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Abstract: The agriculture sector is the backbone of Pakistan’s economy, reflecting 26% of its GPD and
43% of the entire labor force. Smart and precise agriculture is the key to producing the best crop yield.
Moreover, emerging technologies are reducing energy consumption and cost-effectiveness for saving
agricultural resources in control and monitoring systems, especially for those areas lacking these
resources. Agricultural productivity is thwarted in many areas of Pakistan due to farmers’ illiteracy,
lack of a smart system for remote access to farmland, and an absence of proactive decision-making
in all phases of the crop cycle available in their native language. This study proposes an internet of
agricultural things (IoAT) based smart system armed with a set of economical, accessible devices and
sensors to capture real-time parameters of farms such as soil moisture level, temperature, soil pH level,
light intensity, and humidity on frequent intervals of time. The system analyzes the environmental
parameters of specific farms and enables the farmers to understand soil and environmental factors,
facilitating farmers in terms of soil fertility analysis, suitable crop cultivation, automated irrigation and
guidelines, harvest schedule, pest and weed control, crop disease awareness, and fertilizer guidance.
The system is integrated with an android application ‘Kistan Pakistan’ (prototype) designed in
bilingual, i.e., ‘Urdu’ and ‘English’. The mobile application is equipped with visual components,
audio, voice, and iconic and textual menus to be used by diverse literary levels of farmers.

Keywords: smart farming; precision agriculture; IoT; sensor network; semi-literate farmers; interactive
interface; User Interface (UI); Android apps

1. Introduction

Agriculture is considered the base for human living because it is the primary food source
and plays a crucial role in the global economy. Pakistan is 79.6 million km2 and is home to a
population of 192 million. The contribution of the agricultural sector to gross domestic product
(GDP) in Pakistan gradually decreased to 19.3% in the year 2020–2021 from 22.04% previously
recorded in 2019 and generating employment opportunities for 38.5% of Pakistan’s labor
force and valuable foreign exchange for the country [1–3]. It supports the manufacturing and
services sectors of the economy by providing backward-forward linkages in inputs-outputs
markets and the most significant consumer of household durables. Therefore, our agriculture
sector can be considered an economic activity in the country [4]. Farmers are facing issues in
the agriculture sector, so it’s significant to research, develop of latest mechanisms, and adopt
new practices to enhance production. Pressure on the agricultural system will increase with
the continuing expansion of the human population.

Many areas of Pakistan are trailing in agricultural productivity due to a lack of farmers’
awareness, timely access to crucial information, and proactive decision-making [5,6]. It is
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vital for human development in these underdeveloped areas to utilize information and
communication technologies (ICTs), artificial intelligence techniques, machine learning
(ML), and deep learning (DL) to make such information more readily accessible to farmers,
significantly increasing crop production [7–13]. Climate change and shortage of agricultural
resources are also significant concerns for the downfall of agricultural performance resulting
in food insecurity [14–17]. This lets farmers hamper soil with intensified pesticides, which
affect agricultural practices in a harmful manner. Finally, fields remain barren [18–22].
These are reasons for crop failure, lower production due to diseases, unpredictable climate
change, and loss of soil fertility [23,24].

In this scenario, the traditional agriculture trends are insufficient to increase agricul-
tural growth. Agriculture is also out of the reach of less conventional technologies. In
this context, digital agriculture, automation, and precision farming, now termed smart
farming, have arisen as new scientific fields that use intense techniques to drive agricultural
productivity while minimizing its environmental impact [25–27]. Data generated by smart
farming operations is provided by various sensors that enable a better understanding of
the operational environment (interaction of dynamic conditions of the crop, soil, weather,
and environmental factors) and the operation itself, leading to more accurate and timely
decision-making [28,29]. Variability in climate and labor shortage is increasing continu-
ously, providing better insights for agricultural machinery automation. Remote monitoring
technologies facilitate farmers to access every inch of the farmlands by creating virtual
fences to monitor, detect and protect crops in real-time [30–32]. IoT-based technologies
allow farmers, among other things, to gather data on plants’ environmental conditions like
climate change, soil fertility level, humidity, temperature, and light intensity to monitor
fields and farms remotely. These technologies assist farmers in having know-how and
status of crops anywhere and anytime [33–36].

In Pakistan, most farmers have android phones [37–41] but are regrettably under-
utilized. Our preliminary literature study compelled us to work to facilitate farmers for
agriculture automation, recommendations, and guidelines in their local language, i.e.,
Urdu, by using the internet of agricultural things (IoAT), also known as agricultural
internet of things (Ag-IoT) and artificial intelligence technologies with transliteration and
voice-speech support in the local language. IoAT is the network of complex and diverse
agricultural objects that compute, process, and recommend solutions intelligently based on
data generated from every connectable thing [42].

Previous research shows that using graphical cues, audio, speech, and video in mobile
interfaces helps low-literates better adapt [43,44]. Field study experiences reflect that low-
literates feel more challenged in understanding and interpreting textual information than
their literate peers [45]. In our research, we try to accommodate such users by introducing
audio, speech, Urdu language support, and an interactive graphical interface. Researchers
also talked about the improvements in information dissemination systems for less literate
farmers via different means [46–50]. However, none considered interface design and
Urdu language-based real-time updates about agricultural guidelines using the android
application and user preferences. Our choice of Urdu in this work was made by observing
that 87% of farmers preferred Urdu as a medium of information dissemination [51]. Our
research is an extended form of [52–54] and primarily focuses on developing an IoT-based
and user-friendly system with these utilities.

