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Abstract: Accurately distinguishing the types of tea is of great significance to the pricing, produc-
tion, and processing of tea. The similarity of the internal spectral characteristics and appearance
characteristics of different types of tea greatly limits further research on tea identification. However,
wavelet transform can simultaneously extract time domain and frequency domain features, which is a
powerful tool in the field of image signal processing. To address this gap, a method for tea recognition
based on a lightweight convolutional neural network and support vector machine (L-CNN-SVM)
was proposed, aiming to realize tea recognition using wavelet feature figures generated by wavelet
time-frequency signal decomposition and reconstruction. Firstly, the redundant discrete wavelet
transform was used to decompose the wavelet components of the hyperspectral images of the three
teas (black tea, green tea, and yellow tea), which were used to construct the datasets. Secondly,
improve the lightweight CNN model to generate a tea recognition model. Finally, compare and
evaluate the recognition results of different models. The results demonstrated that the results of tea
recognition based on the L-CNN-SVM method outperformed MobileNet v2+RF, MobileNet v2+KNN,
MobileNet v2+AdaBoost, AlexNet, and MobileNet v2. For the recognition results of the three teas
using reconstruction of wavelet components LL + HL + LH, the overall accuracy rate reached 98.7%,
which was 4.7%, 3.4%, 1.4%, and 2.0% higher than that of LH + HL + HH, LL + HH + HH, LL + LL +
HH, and LL + LL + LL. This research can provide new inspiration and technical support for grade
and quality assessment of cross-category tea.

Keywords: redundant discrete wavelet transform; tea; convolutional neural network; classification

1. Introduction

Tea is a drink widely loved by consumers because of its unique flavor and health
function [1]. In particular, unfermented green tea, lightly fermented yellow tea, and fully
fermented black tea have received extensive attention and research. Among them, green
tea contains polyphenols to help prevent cancer [2], and yellow tea and black tea have
strong antioxidant activity [3–5]. Different categories of tea have different characteristics
and quality standards. Even if the same type of tea leaves, it is difficult to distinguish the
type of tea due to different processing techniques and geographical indications of origin.
Therefore, fast and accurate tea classification has always been an active research hotspot,
which is of great significance to the control of tea fermentation time, production process,
and processing links.

The traditional methods of tea classification were generally based on physical and
chemical indicators, and sensory evaluation. Among them, methods based on physical
and chemical indicators, such as gas chromatography-mass spectrometry [6], were not easy
popularized and applied because of time-consuming operations and destructive experi-
ments. Some methods were costly and complicated, such as near-infrared spectroscopy
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detection [7], fluorescence spectroscopy detection [8], electronic tongue, and electronic
nose [9–11], which might limit the universality of tea classification methods. Of course, the
sensory evaluation method is one of the common methods in the tea field [12]. Although
it could make up for the limitations of physical and chemical testing methods, it was
susceptible to the influence of the subjective factors of review experts, which could lead
to inaccurate tea classification [13,14]. Therefore, it is necessary to develop a method to
classify different categories of tea objectively and reliably.

In fact, classification based on the appearance characteristics of tea was a relatively
simple and effective method. Especially the classification of tea based on machine vision has
been widely used [15]. However, the resolution of the tea sample image and the shooting
environment may affect the classification accuracy [16]. With the rapid development of
hyperspectral image processing technology, its application in food analysis is becoming
more and more attractive [17,18]. Studies have shown that analysis based on hyperspectral
images has achieved better results not only in tea internal quality, such as tea polyphenols,
catechins, and tea amino acids [19–21] but also in tea classification, such as the classification
of green tea [22–24], the classification of tieguanyin tea [25], oolong tea varieties [26].
However, most of the studies mentioned above were based on common features, such as
texture features and spectral reflectance, which severely limited further research on tea
classification.

Multi-resolution analysis based on wavelet transform has been extensively studied
in various fields, such as image enhancement, image decomposition and reconstruction,
signal-to-noise separation, and signal filtering based on wavelet transform have been ap-
plied [27]. In addition, wavelet transform has good analysis ability in both the time domain
and frequency domain [28]. Wu et al. proposed entropies from the wavelet coefficient to
successfully classify green, black, and oolong [29]. Bakhshipour et al. extracted wavelet
features to classify black and green teas [30]. Borah et al. extracted wavelet textures to
classify black teas of different levels [31]. Regardless of the form of the wavelet feature, the
research mentioned above provides all the retrieved features of tea biochemistry or compo-
sition for tea classification. Obviously, they neither tried to extract more advanced wavelet
semantic features to classify tea more effectively nor did they try to better understand the
contribution of wavelet coefficient components to tea classification.

In fact, the essence of wavelet transform is to solve the signal energy at different
decomposition scales to form feature vectors for identification. In particular, the wavelet
coefficient components of the image obtained by the discrete wavelet transform method
respectively represent the approximate features and detailed features in different directions.
As we all know, some methods use wavelet coefficients to reconstruct images, and other
methods use wavelet coefficients to achieve signal denoising. At present, there is no
universally accepted consensus on which wavelet coefficient components perform well.
Nevertheless, the research mentioned above was based on the manual wavelet feature
extraction method, which lacked stability and robustness. Therefore, the research on tea
classification still faces many technical issues.

With the wide application of deep learning in different fields, the research ideas of
tea classification have been greatly expanded. To more fully extract the spectral-spatial
joint features in hyperspectral images, the researchers applied deep learning techniques to
the task of tea classification [32]. Deep neural networks are composed of many network
layers and have powerful feature extraction capabilities from low-level to high-level, which
could solve the problem of insufficient and unstable features extraction by traditional
methods [33]. In particular, the combination of deep learning and wavelet transform has
been widely concerned and applied. Some research focused on image stitching based on
convolutional neural network (CNN) and wavelet transform methods [34]. For example,
El-Latif et al. respectively carried out research on the strategies of high-frequency sub-band
splicing and low-frequency sub-band splicing based on wavelet decomposition. In contrast,
some studies applied deep learning methods to process wavelet components to achieve
image reconstruction. For example, Qi et al. used CNN to restore image sub-bands corre-
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sponding to different wavelet coefficient components including low frequency (LL) and
high frequency (LH, HL, and HH) [35]. Wang et al. used CNN to generate corresponding
weight maps for low-frequency and high-frequency wavelet coefficient components [36].
Although the convolutional neural network and wavelet transform exhibited the analysis
potential of different frequency sub-band for the wavelet components obtained by wavelet
decomposition of the image, they have not been applied to the combination of wavelet sub-
bands of different frequencies to achieve accurate classification. In addition, studies have
shown that discrete wavelet transform decomposing time-frequency domain signals from
images could improve classification accuracy [37]. However, it remains unclear how the
optimal combination of multiple wavelet components affects the classification performance
of different teas.

