 79.4 78.4 78.7
Weighted 88.2 88.0 88.0

VGG16
Macro 79.9 78.8 79.3

Weighted 88.3 88.5 88.4

Inception-v3 Macro 79.4 78.6 78.9
Weighted 88.1 88.0 88.0

ResNet-50
Macro 82.4 78.0 80.0

Weighted 88.6 88.9 88.7

DenseNet-121
Macro 80.7 79.2 79.8

Weighted 88.4 88.5 88.4

T-RNet
Macro 83.5 81.7 82.5

Weighted 90.5 90.6 90.5

T-RNet *
Macro 84.3 84.1 84.2

Weighted 91.1 91.1 91.1

Figure 7. (a) Performances of different classification methods in terms of precision (%), recall(%),
and F1-score (%) by Macro averages. (b) Performances of different classification methods in terms of
precision (%), recall (%), and F1-score (%) by Weighted averages.(T-RNet * indicates the combination
of T-RNet and FAMP-Softmax loss).
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To further validate the effectiveness of the proposed FAMP-Softmax loss, multiple loss
functions were validated on ResNet-50 and T-RNet. As shown in Table 5b and Figure 8b,
the T-RNet model trained on FAMP-Softmax loss achieved 91.12% accuracy and a 91.12% F1
score, which exceeded the values of 2.19% and 2.39% of ResNet-50 trained on cross-entropy
loss. The FAMP-Softmax loss achieved the best performance compared to models trained
with other loss functions, such as cross-entropy and focus loss. The experimental results
showed that the loss function of this study can help the proposed model achieve better
results on cassava leaf disease data with unbalanced samples. Second, this study also
conducted experiments on ResNet-50 to verify the compatibility and generality of the loss
function of this study, and the experimental results are shown in Table 5a and Figure 8a.
From Figure 8a, it can be seen that the accuracy of ResNet-50 trained on FAMP-Softmax was
89.81%, and the F1 score was 89.76%. Compared with other loss functions, the improvement
of the proposed loss function for ResNet-50 model performance is also obvious, indicating
that the proposed loss function has model compatibility and generality for cassava leaf
disease classification with unbalanced samples, which is also informative for other plant
disease classification tasks.

Table 5. Performances of different loss functions on ResNet and T-RNet.

(a) The improvement of accuracy, F1-score (Macro avg), and F1-score (Weighted avg) of ResNet.

Method Accuracy (%) N (%) F (Macro avg)
(%) N (%) F (Weighted

avg) (%) N (%)

ResNet + Cross 88.93 - 80.01 - 88.73 -
ResNet + Focal 89.30 0.37 ↑ 80.83 0.82 ↑ 89.34 0.61 ↑
ResNet + FAMP 89.81 0.88 ↑ 81.23 1.22 ↑ 89.76 1.03 ↑
(b) The improvement of accuracy, F1-score (Macro avg), and F1-score (Weighted avg) of T-RNet.

Method Accuracy (%) N (%) F (Macro avg)
(%) N (%) F (Weighted

avg) (%) N (%)

T-RNet + Cross 90.63 - 83.18 - 90.59 -
T-RNet + Focal 90.79 0.16 ↑ 83.17 0.01 ↓ 90.79 0.20 ↑
T-RNet + FAMP 91.12 0.49 ↑ 84.26 1.08 ↑ 91.12 0.33 ↑

Cross: Cross entropy loss function; Focal: Focal loss function; FAMP: Our proposed loss function; N: the exceeded
values; bold: the highest values.

Figure 8. (a) Performances of different loss functions on ResNet. (b) Performances of different loss
functions on T-RNet.

4.5. Visualization Analysis

Deep learning has often been referred to as a black box technique for a long time
because there is no approachable way to explore its specific internal mechanisms. To
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further investigate the specificity of the proposed approach focusing on image regions, this
study explains the results of this paper by extracting a gradient-weighted class activation
map (Grad_CAM) of the feature maps generated by the visual attention mechanism, since
the class activation map is the dominant technology that can currently be used to observe
the internal learning of the model [39]. This is displayed in the form of weights, the
weights represent the importance of the information in different regions. The higher the
weight is, the redder the color of the attention map position it obtains, indicating that
the image information in this part of the region wields a more important influence on
the class discrimination of the model. The smaller the weight is, the bluer the color of
its corresponding attention map location, indicating that the pixel information in these
regions has little influence on the model results. This study extracts the attention maps of
Grad_CAM produced by various models, such as VGG16, Xception, Inception-v3, ResNet-
50, DenseNet121, and T-RNet, for different cassava disease images, and the results are
shown in Figure 9. It can be seen in the figure that the model of this study achieves a
stable performance on all types of disease images, focusing on the target region with
little interference from background noise. However, other models such as Xception and
Inception-V3 overfocus on the image background region. In fact, due to the largest number
of CMDs, various types of environmental background noise are often distributed in the
CMD category images, which considerably negatively impacts the training of the model. In
Figure 9, it can be seen that the environmental background noise also makes a substantial
contribution to the recognition of other models, which indicates that these models are
disturbed by the background noise.

Figure 9. Grad_CAM attention maps for different models in different categories of samples.

Therefore, these models have difficulty learning features that are robust to all types
of diseases, since convolution-based networks are lacking in the supervision of global
information. Even in this case, the model of this study focuses well on the target region and
suppresses background noise interference, which indicates that the model of this study can
learn stronger category robust features. In addition, it was found that the distribution of the
cassava disease dataset is a highly nonlinear and differentiable case. This study analyzes
the spatial distribution of the features learned by the model using the t-SNE technique;
t-SNE visualizes the two-dimensional spatial representation of the features generated by
the model for the dataset [40]. The visualization results are shown in Figure 10, where
different colors indicate different categories of samples. As seen from the figure, there is
clear spacing between the feature representations of different categories. In contrast, the
distribution of samples in each category is again more concentrated, indicating that the
proposed method effectively extracts intercategory discriminative features.
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Figure 10. Visualization of the penultimate layer features of the T-RNet model using t-SNE.

5. Conclusions

A method of cassava leaf disease classification based on the T-RNet network model and
FAMP-Softmax loss function is proposed in this paper. This study innovatively introduce
a transformer structure into the cassava leaf disease classification task for the first time,
and a novel GE module is established to fuse CNN and transformer to better learn feature
representation. Meanwhile, with the help of deep separable convolution and SENet blocks,
the model can obtain more valuable and distinguishable features with a few parameters.
This is the first study to validate the classification performance of various models in
the cassava leaf disease dataset by experiments, such as VGG16, Inception-v3, Xception,
ResNet-50, and DenseNet121, which will also benefit the work of other researchers. Aiming
at the problem of class sample imbalance in cassava leaf disease dataset, in order to better
learn discriminative class features, this study innovatively proposes a new loss function,
FAMP-Softmax, which can not only alleviate the influence of unbalanced sample data
but also optimize the interclass and intraclass differences. Extensive experimental results
show that the proposed method offers a good extracting ability for global information
and can suppress the influence of background noise to some extent, and the model learns
more robust class discriminative features. In the evolving field of agricultural disease
classification, whether for agricultural deployment or scientific research, T-RNet, with
excellent performance and few parameters, will provide a useful reference. Finally, the
method presented in this paper is also a good reference for other classification tasks in the
field of computer vision.
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