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Abstract: As consumer-grade depth sensors provide an efficient and low-cost way to obtain point
cloud data, an increasing number of applications regarding the acquisition and processing of livestock
point clouds have been proposed. Curve skeletons are abstract representations of 3D data, and they
have great potential for the analysis and understanding of livestock point clouds. Articulated skeleton
extraction has been extensively studied on 2D and 3D data. Nevertheless, robust and accurate skeleton
extraction from point set sequences captured by consumer-grade depth cameras remains challenging
since such data are often corrupted by substantial noise and outliers. Additionally, few approaches
have been proposed to overcome this problem. In this paper, we present a novel curve skeleton
extraction method for point clouds of four-legged animals. First, the 2D top view of the livestock was
constructed using the concave hull algorithm. The livestock data were divided into the left and right
sides along the bilateral symmetry plane of the livestock. Then, the corresponding 2D side views
were constructed. Second, discrete skeleton evolution (DSE) was utilized to extract the skeletons from
those 2D views. Finally, we divided the extracted skeletons into torso branches and leg branches.
We translated each leg skeleton point to the border of the nearest banded point cluster and then
moved it to the approximate centre of the leg. The torso skeleton points were calculated according
to their positions on the side view and top view. Extensive experiments show that quality curve
skeletons can be extracted from many livestock species. Additionally, we compared our method
with representative skeleton extraction approaches, and the results show that our method performs
better in avoiding topological errors caused by the shape characteristics of livestock. Furthermore,
we demonstrated the effectiveness of our extracted skeleton in detecting frames containing pigs with
correct postures from the point cloud stream.

Keywords: curve skeleton; posture; pig; point cloud; precision livestock farming

1. Introduction

With consumer-grade depth sensors currently applied in farm environments [1,2],
point clouds, a type of 3D data structure, show many advantages for body measurement
that traditional 2D pixel data do not possess [3,4]. An increasing number of studies on
the scanning and processing of livestock point cloud data have been developed [5–10].
The 3D scanning systems for acquiring the point cloud streams of livestock body surfaces
from complex farm environments have been implemented in different studies [11–14].
Livestock body measurement and lameness detection [15,16] can be further investigated
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based on these kinds of systems. However, for tasks that utilize only some of the properties
of the original shape of the animal, storing and processing whole livestock body surface
datasets is unnecessary. Using traits to estimate body measurements has appeared in many
studies [17–21].

Skeletons, as abstract representations that jointly describe the geometry, topology,
and symmetry properties of a shape in compact and intuitive ways, are beneficial in
modelling and animation applications [22]. Choosing frames that contain suitable postures
for animal body measurement can be implemented efficiently with the assistance of the
skeleton. Numerous skeleton extraction algorithms have been proposed. Numerous
methods of extracting skeletons from 2D shapes have been extensively investigated, and
these methods lead to satisfactory results. Bai et al. proposed robust methods [23,24]
for pruning redundant branches, and these are used as part of our algorithm. Skeleton
extraction algorithms for 3D shapes are more time consuming than 2D approaches due to
the highly complex spatial relationships in 3D data. Skeletons of 3D shapes can be roughly
divided into surface skeletons and curve skeletons. Curve skeletons of tubular shapes with
local, axial, circular cross-sections can be defined as 1D structures that, at least, preserve
the original shape topology [22].

Tagliasacchi [25] proposed a mean curvature skeleton for 3D mesh data. However,
approaches such as this [25,26], which are based on mesh contractions, are applied to
watertight data. In farm environments, it is difficult to obtain such high-quality point
clouds due to occlusion on the inside of the animal body and missing data[5,7]. The most
feasible methods are those of [27,28] because these can directly extract a skeleton from an
incomplete point cloud. They calculate skeleton points from local point sets as branches
and then connect various branches to form the curve skeleton. Skeletons extracted from
these methods can be applied in various applications, such as shape matching, deformation,
and retrieval [29,30]. The calculation of the rotational symmetry axis proposed in [27]
relies on a cylindrical shape prior and accurate point normals. The L1-median skeleton
approach [28] is a representative skeletonization method that can directly project point
samples onto their local centres without building a point connectivity or estimating point
normals. However, different branches of livestock point clouds calculated by the L1-median
approach need to be extracted using different parameters, making the process unstable
and time consuming. The skeleton transfer method proposed by Seylan et al. [31] avoids
the time losses incurred by extracting all the skeletons from a sequence and finds the
correspondence between the curve skeletons of each frame. However, the skeleton source
that is used for the transfer still needs to be extracted by a skeleton extraction method.
Point2skeleton [32] is a unsupervised skeleton extraction method which can learn skeletal
representations from point clouds. These two methods [28,32] can be implemented on
point clouds of generic shapes (including livestock) and will therefore be compared with
our method in this paper.

