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Abstract: At present, rice is generally in a state of dense adhesion and small granular volume during
processing, resulting in no effective semantic segmentation method for rice to extract complete rice.
Aiming at the above problems, this paper designs a small object semantic segmentation network
model based on multi-view feature fusion. The overall structure of the network is divided into a
multi-view feature extraction module, a super-resolution feature building module and a semantic
segmentation module. The extraction ability of small target features is improved by super-resolution
construction of small target detail features, and the learning ability of the network for small target
features is enhanced and expanded through multi-view. At the same time, a dataset of quality
inspection during rice processing was constructed. We train and test the model on this dataset. The
results show that the average segmentation accuracy of the semantic segmentation model in this
paper reaches 87.89%. Compared with the semantic segmentation models such as SegNet, CBAM,
RefineNet, DeepLabv3+ and G-FRNet, it has obvious advantages in various indicators, which can
provide rice quality detection and an efficient method of rice grain extraction.

Keywords: semantic segmentation; deep learning; small target; feature fusion module

1. Introduction

Agriculture is regarded as the foundation of the national economy, and food is the
top priority. At present, there are still obvious problems such as over-processing of
rice in China. Due to over-processing, billions of kilograms of rice are lost every year,
which has become an important factor affecting national food security and restricting
agricultural efficiency and farmers’ income. To reduce grain loss, it is necessary to carry
out accurate quality inspection of rice during processing to promote the control precision
of rice processing. Rice segmentation is the basis for assessing rice quality. At present,
rice is generally densely adhered and has a small granular volume. The pixels of a single
grain of rice are less than 3% of the overall image, resulting in no effective rice semantic
segmentation method to extract complete rice.

Recently, many researchers have conducted extensive and in-depth research on how
to perform effective and automatic segmentation of small targets. The image segmentation
method based on graph theory uses graph division to solve the segmentation problem
and achieves image segmentation by optimizing the objective function. Algorithms based
on the idea of graph theory include GrabCut [1], GraphCut [2], OneCut [3], etc., but this
method is too computationally intensive and is suitable for images with the same intra-class
similarity. Deep learning methods include Convolutional Neural Networks (CNN) [4],
Recurrent Neural Networks (RNN) [5] and Generative Adversarial Networks (GAN) [6],
etc. Fully Convolutional Neural Network (FCN) was proposed in 2015 to classify images at
the pixel level [7]. The Pointwise Spatial Attention Network (PSANet) method published
in ECCV in 2018 utilizes a learned attention mechanism [8] to improve prediction accuracy.
The Asymmetric Convolutional Network (ACNet) proposed by Xinxin Hu et al. [9] in
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2019 utilizes the Residual Neural Network (ResNet) [10] to improve prediction accuracy.
In 2019, JunFu et al. [11] proposed a new type of scene segmentation network (DANet)
and proposed a dual attention module, which achieved SOTA effects on both CitySpace
and COCO datasets. In 2021, the Hybrid Multi-Attention Network (HMANet) was pro-
posed by Ruigang Niu et al. [12]. In 2019, Zhi Tian et al. [13] proposed a new upsampling
module. Chen et al. [14] solved the problem of feature resolution reduction caused by
downsampling with hole convolution. Chao Peng et al. [15] proposed an improved global
convolutional network method, Aggregate context information from different regions
through a pyramid pooling method [8]. Chen et al. [16] proposed an encoder–decoder
structure with atrous separable convolution (Deep Lab V3+) for image semantic seg-
mentation and further explored the Xception structure [17]. Raj et al. [18] proposed a
multi-dimensional version of convolutional VGG-16. Roy et al. [19] fused coarse to fine
for segmentation. Yi Lu et al. [20] proposed a Graph-FCN method. Yuhui Yuan et al. [21]
proposed an object context representation method for semantic segmentation. A bidi-
rectional segmentation network (BiSeNet) [22] and a lightweight encoder–decoder net-
work (LEDNet) [23] were also proposed one after another. Li et al. [24] proposed a Deep
Feature Aggregation Network (DFANet). Yunchao Wei et al. [25] proposed using atrous
convolution to provide a convenient method for inferior supervised and half-supervised
semantic segmentation. Anton et al. [26] proposed a novel loss function (gated CRF
loss) for weakly supervised image semantic segmentation. Guolei Sun et al. [27] pro-
posed a weakly supervised semantic segmentation method to mine cross-image semantics.
Unsong Fan et al. [28] proposed a multi-estimation method for weakly supervised seman-
tic segmentation. Liang-Chieh Chen et al. [29] proposed a half-supervised learning method
in video sequences using urban scene segmentation.