1.1. Rationale

This section reflects the findings and an evaluation report on information found in
the literature relevant to our research domain. It represents the overview of different ap-
proaches used by other researchers. Integrating the Internet of Things into the agricultural
system has led to the internet of Agricultural things (IoAT) and advanced computing
techniques. The researchers applied this to obtain maximum benefits and also to improve
the production of agriculture, artificial intelligence, and IoT [55]. The agriculture domain is
experiencing new evolution and revolution motivated by cloud technology, IoT, Edge and
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fog computing, sensors, IoT, and big data [56]. A proposal was presented for agriculture
applications by investigating integrated platforms, including cloud computing, IoT, and
data mining techniques [57]. An IoT-based smart agricultural system was developed using
deep learning combined with a cloud environment comprised of four layers: data collection,
edge computing, data transmission, and cloud computing layer [58]. A scalable network-
based architecture was proposed to monitor and regulate agricultural farms in rural areas
using IoT-based wifi, long-distance network, and fog computing [59]. Agricultural data
analytics employed with IoT has transformed from specific crops to any kind of crop. The
developed system could support various applications, from controlling and monitoring the
crops to promoting them to market [60].

Literacy is the ability to read and write simple statements [61]. Illiteracy, low education,
and computer illiteracy are significant concerns in developing countries like Pakistan.
Studies indicate that user interface (UI) would be designed differently for literate, low-
literate, and illiterate users. A user interface should also consider the cultural context, such
as language and images. The non-textual interface is more user-friendly than the textual
one for illiterate users [62].

The inability to read and write and the illiteracy of small farmers make them vulnerable
to various workers and cause human health risks [63]. Previous research inferred that
complex hierarchy and multi-screens become difficult for low-literates to understand
helpful information, so the visuals, audio, video, speech, icons, and images are a better
approach to passing complex data and information to mobile users [64]. The research
findings shed light on some user interface (UI) design guidelines for illiterate and semi-
literate users that can help take advantage of information and communication technologies
ICT [51]. The most powerful design factors that should be incorporated into a user interface
(UI) for low-literate users are localization and graphics [65]. An android application with
audio, textual, and visual components was designed for farmers with diverse literacy
levels. It could facilitate them regarding vital weather information [45]. Pakistani farmers
typically rely on traditional sources of information, which could be a reason for their
information deficiency. Data analysis indicated that farmers had diverse demographic
conditions, but primary among them is the ordinary level of education (52.4% illiterate).
A high level of information deficiency was observed among farmers regarding fertilizers
application, seed rate, disease diagnosis, pests, and insects’ identification, and a medium
level of lack in information regarding the selection of varieties, harvesting, and pets’
management was observed [66]. Providing information access to low-literate, linguistic
minority, tech-shy, handicapped and marginalized users using speech-based services is a
viable solution. These services were made the national weather hotline of Pakistan [50]. A
survey data revealed that farmers in the Vehari district of Pakistan have a low literary rate
and less technical knowledge. They are unable to read agricultural instructions, unaware
of pesticides persistence and toxicity (73%), unable to diagnose cotton pests and diseases
(86%), and unable to decide which crop to grow on cotton adjacent farms (100%) [67]. The
research was conducted to study knowledge, attitude, and practices regarding pesticide
usage by vegetable growers in three districts; Dadu, Larkana, and Shikarpur of Sindh,
Pakistan. Results show that most vegetable growers (40.90%) have low primary education
literacy, and 27.27% possess a middle pass. That’s why most growers are unfamiliar with
pest and insect damage indications and the safe handling of pesticides [68]. Pakistani
farmers’ awareness of the damaging effects of different pesticides can lead to integrated
and smart pest control and management [69]. Research findings reflect farmers’ behavior
and a low tendency towards reading the labels of the pesticides due to low education,
advanced age, usage of too technical language, illegible fonts, and unclear texts [70]. In [71],
the authors developed a basic interactive voice response (IVR) system for agro-information
dissemination, such as fertilizer, pesticide information, and weather forecast. In terms
of usability and information extraction, their study reflected that simple menu-based
navigation interfaces are relatively easy to use and understand.
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A remote agricultural monitoring platform was proposed in [72] after a detailed
literature study. Cyber security-based precision farming conceptual architecture was
presented in [73] for the frost prediction in peach production by analyzing data captured
by sensors implanted around an orchard. IoT-based precision farming comprises multiple
control and monitoring applications like monitoring water needs according to climate
conditions, analyzing soil patterns, monitoring crops disease and pest attacks, and assessing
optimum time for planting, harvesting, and tracking [74,75].

AquaAgro offers IoT and Artificial Intelligence (AI) enabled solutions for precision
farming. Using a software or app embedded hardware, the predictions will be made for
the Irrigation scheduling, Fertilizer requirement, Pest attack prediction, and Plant disease
detection. The essential four services that AquaAgro provides are irrigation scheduling,
Fertilizer requirement, Pest attack prediction, and Plant disease detection. They have
received an overwhelming response from the people [76]. An android mobile application
named ‘Mentha Mitra’ was developed with an interactive interface with bilingual (Hindi
and English) for menthol mint growers [77]. Android application provides scientific e-
advisories on crop-related diseases, high-yield varieties, pests, insects, and improved
distillation units.