Common skeleton extraction methods are designed for a general shape, lacking the
priors of topology. Therefore, a top-down design is most suitable for livestock point
clouds. Knowing that most livestock have fixed topologies and symmetric structures, the
speed and robustness of the extraction approaches can be improved. There are already
some studies [33–35] utilizing prior knowledge about human structures to estimate joint
positions or calculate the skeletons of the original shapes. Barros [34] define a skeleton
model and fit the skeleton to its proper corresponding body parts. Li [35] added length
conservation and symmetry constraints to improve the accuracy of the extracted skeleton.
The skeleton extraction approach for plants has also been proposed in the field of plant
phenotyping [36,37]. However, there are no studies focusing on a skeleton extraction
method specifically for livestock.

In this paper, we propose a novel method that utilizes an existing 2D skeleton extrac-
tion method and the priors of livestock to extract the curve skeletons of livestock. Since
the skeleton is calculated according to the contour of a projected point cloud, the time-
consuming process of calculating a large number of point clouds is avoided. According



Agriculture 2022, 12, 998 3 of 19

to [38], without motion-related cues, the skeleton extracted by general methods [27,28,39]
is the abstract shape of a single static model and cannot be applied to other applications.
The proposed method relies on pose normalization [40], and the extracted curve skeleton
can be mapped to the same coordinate system. Additionally, our extracted skeleton is
divided into multiple branches, including four leg branches and a torso branch. We sort
the skeleton points on each branch by their spatial relationships, and the target skeleton
points of a specific branch are retrieved according to its approximate position. The resulting
skeleton has excellent potential for the detection of body measurement landmarks and
motion-related tasks, such as lameness detection. The main contributions of this paper are
as follows:

The prior knowledge of animal body is introduced into animal skeleton estimation
with an original spatial-relationship branch classification. A novel curve skeleton extraction
method for four-legged livestock is proposed. In comparison with the skeleton extraction
approaches [28,32], the proposed algorithm performs robustly and efficiently on incomplete
livestock point cloud data. Based on the extracted skeleton, a method of evaluating the
correct posture [6] for given body measurements is proposed.

2. Materials and Methods
2.1. Experimental Data

The experimental data consist of datasets scanned in farm environments and a syn-
thetic dataset of other species. The first dataset contains point clouds of live pigs in the
real world, scanned from the ShangDong WeiHai swine-breeding centre of DA BEI NONG
GROUP, with ages ranging from 130 to 220 days. These pigs have long bodies and short
hair, with heights between 52 and 66 centimetres(cm) and lengths varying from 80.5 to
104 centimetres(cm). Twenty Landrace pig sequences were randomly chosen to make
up the real-world point cloud dataset, and each sequence contained 10 pig point clouds
with different postures. We used the prototype scanning system [6], which consists of two
calibrated Xtion Pro Live sensors. The two sensors from two different viewpoints can cover
the entire body surface of livestock. Live 3D point cloud sequences were captured by these
two sensors simultaneously. The frame rate is about 4 FPS(Frames Per Second). Figure
1 shows a raw scanned pig. A total of 200 point clouds compose our first dataset. These
pig data were scanned in a pig house, and the obtained point clouds contain pigs, floors,
and farm facilities. The pig being scanned was protected from direct sunlight during the
data collection process. Although the point cloud quality changed slightly with distance,
the effect of the distance from the Xtion Pro sensor to the pigs was not investigated. The
scanning distance ranges from 0.8 to 1.6 m. The average point spacing of these point clouds
r is set to 0.005 m.