To sum up, a lot of research has been performed on small object segmentation. How-
ever, the segmentation accuracy of small objects in the scene is still very low, especially
small objects in a densely glued state. Small objects have always been a difficult problem
to be solved in the field of object segmentation due to their small image size, high density
and little information. Semantic segmentation in the case of dense adhesion is the premise
of rice quality detection. So it is important to conduct research on semantic segmentation
methods for rice. In this paper, an optimized bilateral segmentation network is introduced,
and a multi-branch convolution module (MBC-module) is designed to improve the spatial
branch network to extract low-level spatial features, increase the horizontal connection of
the pyramid structure and use atrous convolution to spread the range of perception. A
squeeze incentive network is added to improve the feature learning ability, and finally a
dataset of densely bonded rice is constructed to test the algorithm. Compared with the
above method, the segmentation accuracy of the rice small target has been improved by at
least 1%, which verifies the effectiveness and feasibility of the method.

2. Materials and Methods

In the present study, a semantic segmentation network of small targets using multi-
view feature fusion is designed for the rice small objects with dense adhesion and similar
features. This network model improves the extraction ability of small target features by
super-resolution construction of small target detail features. The overall structure of the
network is divided into a multi-view feature extraction module, a super-resolution feature
construction module and a semantic segmentation module. The learning capability of the
network for small target features is enhanced and expanded through multiple views to
provide support for the subsequent construction of super-resolution features. Finally, the
features constructed by super-resolution are semantically segmented. The overall network
model structure is shown in Figure 1.
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Figure 1. Block diagram of the semantic segmentation module. It consists of three parts. The left side
represents the multi-view feature extraction module. The middle part represents the super-resolution
feature reconstruction module. The right side represents the semantic segmentation module.

The specific details of each module are described below.

2.1. Multi-View Feature Extraction Module

In this paper, three kinds of views are generated by color contrast enhancement,
internal texture extraction and edge extraction for the small rice target to improve the
detailed features of the tiny object from various angles. Histogram equalization is used to
increase the contrast of small objects, which is actually to perform nonlinear transformation
on the image and update the pixel value of each photo. This allows approximately the same
number of pixel values in different grayscale spans. At the same time, the brightness of the
highest point in the middle of the previous histogram is improved, while the brightness of
the lowest point of the left and right ends has decreased. The histogram of the resulting
photo is a relatively flat segmented graph, and the function expression for histogram
equalization of the small target is:

Si = T(ri) =
k−1

∑
i=0

ni
n

(1)

In Equation (1), k is the number of gray levels.
In the current investigation, the LBP algorithm is used to collect the texture features of

the small target. The LBP algorithm is executed on a 3× 3 scale. The value of the pixel in the
middle of the range is regarded as the comparison value, and the value of the surrounding
8 pixels is subtracted. If the pixel value of the center point is smaller than the pixel value of
these points, the point is regarded as 1. Instead, the value is 0. Therefore, a 0-1 encoding
with a length of 8 bits can be received, and this value can be used as the LBP value of the
middle pixel in the range to represent the details of the 3× 3 area, as shown in Figure 2.

Figure 2. The flow of the LBP algorithm. The value greater than the center point is assigned as 1, and
the value less than the center point is assigned as 0. Read clockwise to obtain binary coded data.