An IoT-based wireless sensor network (WSN) framework was proposed to monitor
crops smartly by analyzing environmental factors [78]. In [79], the authors utilized the
benefits of IoT for the implementation of precision agriculture by sensing required param-
eters from the field and making suitable decisions such as activation and deactivation of
irrigation valves. Parameters include soil moisture, temperature and light intensity, etc.
Sensors could also send the gathered data to the cloud, and an Android application was
developed to access these parameters. An expert IoT-based system relies on the stored
knowledge base and real-time data for farmer recommendations [80]. This system will help
in proactive and reactive tasks to a minimum the loss of water. Farooq et al. [81] performed
a comprehensive literature study on state-of-the-art techniques in smart farming. They
discussed agriculture networks, platforms, architecture, and topologies to help farmers
to enhance the corps’ productivity. This survey paper shows that Government and many
other stakeholders are interested in deploying IoT in Pakistan’s agriculture field. To in-
crease agricultural productivity, the authors suggested that collaboration between allied
and agriculture activities can be built by integrating big data into climate-smart agriculture
with resource utilization [82].

In [83], the authors are more concerned about the water supply to the plants. They
proposed a system in which a farmer can water the plants with a push of a button on his
phone when he is out of the station. Machine learning algorithms and radio frequency
identification (RFID) tags detect and measure moisture and humidity. Internationally,
many studies [12,84–86] have been conducted to improve agricultural processes based on
soil fertility level, crops, weather patterns, and fertilizers. These studies used IoT, Global
Position Systems (GPS), Global information systems (GIS), Wireless Sensor Networks
(WSN), and many machine learning techniques. The implementation of studies results in
increased profitability and self-sufficiency. IoT enabled decision support systems based on
real-time farm sensors data, improving the water consumption by crops [87–89]. Authors
in [90] provided the real-time farm data, weather, and crops data to a Penman-Monteith
and crop-coefficient model to produce recommendations about irrigation schedules. An
intelligent approach for diagnosing crop disease was proposed in [91], capable of working
with android devices equipped with fuzzy decision-making at the backend. The system
interacts with farmers in their native language of Urdu for crop disease diagnosing. ‘Padi2U’
is an android application developed for farmers to manage paddy fields. It provides
guidelines related to paddy varieties, planting schedule, pest, disease, weed, weather
forecast, and yield information in their native language ‘Malay’ [92]. In [93], the authors
developed an application named ‘BLYNK’ to control the IoT-based hardware remotely. The
purpose of ‘BLYNK’ was to automate irrigation and fertilizer supply to farms. Their results
reflect approximately 50% water saving and a 35% increase in yield. Irrigation monitoring
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and automatic control systems were developed using fuzzy decision support to generate a
moisture content distribution map of soil and enhance affectivity [53,94–98].

Soil having an essential quantity of macro and micro-nutrients would be capable of
cultivating different crops. The soil’s lack of significant nutrients (Nitrogen, Phosphorus,
and Potassium) declines crops’ cultivation, growth, and yield. To increase crop production,
the suitability of a specific crop to be planted can be recommended by exploiting the soil’s
macronutrients [99–103]. Soil pH level is the major parameter for measuring soil macronu-
trients (N, P, and K) and some of the micronutrients [104–108]. Smart agro farms [109] use
solar power and a low-cost smart system, a perfect combination of IoT, data mining, and
Android application. The system monitors and extracts a farm’s environmental factors
such as soil moisture, humidity, and weather and temperature parameters via data mining
modules, and provides optimized guidance regarding crop cultivation, irrigation, and
weather forecast in the English language.

1.2. Objectives and Hypotheses

The proposed system obtains agricultural data through implanted IoT sensors, such
as pH, soil moisture, humidity, and temperature. The Internet plays a mediatory role in
communication and data exchange. We integrated agricultural data acquired from im-
planted IoT devices with the cloud platform. Data is processed in a decision-making system
based on learning prediction rules in conjunction with a rule-based engine. Generally, a
farmer requires guidelines, even from the crop selection phase to the harvesting stage. As
presented in Figure 1, to facilitate low literate farmers at each of these steps in their native
language, we performed the following research objectives:

• Investigated traditional techniques and systems with different agricultural interfaces
to find a research gap.

• Design and develop an interface in an easy-to-use format and Urdu for low-literate
farmers to facilitate their awareness and guidelines in their native language.

• Design and develop a mechanism for measuring soil fertility of specific land to recom-
mend suitable crops according to soil fertility using fuzzy logic.

• Provide crops cultivation schedule, crop harvest schedule, automated irrigation pro-
cess, and watering guidelines to farmers.