The synthetic dataset containing animal point clouds of other species, including 3 pigs,
2 horses, 3 cows, 2 hippos, 2 rhinos, and 2 water buffalos. Our data has many features.
First of all, the data are collected by Xtion Pro. This consumer grade depth sensor ensures
the low cost of data acquisition, but there are some noises in the data set, which can
test the robustness of our method. Secondly, data acquisition is not affected by lighting
conditions. Finally, the data contains pig bodies with different postures photographed
from different angles and distances. This variability can enable us to design methods with
stronger generalization ability. We use these data to verify the applicability of our method
to different species of four-legged animals. There are differences in size between these
datasets, and we normalize the data size by scaling its bounding box. Our experiments are
implemented on the data after pose normalization.
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Figure 1. The visualization of a raw scanned pig.

2.2. Livestock Data Pre-Processing

To design the algorithm and indicate the applicable data range, some assumptions
about the input 3D animal data need to be stated in advance. We apply the assumptions
about data acquisition and normalization proposed in [5,40]. We assume that the posture
of the animal being scanned is “standing”. The shape of an animal is mainly composed
of its head, body, and limbs, indicating that the topological structure of applicable animal
data is fixed. Additionally, to make different body parts of the livestock distinguishable,
some special postures should be avoided as much as possible. For example, the animal
completely bends its head against its legs or the legs on different sides of the body are
crossed. More assumptions are detailed in [5,40].

A rigorous description of the technical background point cloud processing is available
in [41]. Here, we briefly outline the pre-processing pipeline, which enables this work to be
reproducible. First, we needed to extract livestock from the background of the point cloud.
We detected the ground plane by the random sample consensus (RANSAC) algorithm [42]
and removed it. Once we performed this operation, the livestock were spatially separated
from other data in the point cloud of the scene. We then used region growing to obtain a
set of clusters. As the raw scanned data mainly consisted of one livestock standing on a
planar ground with possible components of other livestock facilities, we could infer that the
livestock data were the largest cluster. After we extracted the livestock from the raw scanned
data, each livestock was in an arbitrary orientation and position in three-dimensional space.
Then, we applied the pose normalization algorithm to align the segmented livestock with
the canonical coordinate system (CCS) [40].

• The origin of the CCS is set as the centroid of the livestock.
• The Z-axis is perpendicular to the bilateral symmetry plane, and its positive side

points to the right side of the body.
• The Y-axis is perpendicular to the ground plane, and its positive direction points to

the dorsal of the livestock.
• The X-axis is perpendicular to the plane that consists of the Z-axis and Y-axis, and its

positive direction goes from the origin of the CCS to the head of the livestock.

The bilateral symmetry plane of livestock was estimated by using a voting scheme.
Specifically, we pruned a point set from the body part roughly located on the same hori-
zontal plane. A pair of points in the pruned point set stand for a vote. We chose a set of
one-to-many samples from the pruned point clouds, applied the global symmetric transfor-
mations induced by these samples, and estimated the bilateral symmetry plane based on the
majority of votes. The y-axis was determined by the normal vector of the detected ground
plane. The forward direction of the x-axis was identified using the application-specific
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geometric features of livestock. After preparing all the components above, we estimated a
3D rigid alignment for performing pose normalization on the livestock (for more details
about segmentation and pose normalization, please refer to [6,40]). Figure 2 shows a pig
registered in the CCS.

Figure 2. The visualization of a pig registered in the canonical coordinate system (CCS).