In the current study, the Sobel operator is used to extract the edge of the small target.
The algorithm includes two types of 3× 3 matrices, which are 0-degree and 90-degree
directions, respectively. Two-dimensional convolution of these matrices with the image
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yields estimated values of luminance differences in the 0-degree and 90-degree directions,
respectively. Equation (2) is as follows: Gx and Gy are the approximations of the partial
derivatives of the gray values at 0 degrees and 90 degrees directions, respectively.

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

∗A Gy =

 +1 +2 +1
0 0 0
−1 −2 −1

∗A (2)

For each point, we can obtain the gradient in two directions, and the estimated value
of the gradient can be derived by Equation (3).

G =
√

G2
x + G2

y (3)

2.2. Super-Resolution Feature Building Blocks

Since small target features are usually small and not obvious in detail, we use the
super-resolution feature construction to improve the features of tiny targets. Although the
images may be upscaled by basic bilinear interpolation, the photographs become blurry
and have lower characteristics when they are upscaled. Furthermore, tiny objects are
still difficult to distinguish from the backdrop. In the present study, two branches are
constructed; they are feature extraction and picture reconstruction, as shown in Figure 3.

Figure 3. Structure diagram of small target feature super-resolution reconstruction. The module
consists of two parts including a feature extraction branch and a feature reconstruction branch.

Reconstructing leftover photos and creating better quality feature maps are both
performed using the feature extraction. To create a high-quality image, the reconstruction
branch adds the feature map from the previous phase to the upsampled image pixel by
pixel. The loss function formula is shown in Equation (4).

L(ŷ, y; θ) =
1
N

N

∑
i=1

L

∑
s=1

ρ(ŷ(i)s − y(i)s ) =
1
N

N

∑
i=1

L

∑
s=1

ρ((ŷ(i)s − x(i)s )− r(i)s ) (4)

In Equation (4), s and rs are residual images, xs is an enlarged blurred image, ŷs is
a clear image generated by analysis, and ys is the original clear image (ground truth).
Moreover, ys=xs+r and ρ(·)=

√
x2+ε2 are the Charbonnier penalty functions. In addition

to this, θ is a large number of parameters of the module to be corrected. N is the number of
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images processed each time. L is the height of the pyramid. All convolutional layers contain
64 filters, and their size is 3× 3. PReLUs are activation functions. Small images can be
obtained by cropping; they have lower resolution. Through the saliency path, these images
can be reconstructed. We also adjusted the super-resolution upsampling rate to 2× to
prevent the reconstructed tiny pictures from looking out of proportion to the inspection
speed of the back end inspection path.

2.3. Semantic Segmentation Model

In this paper, an improved bilateral segmentation network is used for semantic seg-
mentation for small targets of rice, which optimizes the two-way branches of the original
network’s spatial path and context path and improves the feature merge module and
attention exquisiteness module, thereby further improving the performance of semantic
segmentation. The overall network block diagram is shown in Figure 4. The specific details
of each part of the optimization are described in detail below.

Figure 4. Block diagram of semantic segmentation network. This module mainly includes four parts:
context path, attention refinement module, feature fusion module and squeeze excitation module.

(1) Spatial path framework building via multi-branch convolution.
In semantic segmentation tasks, the fully convolutional structure is usually adopted
by existing segmentation networks, consisting of an up- and down-sampling process.
However, the down-sampling process for small objects will lose important spatial
features, resulting in the inability to obtain accurate segmentation results during
upsampling. Therefore, we design a multi-branch convolution module (MBC-module)
to optimize the spatial branch network to extract low-level spatial features. Its in-
ternal structure is divided into a multi-branch convolutional layer and a connected
dilated convolutional layer through which multiple branched convolution kernels are
connected to obtain receptive fields of different scales, as shown in Figure 5. Bypass
pruning is added to the multi-branch convolution part to reduce the large number
of convolution kernel channels. First, a 1× 1 convolution kernel is used to realize
the interaction and information integration of the channels and to reduce the dimen-
sionality of the number of convolution kernel channels. The two 5× 5 convolution
kernels were subsequently replaced with two 3× 3 convolution kernels to reduce
the amount of parameters and at the same time enhance the nonlinear ability of the
model. In addition, 1× n and n× 1 convolution kernels are further used to replace
the original convolution kernels to enhance the width and height features. At the
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same time, bypass pruning is set to reduce the number of channels of the convolution
kernel and reduce the amount of parameter calculation. The improved spatial path is
shown in Figure 6.