• Facilitate farmers concerning guidelines for weeds and their eradication, pest attacks,
and awareness of best pesticides, crop diseases, and suitable fertilizers.
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2. Materials and Methods

Previous studies indicate that most farmers are unfamiliar with the latest practices of
agriculture as they are not facilitated with new technologies to access agricultural information
and thus rely on traditional methods to grow their crops. Related studies indicate that there is
no such smart system providing an interactive interface to a low literate or illiterate farmer
and guidelines from the crop selection phase to the harvesting stage. Significant barriers to
accessing modern information systems are the low literacy of farmers, the non-availability of
local-language information systems, and systems with fewer features. Our research identified
that it is essential to equip rural and semi-literate or illiterate farmers with updated information
through ICT, IoT, Edge Computing, Cloud Computing, and Machine learning techniques, and
provide them guidance in almost every phase of the crop cycle. It is necessary to develop
Urdu-language-based information smart systems to enhance farmers’ comprehension, crop
production, and sustainable agriculture.

Proposed System Design and Architecture

The overall design and architecture of the solution proposed to cover smart agriculture
are depicted in Figure 2. It comprises three layers: crop (edge) layer, fog computing layer,
data analytics, and smart management at the cloud layer. The edge and cloud layers are
designed to be deployed respectively at local crop premises and remote data servers. The
intermediate fog computing layer comprises a set of virtualized control modules in the form
of Network Function Virtualization (NFV) nodes that can be initiated along the network path
from the farm facilities to the cloud layer. NFV is a way to virtualize network services, for
example, firewalls, routers, and load balancers that have traditionally been run on proprietary
hardware. The intermediate fog layer increases the versatility of deployed solutions and
connectivity performances with the edge layer. At the crop premises, suitable sensors like
humidity, temperature, soil moisture sensor, light intensity, pH sensor, and actuators like
water pumps, valves, and activation of devices for smart farming automation are deployed
and connected with wireless nodes as shown in Figure 2. Sensors’ data is captured at the edge
layer through wireless nodes and transmitted to the fog layer. This layered architecture lets
atomic operations requiring high reliability and low latency between sensors and actuators
to be processed at the fog layer, such as executing irrigation mandates for a specific time
interval. The fog layer subsystem comprises the farm’s operative control like irrigation,
farm monitoring, energy management, etc. The fog layer is responsible for data fusion and
aggregation to offload analytics functions that are usually performed. The fog layer control
modules are virtualized through NFV techniques that communicate with edge nodes via IoT
protocols like constrained application protocol (CoAP) and MQ telemetry transport (MQTT).
As depicted in Figure 2 cloud layer serves as an interface between users and the core platform.
At this layer, crops current status and configuration parameters are maintained. Any change
in configuration parameters triggers the control actions to be managed at fog subsystems.
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3. Results and Discussion
3.1. System Components and Expected Outcomes

The proposed system gets real-time values from sensors implanted in farmland. The
controller grabs data from sensors and transmits it to a cloud server, where data analysis is
performed to match predefined conditions and the current state of crops. After mapping
the requirements and data, the analysis system performs suitable actions via actuators. Our
system provides access to an Android application for farmer facilitation with the following
main features.

3.1.1. Soil Nutrient Analysis

With increased emphasis on precision agriculture, economics, and the environment,
soil analysis is a tool to determine areas where adequate and excessive fertilization has
occurred. Soil analysis is also used to monitor past fertility practices to changes in
a field’s nutrient status. Nutrient availability can be impacted by soil chemical and
physical properties.

In determining soil nutrient contents, soil pH analysis is one parameter. Soil pH refers
to the acidity and alkalinity of soil measured on a logarithmic scale; thus decrease in 1 unit
of pH value causes an increase in acidity by a factor of 10. Small changes in pH values have
significant consequences. Table 1 represents the range values defined for soil pH.

Table 1. Soil pH range values.

pH Level Range Values

<3.5 Ultra-Acidic

3.6–3.9 Extremely Acidic

4–5.5 Strong acidic

5.6–6 Medium acidic

6.1–6.5 Slightly acidic

6.6–7 Very Slightly acidic

7.1–7.5 Very Slightly alkaline

7.6–8 Slightly alkaline

8.1–8.5 Medium alkaline

8.6–10 Strongly alkaline

Measuring the acidity and alkalinity of soil is essential for analyzing the number of
macro-nutrients present in the soil, particularly nitrogen (N), potassium (K), and phospho-
rus (P). Crops need these macro-nutrients in their growth, thrive, and combat diseases.
Removal of bases from the soil due to harvested crops, leaching, and acidic residual left in
soil due to fertilizers causes an increase in acidity of the soil. Soil acidity affects crops and
plants in many ways, such as whether the surface pH is very high or too low, when the
efficacy of herbicides and chemical reactions may be affected. Soil analysis is the best way
to check pH levels, and maintaining at least a pH of 6.0 is a realistic goal. When soil pH is
very low (acidity is high) following conditions occur:

• Soluble metals, especially Manganese and Aluminum, may be toxic.
• The population of organisms and their activities accountable for transforming N, P,

and S to plant-available forms may be reduced.
• Deficiency of Calcium. The soil’s cation exchange capacity (CEC) is low.
• Symbiotic N fixation in legume crops is significantly impaired. The symbiotic asso-

ciation entails a narrower range of soil reactions than does the growth of plants not
relying on ‘N’ fixation.