Therefore, a method of tea classification was proposed with the deep semantic features
from wavelet component combination based on the lightweight CNN model, aiming to
further extract features from hyperspectral images. The purpose of this research is to
(1) decompose tea hyperspectral images through redundant wavelet transform to obtain
different wavelet coefficients in different time and frequency domains, thereby improving
the feature expression ability, (2) reconstruct the image with the optimal combination of
wavelet components, and an improved lightweight convolutional neural network model
was proposed, aiming to achieve tea recognition accuracy, and (3) compare and evaluate
the classification results of different kinds of tea to verify the effectiveness of the method
proposed in this study.

2. Materials and Methods
2.1. Sample Collection and Data Set Construction
2.1.1. Collection of Tea Samples

The tea samples used in the experiment were three categories of tea purchased from
large supermarkets and online, including yellow tea, green tea, and black tea. Among them,
yellow tea includes Mogan Huangya (MGHY, produced in Huzhou, China), Mengding
Huangya (MDHY, produced in Ya’an, China), Huoshan Huangya (HSHY, produced in
Lu’an, China), Pingyang Huangtang (PYHT, produced in Wenzhou, China), Junshan
Yinzhen (JSYZ, produced in Yueyang, China). Green tea includes Maofeng (MF, produced
in Huangshan, China) and Liuan Guapian (LAGP, produced in Lu’an, China). In order
to obtain more samples, it is necessary to collect the same category of tea from different
manufacturers. For example, although the geographical indication origin of Qimen black
tea is Qimen County, Huangshan City. We still collect black tea from different company,
including Anchi Tea limited company, Chizhou, China (ACBT), Xiaolukou Tea limited
company (XLBT), Gaoxiang Black Tea Factory, Huangshan, China (GXBT), Qihong Tea lim-
ited company, Huangshan, China (QMQH), and Qimen Tea limited company, Huangshan,
China (HSBT). Moreover, Maofeng (green tea) was collected from different production com-
panies, including Guangming Tea limited company, Huangshan, China (GMMF), Beijing
Zhangyiyuan Jingtailong Tea limited company, Huangshan, China (ZYYMF), Ziwei Tea lim-
ited company, Huangshan, China (ZWMF), Yijiangyuan Tea limited company, Huangshan,
China (YJYMF). In total, 15 kinds of tea samples collected were produced in four provinces
(Anhui Province, Zhejiang Province, Hunan Province, Sichuan Province) in China (Table 1).
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Table 1. Geographical sources of tea.

Tea Category Tea Variety Abbreviations Number Geographical Origins

Black tea QMBT from ACBT ACBT 30 Anhui
QMBT from XLBT XLBT 30 Anhui
QMBT from GXBT GXBT 30 Anhui

QMBT from QMQH QMQH 30 Anhui
QMBT from HSBT HSBT 30 Anhui

Green tea Maofeng from
ZYYMF ZYYMF 30 Anhui

Maofeng from ZWMF ZWMF 30 Anhui
Maofeng from YJYMF YJYMF 30 Anhui
Maofeng from GMMF GMMF 30 Anhui

Liuan Guapian LAGP 30 Anhui

Yellow tea Junshan Yinzhen JSYZ 30 Hunan
Huoshan Huangya HSHY 30 Anhui

Mengding Huangya MDHY 30 Sichuan
Mogan Huangya MGHY 30 Zhejiang

Pingyang Huangtang PYHT 30 Zhejiang

2.1.2. Acquisition of Hyperspectral Images of Tea

The near-infrared hyperspectral imaging (NIR-HSI) system was used to acquire hy-
perspectral images of tea samples. The system mainly consists of an image spectrograph
(Imspector V17E, Spectral Imaging Ltd., Oulu, Finland), two 150W fiber optic halogen
lamps (Model 3900, Illumination Technologies Inc., New York, NY, USA), a camera ob-
scura, and mobile platform. The hyperspectral image obtained by this system has a total
of 616 wavelength bands ranging from 908 to 1735 nm. The structure diagram of the
hyperspectral imaging system is shown in Figure 1.

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 16 
 

 

 QMBT from QMQH QMQH 30 Anhui 
 QMBT from HSBT HSBT 30 Anhui 

Green tea  Maofeng from ZYYMF ZYYMF 30 Anhui 
 Maofeng from ZWMF ZWMF 30 Anhui 
 Maofeng from YJYMF YJYMF 30 Anhui 
 Maofeng from GMMF GMMF 30 Anhui 
 Liuan Guapian LAGP 30 Anhui 

Yellow tea Junshan Yinzhen JSYZ 30 Hunan 
 Huoshan Huangya HSHY 30 Anhui 
 Mengding Huangya MDHY 30 Sichuan 
 Mogan Huangya MGHY 30 Zhejiang 
 Pingyang Huangtang PYHT 30 Zhejiang 

2.1.2. Acquisition of Hyperspectral Images of Tea 
The near-infrared hyperspectral imaging (NIR-HSI) system was used to acquire hy-

perspectral images of tea samples. The system mainly consists of an image spectrograph 
(Imspector V17E, Spectral Imaging Ltd., Oulu, Finland), two 150W fiber optic halogen 
lamps (Model 3900, Illumination Technologies Inc., New York, NY, USA), a camera ob-
scura, and mobile platform. The hyperspectral image obtained by this system has a total 
of 616 wavelength bands ranging from 908 to 1735 nm. The structure diagram of the hy-
perspectral imaging system is shown in Figure 1. 

 
Figure 1. The structure diagram of hyperspectral imaging system. 

The preparations before collecting hyperspectral images are as follows: turn on the 
light source for preheating 30 min before the experiment, set the distance between the 
camera and the tea sample to 38.4 cm, set the sample moving speed on the conveyor belt 
to 1 cm/s, and set the exposure time to 20 ms. Set the frame rate to 13 Hz. The tea samples 
were evenly spread in a Petri dish with a diameter of 9 cm × 1 cm. The Petri dish was pre-
built with black rubber with approximately zero reflectivity, so as not to affect the exper-
imental data. Then, open the operation interface of the hyperspectral image acquisition 
software to collect hyperspectral images of the tea samples. Furthermore, the hyperspec-
tral images were white-boarded and dark-current corrected. Finally, the Environment for 
Visualizing Images (ENVI 5.1, ITT visual information solutions, Boulder, CO, USA) was 
used to analyze the spectral features of tea. 

Figure 1. The structure diagram of hyperspectral imaging system.