2.3. Curve Skeleton Extraction

Bilateral symmetry planes are almost universal among animals, and they provide a
special perspective for analysing the topological structures of livestock. On a four-legged
livestock with fixed topology, the legs are located on both sides of the symmetry plane,
and the torso skeleton points are distributed near the symmetry plane. For each half
of the livestock data (divided by the symmetry plane), we observed that the contour of
its projection on the symmetry plane effectively represents the shape of livestock. The
processing pipeline for skeleton extraction is shown in Figure 3. The first step of our curve
skeleton extraction method was the definition of the side 2D views for each half of the
livestock. Then, the side views of the skeleton were extracted using the discrete skeleton
evolution (DSE) algorithm. The extracted skeleton was divided into leg branches and torso
branches. For the torso skeleton point, we combined the side views and top view of the
torso skeleton to calculate its final position. For the leg branch, we moved the leg skeleton
to the border of the livestock as a reasonable initial position. Then, we constructed the
nearest banded shape cluster for each leg skeleton point and moved each leg skeleton
point to the target position according to its corresponding cluster. Essentially, since the leg
skeleton points are only translated along the z-axis in the subsequent process, the centrality
of the leg skeleton is well preserved.

(a) (b) (c) (d) (e)

Figure 3. A visual diagram of the processing pipeline for curve skeleton extraction: (a) Contour
construction, (b) Skeleton extraction and division, (c) Leg skeleton calculation, (d) Torso skeleton
calculation and (e) Final skeleton.

2.3.1. Construct the Contours of the Side Views

We started with the normalized livestock point cloud denoted by S = {pi}. The
bilateral symmetry plane denoted by Ps divided the livestock into two parts: the left side
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of the body denoted by Sl and the right side of the body denoted by Sr. Sl = {pi|pi.z <
0, pi ∈ S} and Sr = {pi|pi.z > 0, pi ∈ S} were estimated after filtering. Moreover, both
sides of the body were treated separately. The process was the same for Sl and Sr. First, we
projected Sl to the symmetry plane Ps using orthographic projection. Then, we obtained the
side view of Sl (denoted by Cl), which is a point set located on the 2D plane. The concave
hull algorithm proposed in [42] can be used to calculate the contour of an input point cloud,
and it outputs an ordered set of points located at the boundary. We utilized the concave
hull algorithm to extract the contour of Cl with the maximum length among the resultant
hull segment set as ds. Pl represents the contour of Cl after the calculation of the concave
hull. Connecting the points of Pl in order, we constructed a 2D shape for use as the input of
the 2D skeleton extraction algorithm. A sample contour Pl and a constructed 2D shape are
depicted in Figure 4a,b.

(a) (b) (c)

Figure 4. The visualization of a contour and a constructed 2D shape are depicted in (a,b). In figure
(a), the contour points calculated by the concave hull algorithm are labelled in red. The skeleton
extracted from the contour of a side view is shown in (c). The three branches are shown in red, green,
and blue. The centre of the skeleton is labelled in purple, and the endpoints of the skeleton are
labelled in orange.

2.3.2. Skeleton Extraction and Division

After obtaining the 2D shape constructed by Pl , we used the discrete skeleton evolution
(DSE) algorithm [24] to extract the skeleton in 2D shapes. DSE is a method that performs
skeleton pruning by iteratively removing the branches with the smallest relevance with
regard to shape reconstruction. The stopping threshold and the number of branches are two
parameters of DSE that can preserve required topology structure of the resulting skeleton.
We set the stopping threshold and the number of branches of DSE as dt and nb, respectively.
Then, an accurate skeleton containing the main branches of the livestock was extracted from
the 2D shapes using DSE. The centre point of the skeleton is the point with the maximum
distance from the contour. The output skeleton can be divided into three branches from
the centre point to the endpoints of the skeleton. An extracted skeleton composed of three
branches is depicted in Figure 4c.

After obtaining the branches of the skeleton, we downsampled all the branches using
an octree with leaf size d f to reduce the density of the skeleton points. Let Bi, i ∈ {1, 2, 3}
denote the downsampled branches. Since the extracted branches have no semantic infor-
mation, we needed to identify the foreleg, hind leg, and torso from these three branches.
Here we propose two methods to distinguish between these branches.

(i) Skeleton division based on detection (implement on pigs)

In the first method, we distinguished the branches by identifying the body parts based
on deep learning. We used YOLOv4 [43] to detect the body part represented by the side
view. YOLOv4 is a remarkable deep learning model for object detection. Combining the
RGB information of the point set Cl on the symmetry plane, we applied a perspective
projection to create virtual RGB images. Then, we labelled these virtual images to build
a training dataset. Figure 5 shows a virtual RGB image and the labelled areas of three
body parts.
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(a) (b)

Figure 5. Virtual image (a) and labelled areas of three body parts (b). The areas of the body, foreleg,
and hind leg are labelled in blue, red, and green, respectively.