• Acidic soil with less organic matter is poorly aggregated and has poor tilt.
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• The availability of mineral elements in soil may be affected. Association between soil
pH and nutrient availability to plants can be depicted in Figure 3. The wider the blue
bar, the greater the nutrient availability. For example, for a pH range of 5.5–7.5, the
availability of P is highest and drops below 5.5. If the soil pH is 6, an amount of P
applied to it will be more available than if the same amount is used in soil with a pH
less than 5.5. Soil with high pH (>7.4) reduces several nutrients such as Fe, Mn, Zn,
and P, which is not economical for growing agronomic crops.
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In relatively large amounts, soil provides nitrogen, potassium, phosphorus, calcium,
magnesium, and sulfur. These are known as macronutrients. Soil supplies iron, boron,
manganese, copper, molybdenum, and zinc in relatively small amounts, often called
micronutrients. Plant nutrition is difficult to understand entirely because of the variation
between different species of plants or individuals of a given clone.

Macronutrients are essential for plant growth and an excellent overall plant state. The
primary macronutrients are nitrogen (N), phosphorus (P), and potassium (K). Nitrogen is a
principal constituent of several essential plant substances necessary for plant development,
energy metabolism, and protein synthesis. Phosphorus is involved in vital plant processes.
Unlike other macronutrients, potassium is not included in the composition of essential
metabolism components. Still, it substantially occurs in all plant parts for enzyme activities.
Soil pH sensor and soil moisture sensor measure the soil characteristics frequently so that a
farmer can monitor the status of crops in a healthy range in real-time and remotely. We
can predict a specific value for nitrogen (N), phosphorus (P), and potassium (K), as Table 2.
represents some ideas about these relations.
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Table 2. Soil pH and corresponding estimation of N, P, and K.

pH Range Nitrogen (N) Phosphorus (P) Potassium (K)

0–3.9 0% 0% 0%

4–4.5 2% 5% 2%

4.5–5 50% 20% 35%

5–5.5 100% 35% 50%

5.5–6 100% 45% 70%

6–6.5 100% 55% 100%

6.5–7.0 100% 100% 100%

7 100% 100% 100%

7–7.5 100% 100% 100%

7.5–8 100% 70% 2%

8–8.5 75% 20% 2%

8.5–9 65% 100% 100%

9–9.5 50% 100% 100%

9.5–10 2% 100% 100%

3.1.2. Crops Recommendation

The recommendation system proceeds based on a decree made by a fuzzy logic-based
decision support system. Fuzzy logic is the key concept for decision-making systems and
characterizes each object of a set by a degree of member functions from the interval [0,1].
The membership function defines the degree of similarity of an object to the fuzzy subset.
Fuzzification is the method of allocating a system’s numerical input to fuzzy sets with some
degree of membership. The fuzzy system decides by considering predefined conditions
and real-time data captured by sensors implanted on a specific farm. A fuzzy decision
system is integrated with the controller to recommend suitable crops that can be cultivated
on farmland based on available soil nutrients in the soil. Finally, real-time data is processed
on the server, and a list of suitable crops is directed to the farmer’s mobile app, as shown in
Figure 4, where the farmer can select any crop to cultivate.

A fuzzy set S with parameters (U, i) where U is the universe of discourse and ‘i’
denotes the interval of U, i.e., i:U —> [0,1]. ’e’ elements can signify a fuzzy set S ordered
pairs. This universe of discourse is characterized by a membership function mS(e) that
depicts the probability of belonging of ‘e’ to ‘S’ as shown in Equation (1):

S = {(e, mS (e), e ∈ U)} (1)

The proposed fuzzy logic system design has four main components: fuzzifier, rule
base, inference engine, and unfuzzified, represented in Figure 5. The fuzzifier converts
crisp inputs to fuzzy sets. Rules are depicted as a group of if-then statements provided by
an expert or acquired from data. The inference engine combines the rules and membership
function to produce a fuzzy output.
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The fuzzy logic system starts by fuzzing input variables. Later, the inference engine
takes the decision based on if-then rules, membership functions, and fuzzy logic operators,
i.e., “and”, “or”. The fuzzy inference maps input variables that are the pH level of soil,
temperature, humidity, and season to fuzzy output by considering a fuzzy inference system
that infers results based on fuzzy logic. Defuzzification evaluates the outcome from an
input rule set provided as if-then statements. These rules are then stored in a knowledge
base of the proposed system. Following is a brief description of the proposed algorithm.
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Algorithm 1: A Fuzzy Logic System

1. Input: RealTimePh, phMin, phMax, currentDate
2. Output: cropDetails [ ]
3. fetchSensorPh()
4. return RealTimePh
5. For row in TimeframOfCrop
6. If (CurrentDate > CultivationStartTime) && (CurrentDate < CultivationEndTime)
7. cropDetails [ ] = fetchCropDetail(CultivationStartTime, CultivationEndTime)
8. end
9. For row in ph Table
10. if (RealTimePh > phMin) && (RealTimePh < phMax)
11. cropDetails [ ] = showCropDetail (phMin, phMax)
12. end
13. Else
14. Print error
15. “No crop can be cultivated in these environmental conditions”
16. end