The preparations before collecting hyperspectral images are as follows: turn on the
light source for preheating 30 min before the experiment, set the distance between the
camera and the tea sample to 38.4 cm, set the sample moving speed on the conveyor
belt to 1 cm/s, and set the exposure time to 20 ms. Set the frame rate to 13 Hz. The
tea samples were evenly spread in a Petri dish with a diameter of 9 cm × 1 cm. The
Petri dish was pre-built with black rubber with approximately zero reflectivity, so as not
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to affect the experimental data. Then, open the operation interface of the hyperspectral
image acquisition software to collect hyperspectral images of the tea samples. Furthermore,
the hyperspectral images were white-boarded and dark-current corrected. Finally, the
Environment for Visualizing Images (ENVI 5.1, ITT visual information solutions, Boulder,
CO, USA) was used to analyze the spectral features of tea.

2.2. Method
2.2.1. Decomposition and Reconstruction of Image Signal by Wavelet

Wavelet transform is a signal time-frequency analysis method, and a common method
is wavelet multi-resolution analysis. When a two-dimensional grayscale image is processed,
a one-dimensional discrete wavelet transform is used to operate the image, two directions
are selected to pass through a filter bank, and the data is reduced by downsampling [38].
That is, the different characteristics of images on various scales are described from the
perspective of space.

Redundant wavelet transform (RWT) is a kind of wavelet transform in which the
decomposition results of signals or images on adjacent scales have redundancy. That is,
the high- and low-frequency information of the signal or image is separated, and finally,
it is decomposed into approximate signals and wavelet surfaces on different frequency
channels. Moreover, the length of the approximation signal and the detail signal after the
signal transformation are the same as the original signal length [39].

The redundant discrete wavelet transform is represented by a filter bank. The output
coefficient obtained after each level of decomposition is twice the input coefficient. The de-
composition formulas of redundant discrete wavelet transform are as Formulas (1) and (2),
and the mathematical expressions for reconstruction are as Formula (3):

cj+1[k] = cj[k] ∗ h[−k] (1)

dj+1[k] = cj[k] ∗ g[−k] (2)

cj+1[k] =
cj[k] ∗ h[k] + dj[k] ∗ g[k]

2
(3)

Among them, h[−k] and g[−k] represent low-pass and high-pass decomposition filters,
respectively, cj and dj represent the coefficients of the low-band and high-band output of
the jth level, ∗ means convolution, the low-pass and high-pass synthesis filters are h[k] and
g[k], respectively. A is the original signal, Aτ is the reconstructed signal.

An image can be viewed as a two-dimensional signal. Applying wavelet theory to
image processing is to use multi-resolution decomposition to decompose the image into
sub-images of different spaces and frequencies, and then encode the coefficients of the
sub-images. At the same time, wavelet transform can better solve the contradiction between
time and frequency resolution, so wavelet transform is very beneficial to the decomposition
and reconstruction of image signals.

2.2.2. Classification Model Based on Improved Lightweight CNN

MobileNet is a lightweight deep neural network based on a depthwise separable
convolution design, which has performed very well in the classification. Among them,
MobileNetV2 introduces an inverted residual and linear bottleneck structure, which makes
the number of network parameters and lower computing costs. The parameters of the
network structure are shown in Table 2.

The MobileNetV2 network includes ordinary convolution (Conv), inverse residual
structure deep separation convolution (Bottleneck), and average pooling (Avgpool). To
enhance the applicability of the network in tea classification and improve the accuracy of
target classification. Based on MobileNetV2 in this study, the following improvements have
been made (as shown in Figure 2 and Table 3). To further reduce computing resources and
save memory space when training the network. Remove the network layer after the 9th
layer, and reduce the number of channels of the convolutional layer from 1280 to 128. The
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three-dimensional feature map was converted into one-dimensional through the Flatten
layer. To better adapt to the problem of tea hyperspectral image classification, SoftMax was
replaced with SVM classifier to improve the generalization ability of the model.

Table 2. Detailed parameters of each layer of CNN (Origin).

Input Operator Channel N Stride Out

224 × 224 × 3 conv2d 32 1 2 112 × 112 × 32
112 × 112 × 32 bottleneck 16 1 1 112 × 112 × 16
112 × 112 × 16 bottleneck 24 2 2 56 × 56 × 24
56 × 56 × 24 bottleneck 32 3 2 28 × 28 × 32
28 × 28 × 32 bottleneck 64 4 2 14 × 14 × 64
14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320
7 × 7 × 320 conv2d 1280 1 1 7 × 7 × 1280

7 × 7 × 1280 avgpool - 1 - 1 × 1 × 1280
1 × 1 × 1280 conv2d 3 1 1 1 × 1 × 3

1 × 1 × 3 softmax 3 1 - 3
N: represents the number of repetitions of the Operator.

Agriculture 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 

14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96 
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160 
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320 
7 × 7 × 320 conv2d 1280 1 1 7 × 7 × 1280 

7 × 7 × 1280 avgpool - 1 - 1 × 1 × 1280 
1 × 1 × 1280 conv2d 3 1 1 1 × 1 × 3 

1 × 1 × 3 softmax 3 1 - 3 
N: represents the number of repetitions of the Operator. 

The MobileNetV2 network includes ordinary convolution (Conv), inverse residual 
structure deep separation convolution (Bottleneck), and average pooling (Avgpool). To 
enhance the applicability of the network in tea classification and improve the accuracy of 
target classification. Based on MobileNetV2 in this study, the following improvements 
have been made (as shown in Figure 2 and Table 3). To further reduce computing re-
sources and save memory space when training the network. Remove the network layer 
after the 9th layer, and reduce the number of channels of the convolutional layer from 
1280 to 128. The three-dimensional feature map was converted into one-dimensional 
through the Flatten layer. To better adapt to the problem of tea hyperspectral image clas-
sification, SoftMax was replaced with SVM classifier to improve the generalization ability 
of the model. 

 
Figure 2. The optimized lightweight CNN. 

Table 3. Detailed parameters of improved lightweight CNN. 

Input Operator Channel N Stride Out 
224 × 224 × 3 conv2d 32 1 2 112 × 112 × 32 

112 × 112 × 32 bottleneck 16 1 1 112 × 112 × 16 
112 × 112 × 16 bottleneck 24 2 2 56 × 56 × 24 

56 × 56 × 24 bottleneck 32 3 2 28 × 28 × 32 
28 × 28 × 32 bottleneck 64 4 2 14 × 14 × 64 
14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96 
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160 
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320 
7 × 7 × 320 conv2d 128 1 1 7 × 7 × 128 
7 × 7 × 128 flatten 6272 1 - 1 × 1 × 6272 

Figure 2. The optimized lightweight CNN.

Table 3. Detailed parameters of improved lightweight CNN.