Figure 5. Multi-branch convolution module (MBC-module). By replacing the large convolution
kernel with a smaller size convolution kernel, not only can the parameters be reduced, but also the
nonlinear ability of the model can be improved.

Figure 6. Improved spatial path. It includes three layers of convolution layers and two layers of
MBC-modules.
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(2) The context path structure based on feature pyramid is established.
Unlike spatial branching networks which need to preserve rich underlying spatial
features, contextual branching networks are designed to provide a larger receptive
field. In the current investigation, we improve a network branching contextual branch-
ing network that utilizes residual networks, global average pooling to obtain large
perceptual fields by considering the increase of perceptual fields and the requirement
of computational power. To merge the surface feature maps with high precision and
the internal feature maps with sufficient semantic information in the context path, the
lateral connection of the pyramid structure is added, as shown in Figure 7. Therefore,
it is possible to rapidly compose a feature pyramid with rich semantic messages at
all sizes from a unitary image of a unitary size, and a residual network is used in
the context path to quickly down-sample the feature map to obtain a large perceived
range. With these fast down-sampled feature maps, a rich semantic context message
is encoded. Furthermore, an overall average pooling is added to the last part of the
residual module to receive the global receptive field. The improved context path is
shown in Figure 8.

Figure 7. Feature pyramid fusion structure diagram. The horizontal connection of the feature
pyramid is added to fuse the information of the shallow feature map and the deep feature map.

Figure 8. Improved contextual path. Expand the receptive field by using residual networks and
global average pooling.
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(3) Design of feature fusion module and attention refinement module.
Since the feature representation levels of the two paths are different, the method
cannot simply summarize these features. Most of the spatial information captured
by the spatial path encodes rich detailed information. Furthermore, the contextual
information is mainly encoded by the output features of the contextual path. In
summary, the resulting features of spatial paths are poor, while the resulting features
of contextual paths are excellent. Then, a customized feature merge module is needed
to merge these features, as shown in Figure 9.
In this paper, we consider that feature fusion in which both feature maps are fused
with a larger receptive field can better utilize the spatial information of the low-level
features and the semantic information of the high-level features. Therefore, in the
current study, to not increase the computational effort, we use atrous convolution to
expand the receptive field instead of conventional convolution. Atrous convolution
improves the perception range by joining atrous into the standard convolution kernel.
Contrasted with the ordinary convolution operation, atrous convolution has one more
parameter to be adjusted, which is called the atrous rate. It represents the number of
spaces between each pixel in the filter, as shown in Figure 10.

Figure 9. Feature fusion module. It is used to fuse the low-level features output by the spatial path
with the high-level features output by the context path.

Figure 10. Atrous convolution. Increase the receptive field by injecting atrous.

In the present study, a squeeze excitation module is added to inhibit the incorrect
information channel of the attention refinement module and increase the work speed
of the module, as shown in Figure 11. The secondary module is connected to the
backbone network by two different methods. One of the branches is the result of
the assist module, which is integrated through a 1× 1 convolution before entering
the main branch. Another branch complements an attention mechanism structure
to the deep auxiliary network between the connections of the two networks. The
purpose is to fix the output properties of the assist module. The work process can
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be classified as squeezing and activation. First, the feature map is condensed, and
the two-dimensional feature is transformed into one-dimensional through average
pooling. In addition, these feature maps are transformed from two-dimensional
feature maps to one-dimensional feature maps through 1× 1 pooling, which can more
perfectly show the arrangement of feature values of all channels and further improve
the effect of feature learning.

Figure 11. The squeeze excitation module improves the ability to increase learning by squeezing
and motivating.