3.1.3. Land Preparation and Cultivation

A well-prepared land plays a vital role in providing the important nutrients to crops
in weeds control and is suitable for sowing the seeds. A structured soil is required for
ventilation and root penetration. The proposed system gets real-time data from the sensors
implanted in the farms and recommends a list of crops most suitable for cultivating specific
fields. From the suggested list, the farmers can choose any crop to sow. After the crop
selection phase, systems provide guidelines for land preparation along with a list of
appropriate fertilizers to prepare the soil for a specific crop. It also provides a cultivation
schedule (suitable season) and cultivation method for each particular crop. All guidance is
provided in text and voice to make the interface rural farmer-friendly, as shown in Figure 6.
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3.1.4. Irrigation

The system transmits the input from deployed IoT devices in a specific farm to an
underlying irrigation calculation algorithm (ICA) illustrated in Figure 7, which recom-
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mends the irrigation scheduling for a particular farm. An android application interface
is presented to the farmer to monitor the farm parameters and to get feedback on the
irrigation requirement. The whole process is controlled by an irrigation control module in
the fog computing layer.
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The irrigation calculation algorithm (ICA) determines whether irrigation is required
or not and calculates the volume of irrigation needed. ICA operates on two types of data:
real-time data collected by sensors and predetermined static data such as crop and soil data.
Ambient temperature, humidity, and soil moisture measured by sensors are dynamic as
they change hourly. Real-time data also incorporate average wind data (m/s) to calculate
ET0 from an online source [111]. Crop data comprises crop coefficient, depletion factor, and
adequate root depth. Soil data contains soil category, water capacity, wilting point, and
location. Location data further comprises the latitude and longitude of specific farms.

Food and Agriculture Organization (FAO) [112] recommends an essential condition
that ICA evaluates daily to calculate irrigation decisions for a particular farm and crop.
If Dr, i ≥ RAW, there is a need for irrigation, here Dr, i is the root zone depletion or final
depletion at the end of an ith day, and RAW is readily available water or amount of water
in the root zone measured in ‘mm’. To ensure proper crop growth and avoid water stress,
RAW must be maintained above final depletion (Dr, i). If the above condition is good, the
RAW value and total farm area are used to compute the necessary irrigation volume. RAW
is calculated using ETc (depletion value) and predefined crop data. Every day depletion
value increases due to crop evapotranspiration that cause an irrigation need if it increases
than RAW. Depletion before evapotranspiration, called initial shortage, and lack after evap-
otranspiration, represented as the final deficit, are calculated using average soil moisture,
water capacity, and adequate root depth daily. For optimistic irrigation, measuring the
water amount a crop loses and requires for a specific duration is essential. Every crop type
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and soil has different water requirements; however, water loss occurs due to evaporation
from the soil surface and plant transpiration. Evapotranspiration is a combination of
evaporation and transpiration. Evapotranspiration ‘ET0’ be determined by real-time and
predefined variables such as humidity, wind speed, latitude, and altitude. ET0 and ETc can
be computed using the Penman-Monteith model and crop coefficient, respectively.

Penman-Monteith Method:

The Penman-Monteith Equation (2) is an effective way to compute reference evapo-
transpiration (ET0)

ET0 =
0.408∆(Rn− G) + Y 900

T+273 u2(es− ea)
∆ + Y(1 + 0.34u2)

(2)

where Rn is net radiation at the surface and computed from publicly available libraries that
apply an estimation formula named metabolic [113] and FAO [114], the values of maximum
temperature, minimum temperature, longitude, and latitude are used to calculate Rn. ‘G’ is
the soil heat flux, the amount of thermal energy that transfers through the soil surface per
unit of time. As the ICA measures ET0 every 24h, the value of soil heat flux is so tiny that
it can be neglected; thus, G ≈ 0. u2 is the wind speed (m/s) measured by an anemometer
placed at the height of 2 m above ground level. u2 can be computed by Equation (3).

u2 = uz
4.87

ln(67.8z− 5.42)
(3)

where ‘z’ is the elevation (m) above sea level. Saturation vapor pressure (es) required in
equation (1) is computed from Equation (4).

es =
e0(Tmax) + e0(Tmin)

2
(4)

where ‘T’ is the temperature (◦C) and e0 (T) is the saturation vapor pressure at air tempera-
ture T (kPa), represented in Equation (5).

e0 (T) = 0.6108 exp
[

17.27T
T + 273.3

]
(5)

ea is the actual vapor pressure in Equation (1) is computed by Equation (6)

ea =
e0(Tmax) RHmax

100 + e0
(

Tmin RHmin
100

)
2

(6)

where ‘T’ is the temperature (◦C). ‘∆’ in Equation (1) is the vapor pressure curve computed
by Equation (7).

∆ =
4098

[
0.618 exp

(
17.27T

T+237.3

)]
(T + 237.3)2

(7)

where ‘T’ is the temperature (◦C). ‘Υ’ in Equation (1) is the psychometric constant repre-
sented in Equation (8)

Υ = 0.665 × 10−3P (8)

where ‘P’ is the atmospheric pressure (mb) computed by Equation (9).

P = 101.3
(

293− 0.0065z
293

)5.26
(9)

where ‘z’ is the sea level (m) altitude.
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Crop Coefficient:

The evapotranspiration (ET0) calculated by the Penman-Monteith Equation (1) is used
to compute reference evapotranspiration (ETC). As every crop has different evapotranspi-
ration, thus Penman-Monteith equation assigns ‘ET0

′ to every crop type. The ‘ETc’ crop
coefficient approach can be used as equation (10).