Input Operator Channel N Stride Out

224 × 224 × 3 conv2d 32 1 2 112 × 112 × 32
112 × 112 × 32 bottleneck 16 1 1 112 × 112 × 16
112 × 112 × 16 bottleneck 24 2 2 56 × 56 × 24
56 × 56 × 24 bottleneck 32 3 2 28 × 28 × 32
28 × 28 × 32 bottleneck 64 4 2 14 × 14 × 64
14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320
7 × 7 × 320 conv2d 128 1 1 7 × 7 × 128
7 × 7 × 128 flatten 6272 1 - 1 × 1 × 6272

1 × 1 × 6272 SVM 3 1 - 3
N: represents the number of repetitions of the Operator.
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2.2.3. Tea Classification Model Based on Optimized L-CNN

The technical route of this research was shown in Figure 3. Firstly, the hyperspectral
images of the tea samples were acquired, the wavelet components corresponding to the
hyperspectral image were extracted by redundant wavelet transform, and the combination
of different wavelet components was used as the input of the deep convolutional neural
network. Secondly, the deep convolutional neural network model undergoes transfer learn-
ing, model training, and parameter optimization to generate an optimized classification
model. Finally, the classification model was tested on the selected tea samples. The specific
steps were as follows: The transfer learning process of this research was mainly realized
by using the improved CNN model pre-trained on the large-scale ImageNet dataset as the
source domain. The trained network parameters were used as the initial parameters for the
training of the tea classification model based on hyperspectral images, and the self-built
data sets (the combination of wavelet coefficients extracted from the tea hyperspectral im-
ages) were used to fine-tune the parameters of the L-CNN model to improve the automatic
tea identification ability.
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The experimental environment of this study is shown in Table 4. The parameters of
the L-CNN were set as follows: the learning rate is 0.0001, the epoch is 50, and the batch
size is 10.

Table 4. Parameters of the experimental environment.

Settings Parameters

CPU Intel (R) Core (TM) i7-8700 CPU @ 3.20G Hz
GPU NVIDIA GeForce GTX 1070 Ti
RAM 16.0 GB

Operating system Win 10_64 bit
MATLAB version MATLAB R2019a
Lab environment Deep Learning Toolbox
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2.2.4. Evaluation Indicator of Classification Model

To accurately evaluate the tea classification model, precision, recall, and accuracy are
used as indicators for model performance evaluation. Precision measures the classification
accuracy of positive samples, recall represents the proportion of correctly classified positive
samples to the total positive samples, and accuracy measures the proportion of all samples
that are accurately classified.

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

accuracy =
TP + TN

TP + TN + FP + FN
(6)

In the classification task, when it is determined that the category of a certain type of
tea is positive, the other categories are negative.

TP means that the predicted category is a positive category and the model judges it as
a positive category; that is, the positive category is judged correctly;

FP means that the predicted category is a positive category and the model judges it to
be a negative category; that is, the judgment of the positive category is wrong;

FN means that when the predicted category is a negative category and the model
judges it as a negative category; that is, the negative category is judged correctly;

TN means that when the predicted category is a negative category and the model
judges it as a positive category, the negative category is judged wrong.

In addition, the ROC (receiver operating characteristic) curve is used to compare
different classification results. The horizontal axis of the ROC curve represents the false-
positive ratio (FPR), and the vertical axis represents the true-positive rate (TPR). The closer
the ROC curve is to the upper left corner, the higher the accuracy of the prediction. TPR
and FPR are defined as shown in Equations (7) and (8).

TPR =
TP

TP + FN
(7)

FPR =
FP

TN + FP
(8)

In addition, the ROC curve is divided into two parts according to the position of the
curve. The area under the curve and the horizontal axis part is called AUC (area under
the roc curve), and the value is between [0, 1]. The closer the AUC is to 1, the better the
classification effect of the model.

To more fully demonstrate the classification effect, a confusion matrix is used to
indicate the classification visualization, which describes the relationship between the true
category attributes of the sample data and the classification results in the form of a matrix.
Suppose that for the classification task of type m pattern, V is the test sample set, the
number of samples is n the number of categories is m, and C = {C1, C2, . . . CL} is the
classifier set. L classifiers are used to test in set V, respectively, to obtain the confusion of
each classifier matrix (confusion matrix) CMk(k = 1, 2, . . . L), the confusion matrix of the k
classifier Ck is expressed as follows:

CMk =


nk

1,1 nk
1,2 . . . nk

1,m
nk

2,1 nk
2,2 . . . nk

2,m
. . . . . . . . . . . .

nk
m,1 nk

m,2 . . . nk
m,m

 (9)

Among them, the element in the i-th row and the j-th column represents the number of
the i-th class recognized as the j-th class by the classifier Ck in the sample. If i = j, it means
that the classifier could correctly identify the number of samples, so diagonal elements
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represent the number of correctly classified by classifier Ck, and off-diagonal elements
represent the number of errors classified by classifier Ck. In the confusion matrix, each
column represents the predicted category, and each row represents the true attribution
category (sample label) of the tea. The total number of columns is equal to the total number
of rows, which is the total number of label categories of the data sample. The larger the
diagonal value of the confusion matrix, the greater the probability that the model is correctly
classified, and the better the model effect.

3. Results
3.1. Hyperspectral Images and Spectral Reflectance of Different Types of Tea

One hundred and fifty grams of each sample was sealed, stored, and sent to the hyper-
spectral laboratory for hyperspectral imaging collection in time. The hyperspectral images
of all samples were acquired using a hyperspectral instrument, which accessories were
reported in the previous research of our team [28]. The self-built data set using the collected
hyperspectral images from 15 teas (as shown in Figure 4) contained 450 hyperspectral
images of three categories of tea, including 150 images of black tea, 150 images of green tea,
and 150 images of yellow tea. The data sets were divided into training set, validation set,
and test set according to the ratio of 7:3:5.

Agriculture 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

of each classifier matrix (confusion matrix) CM ( 1, 2,... )k k L= , the confusion matrix of 

the k  classifier kC  is expressed as follows: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
CM =

... ... ... ...
...

k k k
m

k k k
mk

k k k
m m m m

n n n
n n n

n n n

 
 
 
 
 
    

(9)

Among them, the element in the -thi row and the -thj  column represents the 

number of the -thi class recognized as the -thj  class by the classifier kC  in the sam-

ple. If i j= , it means that the classifier could correctly identify the number of samples, 

so diagonal elements represent the number of correctly classified by classifier kC , and 

off-diagonal elements represent the number of errors classified by classifier kC . In the 
confusion matrix, each column represents the predicted category, and each row represents 
the true attribution category (sample label) of the tea. The total number of columns is equal 
to the total number of rows, which is the total number of label categories of the data sam-
ple. The larger the diagonal value of the confusion matrix, the greater the probability that 
the model is correctly classified, and the better the model effect. 