We used the trained detector to determine the positions of the three body parts.
The position of a body part is represented by a bounding box. The network predicted a
probability score for each bounding box that indicated how likely the bounding box was to
be located at the correct location. Multiple predicted bounding boxes may be generated
for one body part. For each body part, we reserved the bounding box with the maximum
score. As each branch was located at the centre of its corresponding body part, we utilized
the bounding boxes to choose the branch. For an output bounding box, assuming that
the number of points of Bi in the bounding box is Ni, the number of all points of Bi is
Si, i ∈ {1, 2, 3}. Then, we can calculate a ratio to determine which branch corresponds to
this body part.

Ri =
Ni
Si

(1)

We chose the branch with the maximum Ri for each body part. In addition, we can
directly label a branch as missing when the bounding box of its corresponding body part is
not detected.

(ii) Skeleton division based on spatial relationships

When the livestock data have no RGB information or its points are sparse, we can
distinguish branches through the spatial relationships between branches. In the second
method, we assumed that the torso branch point was not lower than the lowest point of the
leg branches. Let bi denote the lowest point of Bi.

bi = argbj
min{bj.y|bj ∈ Bi} (2)

where bj.y is the y-coordinate value of bj. The point bi with the largest y-coordinate value
belongs to the torso branch. Then, we divided the remaining two branches into a foreleg
branch and a hind leg branch according to the x-coordinates. x̄i, i ∈ {1, 2} represent the
mean values of the x-coordinates of all points in the leg branch.

x̄i =
1
N

N

∑
j=1

bj.x (3)

where N is the number of points in the leg branch. The branch with the larger x̄ corresponds
to the foreleg branch and the other corresponds to the hind leg branch. Additionally,
to address errors caused by missing data, we judged the validation of the leg skeleton
according to the position of the centroid of the livestock. For instance, the average position
of a hind leg skeleton point cannot be in front of the centroid. Similarly, the average position
of a foreleg branch cannot be behind the centroid. In addition, if the angle between the leg
branch and the ground is less than 30 degrees, we infer that this leg branch is invalid.

After distinguishing the branches, the leg branches usually include some points of
the torso branch. Therefore, a leg branch extracted from a 2D shape may form a fold line,
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such as the foreleg branch shown in Figure 4c. The reason for this is that the centre of the
livestock skeleton, which is also the starting point of each branch, is usually located at the
centre of the torso branch. Here, we used the RANSAC algorithm to extract lines from
the leg branch that contained torso points. The sample model of the RANSAC algorithm
was set to line with the distance threshold dl . As the torso branch of a standing livestock
is nearly parallel to the ground, we chose the line with the largest angle with the ground
as the leg branch. Additionally, for the missing leg branch, we defined a leg branch at a
proper initial position according to the leg skeleton points on the other side of the body.
Adding a model for the leg of livestock with missing data can increase the applicability of
the method in Section 2.4.1.

2.3.3. Calculation of the Leg Skeleton Position

Since the body surface is scanned from outside of the livestock, a large portion of the
internal body data is missing. This results in the leg skeleton point not being moved to the
local centre by ellipse fitting. Our method is to find the nearest banded point set for each
leg skeleton point in its corresponding leg part. Then, we put each leg skeleton point in
the outermost portion of its nearest banded point set and translate the leg skeleton point
towards the inside of the body by the approximate distance of the leg radius d∗.

Specifically, we first translated all the leg skeleton points from the symmetry plane
to the border of the livestock body along the z-axis. For each leg branch, we calculated its
average x-coordinate value x̄ and filtered the livestock within the range of (x̄− d f , x̄ + d f )
to obtain a point set around this leg. If the leg branch was on the right side of the body, we
identified the border point as the rightmost point of the point set, while the border point
was the leftmost point if the leg was on the left side. Then, we translated each leg branch
along the z-axis to the z-coordinate value of its corresponding border point, as shown in
Figure 6a.