ETc = Kc ET0 (10)

where ‘Kc’ is the crop coefficient which varies from crop to crop and their growth stages.

ICA Outputs:

The irrigation calculation algorithm (ICA) provides flexibility for the farmer with
multiple options regarding irrigation parameters and user application interface in their
native language. Some farmers need irrigation output in terms of volume, such as gallons
or liters in acre per inch, whereas some need output in terms of time. ICA facilitates farmers
with various output parameters as per their requirements. For example, if a crop in some
specific farm needs 1000L of water, then the system transforms 1000L, whether the output
in time, volume, and acre per inch. The system adjusts the output, calculates how much
time or acre per inch equals 10L of water, and presents the correct output amount to the
farmer. Therefore, our proposed solution can work on any farm in Pakistan with varying
output parameter requirements.

3.1.5. Crops Disease Prevention and Cure

For ease of the user, the proposed system provides guidelines about diseases and
prevention and cure methods for cultivated crops. This feature enables the farmer to take
precautionary steps to avoid any illness before any disease occurs. Moreover, in case of
any disease symptom found, the farmer can cure that disease with the help of disease cure
methods provided by the proposed system, as shown on the app screen in Figure 8.

Agriculture 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

ETc = Kc ET0 (10)

where ‘Kc’ is the crop coefficient which varies from crop to crop and their growth stages. 
 
ICA Outputs: 
 
The irrigation calculation algorithm (ICA) provides flexibility for the farmer with 

multiple options regarding irrigation parameters and user application interface in their 
native language. Some farmers need irrigation output in terms of volume, such as gallons 
or liters in acre per inch, whereas some need output in terms of time. ICA facilitates farm-
ers with various output parameters as per their requirements. For example, if a crop in 
some specific farm needs 1000L of water, then the system transforms 1000L, whether the 
output in time, volume, and acre per inch. The system adjusts the output, calculates how 
much time or acre per inch equals 10L of water, and presents the correct output amount 
to the farmer. Therefore, our proposed solution can work on any farm in Pakistan with 
varying output parameter requirements.  

 
3.1.5. Crops Disease Prevention and Cure 

For ease of the user, the proposed system provides guidelines about diseases and 
prevention and cure methods for cultivated crops. This feature enables the farmer to take 
precautionary steps to avoid any illness before any disease occurs. Moreover, in case of 
any disease symptom found, the farmer can cure that disease with the help of disease cure 
methods provided by the proposed system, as shown on the app screen in Figure 8.   

 

 
Figure 8. Crops’ Disease Prevention and Cure. 

3.1.6. Pest and Weed Control 
Pests are harmful organisms that threaten crops’ existence, spread diseases in crops, 

and cause destruction. On the other hand, weeds are plants that grow where and when 
they are not needed and compete with crops for nutrients, space, light, and water. Weeds 
and pests increase production costs, decrease the overall yield, and affect crop quality, so 
getting rid of them is important to maintain quality and yield. They become a big chal-
lenge if not controlled correctly at the right time because they cause severe damage to the 

Figure 8. Crops’ Disease Prevention and Cure.

3.1.6. Pest and Weed Control

Pests are harmful organisms that threaten crops’ existence, spread diseases in crops,
and cause destruction. On the other hand, weeds are plants that grow where and when they
are not needed and compete with crops for nutrients, space, light, and water. Weeds and
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pests increase production costs, decrease the overall yield, and affect crop quality, so getting
rid of them is important to maintain quality and yield. They become a big challenge if not
controlled correctly at the right time because they cause severe damage to the crop. Our
system aims to protect crops from economic damage by insects, plant pathogens, weeds,
pests, and other harmful organisms while reducing reliance on hazardous pesticides. The
system provides farmers with authoritative and up-to-date information about each crop’s
weeds and pests. It provides guidelines for controlling pest attacks and weed eradication
methods, as shown in Figures 9 and 10, respectively.
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3.1.7. Fertilizing

Fertilizers have become a vital part of farming nowadays. Whether there is a need
for weed eradication or to increase production, both farmers must use fertilizer. So, it is
essential to choose a suitable fertilizer to fulfill the requirements. The concentration of
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macro and micronutrients varies season by season, so we cannot show the same crop every
season. In the same way, we cannot use the same fertilizer every time. The selection of
fertilizer depends upon the crops’ requirements that the farmer may fulfill or the purpose
they have to achieve. If the goal is to eradicate the weeds, the farmer should use some
specific fertilizers for a particular weed. Suppose the requirement is to enhance crop growth
and production. In that case, the fertilizer selection depends upon the nature of the crop
as the native farmers are low-literate and less aware of choosing the right fertilizer. Thus,
the proposed system “Kisan Pakistan” provides accurate guidance in terms of relevant
fertilizers along with weed eradication support. The system suggests suitable fertilizers for
different types of weeds and the crops’ growth, along with usage guidance in the native
and English languages, as shown in Figure 6. This makes it much easy for native and
low-literate farmers to solve their issues without acquiring help from any external entity.