3. Results 
3.1. Hyperspectral Images and Spectral Reflectance of Different Types of Tea 

One hundred and fifty grams of each sample was sealed, stored, and sent to the hy-
perspectral laboratory for hyperspectral imaging collection in time. The hyperspectral im-
ages of all samples were acquired using a hyperspectral instrument, which accessories 
were reported in the previous research of our team [28]. The self-built data set using the 
collected hyperspectral images from 15 teas (as shown in Figure 4) contained 450 hyper-
spectral images of three categories of tea, including 150 images of black tea, 150 images of 
green tea, and 150 images of yellow tea. The data sets were divided into training set, val-
idation set, and test set according to the ratio of 7:3:5. 

 
Figure 4. Hyperspectral images of three tea categories including black tea, green tea, and yellow tea. Figure 4. Hyperspectral images of three tea categories including black tea, green tea, and yellow tea.

Different parts of the tea samples, such as stems, leaves, and buds, contain significant
differences in the content of substances, so the spectral data between each pixel point is
quite different. To address this issue, 50 regions of interest (ROI) of 20 × 20 pixels were
randomly selected in the sample area. A pixel contains a piece of spectral information, and
the average spectrum of all pixels in the ROI was calculated as the spectral reflectance of a
sample. The original spectrum collection of tea samples is shown in Figure 5.

In Figure 6, the wavelength range is 944–1688 nm, all tea samples had similar trends in
the whole spectral region, most of the reflectance is from 0.4–0.7, but the size of absorbance
is different. In particular, in the three absorption bands located at 1200, 1380, and 1450 nm,
the absorption peak at 1200 nm is attributed to the C-H second overtone; the peak bands
near 1400 nm are attributed to the O-H vibration. It can be seen that black tea, green tea,
and yellow tea have similar spectral features. It is difficult to distinguish different types
of tea based on spectral information alone. To effectively identify different kinds of tea,
further analysis was carried out according to the different spatial information of tea.
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3.2. Multi-Component Combination of Wavelet Decomposition of Hyperspectral Image of Tea

To extract the wavelet coefficient combination information of the hyperspectral image
of tea. First, from the full-band hyperspectral image, the wavelet function db2 was used
to perform the redundant discrete wavelet transform (RDWT) in the horizontal direction
to obtain the high-frequency component and the low-frequency component, then the
two components in the vertical direction were respectively performed RDWT. The above
process realized the two-dimensional discrete wavelet transform of the hyperspectral image.
Therefore, the approximate component LL, the horizontal component HL, the vertical
component LH, and the diagonal component HH are obtained from the hyperspectral image
of the tea based on the wavelet transform. Three of the four components are selected to form
a three-channel data as the input of the L-CNN. According to the results of multiple tests, the
five combinations performed well, as shown in Figure 6. Figure 6a shows the combination
of the three high-frequency components LH, HL, and HH. Figure 6b shows the combination
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of the low-frequency component LL and the high-frequency components HH and HH.
Figure 6c shows a combination of low-frequency component LL, high-frequency component
LH, and HL. Figure 6d shows the combination of two low-frequency components LL
and one high-frequency component HH. Figure 6e shows the combination of three low-
frequency components LL. From the visualization map corresponding to the five wavelet
combinations of the tea hyperspectral image in Figure 6, it could be seen that the features
displayed by the different combinations were still significantly different.

3.3. Tea Classification Results Based on the L-CNN-SVM Model

Different combinations based on wavelet components were used as the input of the
three channels of the CNN model, and the classification accuracy is shown in Table 5. It
could be seen from Table 5 that the classification accuracy was 0.940–1.000 for black tea,
0.923–0.980 for green tea, and 0.918–0.980 for yellow tea. The classification effect based on
the wavelet component was better than that of the original hyperspectral image. Among
the five combinations, the classification result based on LL + HL + LH was the best, with an
accuracy of 0.987, and only 0.013% of tea samples were misidentified. The possible reason
was that the three wavelet components represent wavelet information from different angles,
which expanded the expressive ability of tea features. In addition, the contribution of the
HH component to tea classification was relatively low.

Table 5. The accuracy of tea classification based on the combination of different wavelet components.

Input Data Kappa Coefficient Overall Black Tea Green Tea Yellow Tea

Original 0.90 0.933 0.940 0.958 0.904
LH + HL + HH 0.91 0.940 0.980 0.923 0.918
LL + HH + HH 0.93 0.953 0.980 0.941 0.939
LL + LL + HH 0.96 0.973 0.980 0.962 0.980
LL + HL + LH 0.98 0.987 1.000 0.980 0.980
LL + LL + LL 0.95 0.967 1.000 0.980 0.925

In addition, the kappa coefficients [40] were obtained by using reconstructed figures
based on different wavelet components. It could be seen from Table 5 that the Kappa coefficient
based on the LL + HL + LH component was the highest, reaching 0.98, which was 8.2% higher
than that of the original hyperspectral image, 7.1% than that of LH + HL + HH, 5.1% than that
of LL + HH + HH, 2% than that of LL + LL + HH, and 3.1% than that of LL + LL + LL.

To better display the results of tea classification, the confusion matrix was used to analyze
the classification results. In the confusion matrix, the y-axis represented the real tea category,
and the x-axis represented the result of the model classification. A total of 150 images were used
as tests, including 50 each for black tea, green tea, and yellow tea. As shown in Figure 7, the
number of misclassifications of black tea, green tea, and yellow tea using wavelet components
did not exceed 5. Black tea, green tea, and yellow tea were misclassified as 3, 4, and 3 for the
original hyperspectral image, 2, 3, and 5 for LH + HL + HH, 1, 2, and 4 for LL + HH + HH,
2, 0, and 0 for LL + LL + HH, 0, 1, and 1 for LL + LH + HL, 2, 2, and 1 for LL + LL + LL. It
was easy to see that the tea classification results of the CNN model based on the combined
information of the wavelet components performed well. Although there were some errors in
the identification of individual figures, most of the tea samples were correctly identified.
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4. Discussion
4.1. Compare Tea Classification Based on Different Wavelet Component Combinations

Wavelet transform has obvious advantages in local time-frequency analysis. It could
decompose the hyperspectral image of tea leaves with non-stationary signals into high-
frequency components and low-frequency components. Although Fourier transform or
contourlet transform is also a common method in resolution analysis [41], However, Fourier
transform lacks time domain processing and has a very bad effect on non-stationary
information. In addition, the contour of the image is transformed with more redundancy,
which makes it difficult to achieve perfect image reconstruction.