3. Results and Discussion

In the current investigation, we construct a rice segmentation dataset of 9000 images,
including 3000 images of long-grain rice, 3000 images of short-grain rice and 3000 images of
round-grain rice. We use NVIDIA 1080Ti GPU to conduct all experiments on the Tensorflow
platform, and the effect diagram obtained through the trained model is shown in Figure 12.

(a) (b) (c)

Figure 12. Effect diagram of rice grain semantic segmentation: (a) long rice; (b) short rice; (c) round rice.

Tables 1–3 are the segmentation results on the long rice, the short rice, and the round
rice datasets, respectively, and Table 2 represents the semantic segmentation effect on the IS-
PRS Potsdam dataset. From the experimental results, the proposed semantic segmentation
network outperforms the other compared networks. Compared with the G-FRNet model in
the long-grain rice dataset, MIoU/ F1-score/Accuracy increased by 1.40%, 1.89% and 1.55%,
respectively. Compared with the G-FRNet model in the short-grain rice dataset, MIoU/
F1-score/Accuracy increased by 1.31%, 2.09% and 1.95%, respectively. Compared with the
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G-FRNet model in the round-grain rice dataset, MIoU/F1-score/Accuracy increased by
1.23%, 2.07% and 1.17%, respectively.

Table 1. Semantic segmentation results of long-grain rice dataset. The index results of MIOU, F1-score
and accuracy of each algorithm.

Model MIOU (%) F1-Score (%) Accuracy (%)

FCN-32s 46.12 55.23 58.76
FCN-8s 53.86 68.71 70.54

U-net [30] 56.77 69.36 71.87
SegNet [31] 59.63 78.25 80.35
CBAM [32] 61.32 80.74 82.71

RefineNet [33] 63.94 82.52 83.65
DeepLabv3+ 63.45 83.97 85.93
G-FRNet [34] 64.91 85.19 86.42

Network (ours) 66.31 87.28 87.97

Table 2. Semantic segmentation results of short-grain rice dataset. The index results of MIOU,
F1-score and accuracy of each algorithm.

Model MIOU (%) F1-Score (%) Accuracy (%)

FCN-32s 47.43 56.54 61.07
FCN-8s 55.27 70.12 72.25
U-net 58.08 71.67 73.18

SegNet 61.74 79.76 81.66
CBAM 62.63 82.05 85.12

RefineNet 64.35 84.13 84.96
DeepLabv3+ 64.76 85.28 87.24

G-FRNet 66.32 86.62 87.23
Network (ours) 67.63 88.51 89.18

Table 3. Semantic segmentation results of the round grain rice dataset. The index results of MIOU,
F1-score and accuracy of each algorithm.

Model MIOU (%) F1-Score (%) Accuracy (%)

FCN-32s 44.97 54.08 57.61
FCN-8s 52.52 67.46 69.39
U-net 55.62 68.23 73.73

SegNet 59.08 77.19 79.27
CBAM 61.27 79.39 81.56

RefineNet 62.79 81.77 82.52
DeepLabv3+ 62.33 82.82 84.78

G-FRNet 63.86 84.24 85.37
Network (ours) 65.09 86.31 86.54

For small targets with densely adhered rice, spatial information and receptive field are
the keys to achieve high precision. Semantic segmentation algorithms such as FCN-32s,
FCN-8s, U-net, SegNet, CBAM, RefineNet, DeepLabv3+ and G-FRNet try to maintain the
resolution of the input image, encode sufficient spatial information through deconvolution,
and pass the pyramid pooling modules or large convolution kernels to capture enough
receptive fields. Therefore, the pixel-to-pixel relationship is not fully considered. Iit lacks
spatial consistency, and it is not sensitive enough to the details in the image. In particular,
the resolution of the target image is much higher than the ordinary resolution, and in the
case of real-time semantic segmentation, the existing methods generally use small input
images or lightweight models to accelerate, thus losing most of the spatial information of
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the original image and destroying the spatial information, which ultimately leads to poor
overall semantic segmentation results.