Figure 6. The leg branches moved to the border of the body (a) and the banded shape point set (b).
The skeleton points are labelled in green and the banded shape point set is labelled in red.

Second, we calculated the banded point sets for all leg skeleton points by using the
supervoxel clustering algorithm proposed in [44]. This algorithm divides a whole point
cloud into regularly shaped clusters with specific sizes. We adjusted the seed resolution
to dsr resulting in a proper scale for the supervoxel cluster. Let Ci, i ∈ {0, 1, 2 · · · } denote
the resulting clusters. We defined the nearest cluster for each leg point according to the
weighted squared distance between the leg point and the centroid of the cluster. The
purpose of weighting is to prevent the closest cluster from being located in the head or
other positions due to body twisting. For a leg point pi, its weighted squared distance from
a cluster Cj can be calculated as:

d(pi, Cj) = a ∗ (pi.x− cj.x)2 + b ∗ (pi.y− cj.y)2 + c ∗ (pi.z− cj.z)2 (4)
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where cj is the centroid of the cluster Cj. Then, for the leg skeleton point pi, the closest
cluster Ck can be calculated as:

Ck = argCi
min d(pi, Ci), i ∈ {0, 1, 2 · · · } (5)

We assumed that the adjacent clusters of Ck are {C0, C1, C2 · · · , Cn}. To make the
corresponding point set cover the width of the leg, we added all the adjacent clusters
to the supervoxel clusters that had corresponding leg points. For the leg point pi, its
corresponding point set can be denoted as {Ck, C0, C1, C2 · · · , Cn}. The banded point set
of pi can be calculated by pass-through filtering of its corresponding point set within the
range of (pi.y− 3r, pi.y + 3r). Figure 6b shows the visualization of a banded shape point
set on the leg of the livestock.

Finally, we translated each leg skeleton point along the z-axis to the position that
was equal to the z-coordinate value of the outermost point of its nearest banded point
set. For the banded shape point set on the left side of the body, its outermost point is
the point with the smallest z-coordinate value. The outermost point is the point with the
largest z-coordinate for the banded shape point set on the right side of the body. Then, we
moved the leg skeleton point towards the inside of the body by the distance d∗ to reach the
final position.

2.3.4. Calculation of the Torso Skeleton Position

We combined the torso skeleton points extracted from the 2D contour via symmetry
and the top view to calculate the final 3D torso skeleton points. To obtain the torso skeleton
of the top view, the same 2D shape construction procedure for obtaining the contour of
the side view in Section 2.3.1 was applied. Su = {pi|pi.y > 0, pi ∈ S} represents the point
set above the centroid of the livestock. We projected each point of Su onto a plane parallel
to the ground and calculated the contour of the top view by the concave hull algorithm.
We extracted the 2D skeleton of the top view contour by DSE and then down sampled the
resulting skeleton with leaf size d f to obtain the torso branch denoted by Bt. The point set
of the concave hull and the 2D shape containing the torso skeleton are shown in Figure 7.

Figure 7. The constructed concave hull and the extracted torso skeleton for the top view of the
livestock.

The torso branches of the side views were distinguished from the 2D skeleton on the
symmetry plane in Section 2.3.2. Let Bl and Br denote the torso branch of the left side view
and right side view, respectively. For each torso point bl of Bl , we found a torso point br
from Br that satisfied:

argbr
min |bl .x− br.x|, br ∈ Br (6)

Then, we used the midpoint of bl and br as the integrated torso point. Let Bs denote the
integrated torso branch. Then, we used the same method to integrate the torso branch into
Bt and Bs. For each point pi in Bs, we calculated the point pj with the closest x-coordinate
value to that of pi in the point set Bt.