Two-dimensional wavelet transform could be used to characterize the target object
in the image [42]. Li et al. used the texture features obtained by wavelet transform to
classify the famous green tea in China [43]. Bakhshipour et al. extracted wavelet features to
successfully classify black tea [44]. Nevertheless, the above research is limited to shallow
features and lacks wavelet semantic features. Wulandari et al. combined wavelet transform
and a deep learning model to improve classification accuracy [45], which demonstrated the
effectiveness of advanced wavelet semantic features. Therefore, the classification accuracy
of this study using the combination of LL + LH + HL is 98.7%, which was 5.4% higher than
that of the original hyperspectral image, and was higher than that of LH + HL + HH, LL +
HH + HH, LL + LL + HH, and LL + LL + LL with 4.7%, 3.4%, 1.4%, and 2.0%, respectively. It
was because LL + LH + HL included comprehensive wavelet information. On the one hand,
the interference information was removed after wavelet transform, which could realize the
extraction of multi-angle features. On the other hand, multi-angle wavelet features were
used to extract high-level semantic features through deep learning models, which was more
conducive to tea identification.

4.2. Compare Classification Results Based on Different Deep Learning Models

To evaluate the performance of the tea classification model proposed in this study,
our method was compared with the typical classification models AlexNet and MobileNet
v2 [46,47]. It could be seen from Table 6 that the classification accuracy based on our
proposed method was 5.47% and 1.42% higher than that of AlexNet and MobileNet v2,
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respectively. In addition, SVM was used to improve the classification addition method.
Compared with the classification methods of random forest (RF), K-nearest neighbor (KNN),
and adaptive boosting (AdaBoost), the experimental results showed that the classification
accuracy of our proposed method was improved by 0.71%, 2.03%, and 2.74% overall.
In short, the experiment showed that the combination of SVM and lightweight model
improved not only the classification accuracy of the model but also the generalization
ability of the model. Therefore, the proposed model had a better classification effect on tea
classification.

Table 6. Comparison of classification accuracy of different methods.

Method Overall Black Tea Green Tea Yellow Tea

Our method 0.987 1.000 0.980 0.980
MobileNet v2 + RF 0.980 0.980 0.980 0.980

MobileNet v2 + KNN 0.967 0.960 0.980 0.960
MobileNet v2 + AdaBoost 0.960 0.960 0.940 0.980

MobileNet v2 0.973 1.000 0.960 0.960
AlexNet 0.933 0.960 1.000 0.860

4.3. Different Network Visualization Based on Grad-CAM

To visually show the potential recognition capabilities of different models, a color
visualization method was applied: gradient weighted class activation mapping (Grad-
CAM) technology, which embedded the Grad-CAM layer into the convolutional neural
network, thereby making the proposed method more easily observed and explained. Grad-
CAM was used to generate activation heat maps for the classification of different tea
samples, as shown in Figure 8. The first, third, and fifth rows of Figure 8a represented the
original hyperspectral images of black tea, green tea, and yellow tea, and rows 2, 4, and 6
of Figure 8a represented the combination of wavelet components LL + LH + HL extracted
from the hyperspectral images of black tea, green tea, and yellow tea. It could be seen
from Figure 8 that the activated regions that are important for the classification result in
different input images are different. Among them, the darker the color indicates that the
pixel feature of the corresponding position in the original image had a greater impact on
the classification result.

From the second, fourth, and sixth rows of Figure 8, it was found that the stronger
regions in the activated heatmap of LL+LH+HL for tea identification were wider than
those of the original hyperspectral image. In addition, it was found from Figure 8b,d,f
that our proposed method for feature positioning in tea identification could stably find the
relevant target area. Compared with the activated heatmaps of AlexNet and Inception v3,
our method could locate key areas significantly.
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Figure 8. Samples visualization based on Grad-CAM. (a) represents the original hyperspectral
image and wavelet component LL+LH+HL; (b,d,f) represent the activation heatmaps of tea sample
recognition based on the AlexNet model, Inception v3 and our proposed method; (c,e,g) represent
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5. Conclusions

To improve the accuracy of traditional classification methods for tea based on hy-
perspectral images, the combined information of different components decomposed by
redundant discrete wavelet transform was used to classify based on the lightweight CNN
model. The experimental results showed that the combination of wavelet components
LL+LH+HL based on the hyperspectral image of tea had the best classification effect, with
an accuracy of 98.7%. In conclusion, the method of time-frequency signal decomposition
and reconstruction based on hyperspectral images proposed in this study provided a new
idea for tea identification, which will provide technical reference for identifying the grade
and quality of tea.

Author Contributions: Methodology, B.Y. and B.L.; software, Q.C. and B.L.; data curation, Y.L.;
writing, Q.C. and B.Y.; writing—review and editing, B.Y. and J.N. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Major Science and Technology Projects in Anhui Province
(202203a06020007), the Opening Project of Key Laboratory of Power Electronics and Motion Control
of Anhui Higher Education Institutions (PEMC2001), the Open Fund of State Key Laboratory of Tea
Plant Biology and Utilization (SKLTOF20200116).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Agriculture 2022, 12, 1085 15 of 16

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation.

Conflicts of Interest: All the authors declare no conflict of interest.

References
1. Sereshti, H.; Samadi, S.; Jalali-Heravi, M. Determination of volatile components of green, black, oolong and white tea by optimized

ultrasound-assisted extraction-dispersive liquid–liquid microextraction coupled with gas chromatography. J. Chromatogr. A 2013,
1280, 1–8. [CrossRef] [PubMed]

2. Yohei, S.; Masahito, S. Possible mechanisms of green tea and its constituents against cancer. Molecules 2018, 23, 2284.
3. Kujawska, M.; Ewertowska, M.; Adamska, T.; Jodynis-Liebert, J.; Ignatowicz, E.; Gramza-Michalowska, A. Protective effect of

yellow tea extract on N-nitrosodiethylamine-induced liver carcinogenesis. Pharm. Biol. 2016, 54, 1891–1900. [CrossRef] [PubMed]
4. Kujawska, M.; Ewertowska, M.; Ignatowicz, E.; Adamska, T.; Szaefer, H.; Gramza-Michalowska, A.; Jodynis-Liebert, J. Evaluation

of safety and antioxidant activity of yellow tea (Camellia sinensis) Extract for Application in Food. J. Med. Food 2016, 19, 330–336.
[CrossRef]

5. Adhikary, B.; Yadav, S.K.; Roy, K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Black tea and theaflavins assist healing of
indomethacin-induced gastric ulceration in mice by antioxidative action. Evid. Based Complement. Altern. Med. 2011, 8,
546560. [CrossRef]

6. Qin, Z.H.; Pang, X.L.; Dong, C.; Cheng, H.; Hu, X.S.; Wu, J.H. Evaluation of Chinese tea by the electronic nose and gas
chromatography–mass spectrometry: Correlation with sensory properties and classification according to grade level. Food Res.
Int. 2013, 53, 864–874. [CrossRef]

7. Li, X.L.; Zhang, Y.Y.; He, Y. Study on Detection of Talcum Powder in Green Tea Based on Fourier Transform Infrared (FTIR)
Transmission Spectroscopy. Spectrosc. Spectr. Anal. 2017, 37, 1081–1085.