3.1.8. Harvesting and Storing

Harvesting and storing are critical phases in the agriculture cycle because if these
are done correctly, they provide high-quality products resulting in high income. So right
way of harvesting maximizes the yield and reduces crop fatalities. The proposed system
makes it convenient for the farmer by providing the best harvesting schedule for each
recommended crop and harvesting methods, as shown in Figure 11.
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3.2. Discussion

This research was conducted on a small-scale farm of 2 acres in Sialkot, Pakistan. Of
the two, one acre was controlled by the farmer (farm A), where they applied traditional
farming techniques. The remaining one acre, farm B, was controlled by our proposed smart
system integrated with sensors and IoT techniques. The system recommends different
suitable crops to be cultivated according to the soil analysis, i.e., 6 pH level for farm B.
Farms A and B were cultivated with the same crop. Regarding the irrigation module, we
compared the water usage on both farm A and farm B. Farm A was irrigated by farmers
who used conventional estimations for irrigation time and volume. Farm B was irrigated
using decisions made by the Irrigation Calculation Method (ICA) as a function of real-time
data supplied by IoT devices deployed on the farm. Table 3. highlights the total irrigation
volume consumed in farms A and B. It can be depicted that farm A, using conventional
farming methods, consumed 48,569 L of irrigation water, and farm B, using the proposed
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solution, utilized 22,779 L of irrigation water, which resulted in 25,790 L of water saved,
approximately 53%. The data for the detailed irrigation schedule for both farms are also
plotted in Figure 12 to illustrate the water usage efficiency in the proposed solution.

Table 3. Irrigation Statistics.

Water Consumption (Farm A) Water Consumption (Farm B) Water Saving (L) Water Saving (%)

48,569 22,779 25,790 53
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We implanted the proposed smart system on a small-scale farm. Results show that if
we add more sensors and IoT devices, the proposed model has the flexibility to be imple-
mented on medium to large farms. The system incorporates Edge, fog, and cloud comput-
ing with IoT devices which offers low latency, high bandwidth, less energy consumption,
and real-time analytics that make it more efficient. Currently, the system incorporates data
of major crops in Pakistan, but by involving more crop data from other global regions, the
system could be implemented on farms with more crops.

Our research covered a wide range of previously proposed models, papers, and
studies. All these researches and studies were thoroughly read and understood, their
domain of interest, their architecture, the pros and cons, and the features added in their
proposed studies. After critically evaluating many studies on smart agriculture, some
crucial information about related studies is provided in Table 4. Readers can obtain an
overview and comparison of the previous work done by researchers, practitioners, authors,
and technologists related to our research contributions.

A few limitations are incorporated in this study. We could not conduct the yield analy-
sis of crops cultivated on farm B. Concerning soil analysis, we could also involve more soil
sensors, such as NPK sensors, for better fertility measurements. System recommendations
address only major crops to be grown in Pakistan. In the future, we will incorporate more
crop data for different global regions. This study was carried out when most regions were
on lockdown, with restrictions on movements within Pakistan. We are intended to conduct
the qualitative usability test of the android application ‘Kisan Pakistan’ among farmers
in the future. We will perform experiments proposed system on large-scale farm lands to
measure and improve its performance in the future.
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Table 4. Comparison summary of related studies vs. proposed solution.

Study
Smart

Solution
Interface for
Semi-literate

Medium
(Language)

Proposed Features and Guidelines

Soil
Analysis

Crop
Cultivation

Land
Preparation Irrigation Crop

Disease
Pest and Weed

Control Fertilizer Harvest Weather
Forecast

[45] Yes Urdu No No No No No No No No Yes

[53] Yes No English No No No Yes No No No No No

[54] Yes No English No Yes No Yes No No No No No

[111] Yes No Urdu No No No No Yes No No No No

[50] No Yes N/A No No No No No No No No Yes

[71] No Yes N/A No No No No No Yes Yes No Yes

[77] Yes No Hindi, English No No No No Yes Yes Yes No No

[109] Yes No English Yes Yes No Yes No No No No Yes

[92] Yes No Malay No Yes No No Yes Yes No No Yes

[93] Yes No English Yes No No Yes Yes No Yes No No

Proposed Solution Yes Yes Urdu Yes Yes Yes Yes Yes Yes Yes Yes Yes
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4. Conclusion

Agriculture is the backbone of Pakistan. It is necessary to ensure its sustainable growth
over the years. We studied traditional trends followed by farmers and investigated why
productivity lags. The key barriers are information inadequacies, lack of information
systems for illiterates or less-literates, and lack of a system that provides guidance at
every stage of the crop cycle. This study was carried out to provide a smart advisory
system for illiterate and semi-literate farmers of Pakistan that could provide them guidance
from crop selection to the harvest stage phase. In this research work, we built a cost-
effective smart system equipped with multiple sensors and devices related to the internet
of things (IoT) technologies. We also developed an android application named ‘Kistan
Pakistan’ that allows illiterate and low-literate farmers to manage their farms remotely. The
interface of the android application is interactive due to its visual, audio, voice, and iconic
components. The proposed solution is applicable globally as all information and guidelines
are disseminated in both the ‘Urdu’ and ‘English’ languages. Edge-cloud computing
delivers more accurate guidelines in less time and in almost every phase of the agricultural
cycle, increasing productivity and making the agricultural ecosystem more robust. We
experimented on a small-scale farm, but the results reflect that it will be efficient for medium
to large-scale fields.
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