The algorithm in this paper first refines the contour details of densely adhered rice
through the super-resolution reconstruction method of multi-feature fusion and improves
the semantic segmentation accuracy of rice grains, which are small in size and have too
many similar features between different targets. A spatial path is improved to preserve
the spatial size of the original input image and encode the spatial information of the local
detail features of small objects. At the same time, considering that each target requires a
large receptive field and fast calculation speed, the context path is improved. A specific
attention refinement module is proposed to refine the features of each stage, and attention
vectors are calculated to guide feature learning. A lightweight model and global average
pooling are utilized to provide a larger receptive field to obtain a larger receptive field that
encodes high-level semantic context information. Finally, the up-sampled output features
of global pooling are combined with the features of lightweight models.

Compared with FCN-32s, the algorithm in the current study has obvious advantages
in the ability to obtain spatial information and semantic information of rice. Therefore,
the average accuracy rate is 28.74% higher. The reason why the semantic segmentation
effect of FCN-8s is better than that of FCN-32s is that the size of the last convolutional
layer is enlarged by four times, so the loss of spatial information is small, but the feature
extraction ability for sticky rice grains is still poor. Therefore, the average accuracy of
the algorithm in this paper is 17.16% higher than that of FCN-8s. Compared with U-net,
the algorithm in the present study is more prominent in the way of multi-scale feature
fusion and enhances the detailed semantic features in the way of feature pyramid, so the
average accuracy rate is 14.96% higher. Compared with FCN, SegNet has very similar
ideas. Although the encoder and decoder networks have better segmentation performance
than FCN, the network does not have enough receptive fields for the detailed features
of densely bonded rice grain. Therefore, the average accuracy of our algorithm is 7.46%
higher. Compared with CBAM, the algorithm in the current investigation has a better
attention mechanism, and the difference between the contour features and content features
of densely bonded rice is enlarged by the extrusion excitation module, so the average
accuracy rate is 4.76% higher. Compared with the U-net network, RefineNet is essentially
the same. Although it captures a wide range of background context information through
identity mapping and chain residual network, it has poor ability to extract densely glued
edge contour feature information. Therefore, the average accuracy of the algorithm in the
current study is 4.18% higher than that of RefineNet. Compared with DeepLabv3+, the
algorithm in the present study has almost no difference in the range of receptive field, but
it is better than it in terms of rice contour feature extraction ability, so the average accuracy
rate is 1.92% higher. G-FRNet uses deep features to assist shallow features to filter fuzzy
and ambiguous features, effectively integrating low-level, high-level and global feature
information. However, compared with the algorithm in the current investigation, the effect
of using the spatial path and the context path to determine the semantic contour of the target
is slightly insufficient, so the average accuracy is 1.56% higher. In the segmentation effect
of long, short and round rice grains, because the feature information of short-grain rice is
small, the edge contour features of rice are relatively stable and the invalid interference
features are small, the semantic segmentation of short-grain rice with each network is the
best effect.

4. Conclusions

Rice is mostly granular and includes small targets, most of which have dense adhesion
during processing, which leads to poor detection accuracy and low accuracy of rice quality
inspection. In the present study, an optimized semantic segmentation network model is
introduced to perform semantic segmentation in the case of dense sticky rice to extract
the rice in its complete morphology and establish three kinds of rice datasets of long-
grain, short-grain, and round-grain types. On the rice test set, the average segmentation
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accuracy of the semantic segmentation network in this paper reaches 87.89%, which has
obvious advantages in all indexes compared with other semantic segmentation models.
Through the improvement of the original segmentation network in the current investigation,
the feature extraction effect of rice contour is improved, and the accurate segmentation
required for preprocessing during rice quality inspection is realized, thereby improving the
quality of rice quality inspection. In the follow-up work, we will continue to expand the
research object to segmentation of other cereal grains to achieve more accurate semantic
segmentation in different grain quality inspection situations. At the same time, the division
efficiency is improved, and the index analysis of the divided grains is carried out to further
make greater contributions to the grain processing industry.
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