8. Hong, Z.L.; Ze, J.L.; Hua, J.L.; Shu, J.S.; Feng, N.C.; Kai, H.W.; Da, Z.M. Robust Classification of Tea Based on Multi-Channel
LED-Induced Fluorescence and a Convolutional Neural Network. Sensors 2019, 19, 4687.

9. Bhattacharya, N.A.; Tudu, B.B.; Jana, A.A.; Ghosh, D.A.; Bandhopadhyaya, R.B.; Bhuyan, M.C. Preemptive identification of
optimum fermentation time for black tea using electronic nose. Sens. Actuators B Chem. 2008, 131, 110–116. [CrossRef]

10. Chen, Q.S.; Zhao, J.W.; Chen, Z.; Lin, H.; Zhao, D.A. Discrimination of green tea quality using the electronic nose technique
and the human panel test, comparison of linear and nonlinear classification tools. Sens. Actuators B Chem. 2011, 159, 294–300.
[CrossRef]

11. Yu, H.C.; Wang, Y.W.; Wang, J. Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation
Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals. Sensors 2009,
9, 8073–8082. [CrossRef] [PubMed]

12. Sinija, V.R.; Mishra, H.N. Fuzzy Analysis of Sensory Data for Quality Evaluation and Ranking of Instant Green Tea Powder and
Granules. Food Bioprocess Technol. 2011, 4, 408–416. [CrossRef]

13. Bhattacharyya, N.; Bandyopadhyay, R.; Bhuyan, M.; Tudu, B.; Ghosh, D.; Jana, A. Electronic Nose for Black Tea Classification and
Correlation of Measurements with “Tea Taster” Marks. IEEE Trans. Instrum. Meas. 2008, 57, 1313–1321. [CrossRef]

14. Yu, H.C.; Wang, J.; Yao, C.; Zhang, H.M.; Yu, Y. Quality grade identification of green tea using E-nose by CA and ANN. LWT—Food
Sci. Technol. 2008, 41, 1268–1273. [CrossRef]

15. Laddi, A.; Prakash, N.R.; Sharma, S.; Kumar, A. Discrimination analysis of Indian tea varieties based upon color under optimum
illumination. J. Food Meas. Charact. 2013, 7, 60–65. [CrossRef]

16. Chen, Q.; Zhao, J.; Cai, J. Identification of tea varieties using computer vision. Trans. ASABE 2008, 51, 623–628. [CrossRef]
17. Kelman, T.; Ren, J.C.; Marshall, S. Effective classification of Chinese tea samples in hyperspectral imaging. J. Artif. Intell. Res.

2013, 2, 87. [CrossRef]
18. Zhao, J.W.; Chen, Q.S.; Cai, J.R.; Ouyang, Q. Automated tea quality classification by hyperspectral imaging. Appl. Opt. 2009, 48,

3557–3564. [CrossRef]
19. Tu, Y.X.; Bian, M.; Wan, Y.K.; Fei, T. Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery

obtained by UAV. PeerJ 2018, 6, e4858. [CrossRef]
20. Sohara, Y.; Ryu, C.; Suguri, M.; Park, S.B.; Kishino, S. Estimation of catechins concentration of green tea using hyperspectral

remote sensing. IFAC Proc. Vol. 2010, 43, 172–177. [CrossRef]
21. Yang, B.H.; Gao, Y.; Li, H.M.; Ye, S.B.; He, H.X.; Xie, S.R. Rapid prediction of yellow tea free amino acids with hyperspectral

images. PLoS ONE 2019, 14, e0210084. [CrossRef] [PubMed]
22. Ahmad, H.; Sun, J.; Nirere, A.; Shaheen, N.; Zhou, X.; Yao, K.S. Classification of tea varieties based on fluorescence hyperspectral

image technology and ABC-SVM algorithm. J. Food Process. Preserv. 2021, 45, e15241. [CrossRef]
23. Ning, J.M.; Sun, J.J.; Li, S.H.; Sheng, M.G.; Zhang, Z.Z. Classification of five Chinese tea categories with different fermentation

degrees using visible and near infrared hyperspectral imaging. Int. J. Food Prop. 2017, 20, 1515–1522. [CrossRef]
24. Sun, J.; Tang, K.; Wu, X.H.; Dai, C.X.; Chen, Y.; Shen, J.F. Nondestructive identification of green tea varieties based on hyperspectral

imaging technology. J. Food Process Eng. 2018, 41, e12800. [CrossRef]

http://doi.org/10.1016/j.chroma.2013.01.029
http://www.ncbi.nlm.nih.gov/pubmed/23375769
http://doi.org/10.3109/13880209.2015.1137600
http://www.ncbi.nlm.nih.gov/pubmed/26839940
http://doi.org/10.1089/jmf.2015.0114
http://doi.org/10.1155/2011/546560
http://doi.org/10.1016/j.foodres.2013.02.005
http://doi.org/10.1016/j.snb.2007.12.032
http://doi.org/10.1016/j.snb.2011.07.009
http://doi.org/10.3390/s91008073
http://www.ncbi.nlm.nih.gov/pubmed/22408494
http://doi.org/10.1007/s11947-008-0163-x
http://doi.org/10.1109/TIM.2008.917189
http://doi.org/10.1016/j.lwt.2007.08.018
http://doi.org/10.1007/s11694-013-9139-2
http://doi.org/10.13031/2013.24363
http://doi.org/10.5430/air.v2n4p87
http://doi.org/10.1364/AO.48.003557
http://doi.org/10.7717/peerj.4858
http://doi.org/10.3182/20101206-3-JP-3009.00030
http://doi.org/10.1371/journal.pone.0210084
http://www.ncbi.nlm.nih.gov/pubmed/30785888
http://doi.org/10.1111/jfpp.15241
http://doi.org/10.1080/10942912.2016.1233115
http://doi.org/10.1111/jfpe.12800


Agriculture 2022, 12, 1085 16 of 16

25. Yu, Y.J.; Wang, Q.Q.; Wang, B.Y.; Chen, J.; Sun, W.J. Identification of tieguanyin tea grades based on hyperspectral technology.
Food Sci. 2014, 35, 159–163.

26. Ge, X.; Sun, J.; Lu, B.; Chen, Q.S.; Xun, W.; Jin, Y.T. Classification of oolong tea varieties based on hyperspectral imaging technology
and BOSS-LightGBM model. J. Food Process Eng. 2019, 42, e13289. [CrossRef]

27. Matsuyama, E.; Tsai, D.Y.; Lee, Y.; Tsurumaki, M.; Takahashi, N.; Watanabe, H.; Chen, H.M. A modified undecimated discrete
wavelet transform based approach to mammographic image denoising. J. Digit. Imaging 2013, 26, 748–758. [CrossRef]

28. Yang, B.H.; Qi, L.; Wang, M.X.; Hussain, S.; Wang, H.B.; Wang, B.; Ning, J.M. Cross-category tea polyphenols evaluation model
based on feature fusion of electronic nose and hyperspectral imagery. Sensors 2020, 20, 50. [CrossRef]

29. Wu, X.; Yang, J.; Wang, S. Tea category identification based on optimal wavelet entropy and weighted k-nearest neighbors
algorithm. J. Multimed. Tools Appl. 2018, 77, 3745–3759. [CrossRef]

30. Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Application of decision trees and fuzzy inference system for quality classification
and modeling of black and green tea based on visual features. J. Food Meas. Charact. 2020, 14, 1402–1416. [CrossRef]

31. Borah, S.; Hines, E.; Bhuyan, M. Wavelet transform based image texture analysis for size estimation applied to the sorting of tea
granules. J. Food Eng. 2007, 79, 629–639. [CrossRef]

32. Zhang, Y.D.; Muhammad, K.; Tang, C. Twelve-layer deep convolutional neural network with stochastic pooling for tea category
classification on GPU platform. J. Multimed. Tools Appl. 2018, 77, 22821–22839. [CrossRef]

33. Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks.
J. Plant Methods 2018, 14, 100. [CrossRef] [PubMed]

34. El-Latif, E.; Taha, A.; Zayed, H.H. A passive approach for detecting image splicing based on deep learning and wavelet transform.
J. Arab. J. Sci. Eng. 2020, 45, 3379–3386. [CrossRef]

35. Qi, Z.; Jung, C.; Xie, B. Subband Adaptive Image Deblocking Using Wavelet Based Convolutional Neural Networks. IEEE Access
2021, 9, 62593–62601. [CrossRef]

36. Wang, Z.; Li, X.; Duan, H.; Zhang, X.; Wang, H. Multifocus image fusion using convolutional neural networks in the discrete
wavelet transform domain. Multimed. Tools Appl. 2019, 78, 34483–34512. [CrossRef]

37. Masquelin, A.H.; Cheney, N.; Kinsey, C.M.; Bates, J.H.T. Wavelet decomposition facilitates training on small datasets for medical
image classification by deep learning. J. Histochem. Cell Biol. 2021, 155, 309–317. [CrossRef]

38. Coffey, M.A.; Etter, D.M. Image coding with the wavelet transform. In Proceedings of the ISCAS’95-International Symposium on
Circuits and Systems, Seattle, WA, USA, 30 April–3 May 1995; pp. 1110–1113.

39. Arrais, E.; de Medeiros Valentim, R.A.; Brandão, G.B. Real-time premature ventricular contractions detection based on Redundant
Discrete Wavelet Transform. Res. Biomed. Eng. 2018, 34, 187–197. [CrossRef]

40. Borana, S.; Yadav, S. Comparison of model validation techniques for land cover dynamics in Jodhpur City. Int. J. Emerg. Trends
Technol. Comput. Sci. 2017, 6, 215–219.

41. Zhao, J.; Jiang, H.; Di, J. Recording and reconstruction of a color holographic image by using digital lensless fourier transform
holography. Opt. Express 2008, 16, 2514–2519. [CrossRef]

42. Lee, M.C.; Pun, C.M. Texture Classification Using Dominant Wavelet Packet Energy Features. In Proceedings of the 4th IEEE
Southwest Symposium on Image Analysis and Interpretation, Austin, TX, USA, 2–4 April 2000; pp. 301–304.

43. Li, X.L.; Nie, P.C.; Qiu, Z.J.; He, Y. Using wavelet transform and multi-class least square support vector machine in multi-spectral
imaging classification of Chinese famous tea. Expert Syst. Appl. 2011, 38, 11149–11159. [CrossRef]

44. Bakhshipour, A.; Sanaeifar, A.; Payman, S.H.; Guardia, M. Evaluation of data mining strategies for classification of black tea
based on image-based features. Food Anal. Methods 2018, 11, 1041–1050. [CrossRef]

45. Wulandari, M.; Basari; Gunawan, D. Evaluation of wavelet transform preprocessing with deep learning aimed at palm vein
recognition application. AIP Conf. Proc. 2019, 2139, 050005.

46. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

47. Kim, H.; Chung, Y. Improved Handwritten Hangeul Recognition using Deep Learning based on GoogLenet. J. Korea Contents
Assoc. 2018, 18, 495–502.

http://doi.org/10.1111/jfpe.13289
http://doi.org/10.1007/s10278-012-9555-6
http://doi.org/10.3390/s20010050
http://doi.org/10.1007/s11042-016-3931-z
http://doi.org/10.1007/s11694-020-00390-8
http://doi.org/10.1016/j.jfoodeng.2006.02.022
http://doi.org/10.1007/s11042-018-5765-3
http://doi.org/10.1186/s13007-018-0366-8
http://www.ncbi.nlm.nih.gov/pubmed/30459822
http://doi.org/10.1007/s13369-020-04401-0
http://doi.org/10.1109/ACCESS.2021.3073202
http://doi.org/10.1007/s11042-019-08070-6
http://doi.org/10.1007/s00418-020-01961-y
http://doi.org/10.1590/2446-4740.01618
http://doi.org/10.1364/OE.16.002514
http://doi.org/10.1016/j.eswa.2011.02.160
http://doi.org/10.1007/s12161-017-1075-z
http://doi.org/10.1145/3065386

	Introduction 
	Materials and Methods 
	Sample Collection and Data Set Construction 
	Collection of Tea Samples 
	Acquisition of Hyperspectral Images of Tea 

	Method 
	Decomposition and Reconstruction of Image Signal by Wavelet 
	Classification Model Based on Improved Lightweight CNN 
	Tea Classification Model Based on Optimized L-CNN 
	Evaluation Indicator of Classification Model 


	Results 
	Hyperspectral Images and Spectral Reflectance of Different Types of Tea 
	Multi-Component Combination of Wavelet Decomposition of Hyperspectral Image of Tea 
	Tea Classification Results Based on the L-CNN-SVM Model 

	Discussion 
	Compare Tea Classification Based on Different Wavelet Component Combinations 
	Compare Classification Results Based on Different Deep Learning Models 
	Different Network Visualization Based on Grad-CAM 

	Conclusions 
	References