argpj
min |pj.x− pi.x|, pj ∈ Bt (7)
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Then, we obtained the torso branch in 3D space by adding the z-coordinate of pj to pi.
After all the skeleton points were calculated, we sorted the points of the torso branch

from head to tail in descending order of their x-coordinate values and connected all the
points. Similarly, we sorted the skeleton points of each leg branch in descending order of
their y-coordinate values and connected them. The highest point of the leg branch was
close to the torso branch in height. For the connection between the leg branch and torso
branch, we identified the two torso skeleton points that had the smallest distances from the
highest points of the legs on both sides to connect the forelegs and hind legs, respectively.
B f denotes the torso point between two forelegs, Ll and Lr denote the highest points of the
left foreleg and right foreleg, respectively, and the torso point B f is calculated as:

B f = argpi
min |de(pi, Ll) + de(pi, Lr)|, pi ∈ Bs (8)

de denotes the Euclidean distance between two points. Then, we connected B f to Ll
and Lr. The connection process between the hind legs and the torso was the same.

2.4. Experimental Data and Posture Evaluation Application

The result of our curve skeleton extraction method can be directly applied to pose-
related applications. An appealing feature of our extracted curve skeleton is the fact that
each skeleton point belongs to a specific branch, and we can easily obtain the positions of
the specified leg skeleton points. To demonstrate the potential of our method, we show
how the extracted skeleton can be used to evaluate the posture of livestock [6] in the
following section.

2.4.1. Evaluation of Correct Body Posture Measurement

The 3D scanning data of a live pig are dynamic point cloud sequences containing its
various postures. Most of the features can be measured accurately only if the pig has the
correct posture. Therefore, choosing the frames with the correct postures from sequences is
essential for a body measurement system. According to the assumptions made in [6,45],
the requirements for a correct posture can be briefly summarized as: the four hooves of
the measured pig must make a rectangle and the torso branch must be almost a straight
line. In [6] the positions of four hooves were obtained by filtering the point set near the
ground plane. However, this approach fails to acquire the correct quadrilateral formed by
hooves when handling scanned data with missing legs. Our extracted skeleton provides a
better way to evaluate the posture obtained from body measurements. We can directly find
the four hooves from the lowest position of each leg branch to form a quadrilateral. The
missing leg branch is labelled, and a model leg is added later in the appropriate position.
The position where the model leg is added is calculated according to the leg on the other
side of the body or a torso skeleton point, as shown in Figure 8.

Figure 8. An extracted skeleton with an added model leg.
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Although the model-derived added leg may not be in the position corresponding to
the original part, it still provides an approximate quadrilateral for evaluating the posture
of livestock.

Let us start with the extracted leg skeleton branches of a pig denoted by Li,
i ∈ {1, 2, 3, 4}. L1, L2, L3, and L4 correspond to the skeleton branches of the left fore-
leg, right foreleg, right hind leg, and left hind leg, respectively. First, we obtain the hoof
point hi from Li by retrieving the point at the end of the branch. Second, we obtain the
proper rectangle by connecting the points of the four hooves in clockwise and construct
the vector form of each edge of the rectangle denoted by vi. vi = hi+1 − hi, i ∈ {1, 2, 3},
and v4 = h1 − h4, where hi is the vector form of the hoof point. Finally, we calculate the
angle between adjacent vectors. Let αi denote the angle located at hoof point hi. The angles
located at the vertices of the rectangle can be calculated by Equation (9).

αi =
vi · vi+1

|vi||vi+1|
, i ∈ {1, 2, 3},

α4 =
v4 · v1

|v4||v1|
,

S1 =
4

∑
i=1
|αi − π/2|

(9)

The evaluation of the rectangle is given by S1. The posture of the measured livestock
is correct when the value of S1 is less than a certain threshold T1. Notably, αi is not the
interior angle of the rectangle, but the calculated S1 is the same as that of the interior angle.

For the latter condition in which the torso branch is almost a straight line, we can
define a measurement similar to S1. We uniformly retrieve points from the sorted point
set. We assume that the size of the measured torso skeleton is N and the number of
points to be retrieved is k. Then the retrieved index is

⌊
i ∗ N

k

⌋
, i ∈ {0, 1, · · · , k− 1}. Let

B∗ = {pj}, j ∈ {1, 2, · · · k} denote the retrieved point set. We present the following formula
to estimate the straightness of the torso skeleton:

ȳt =
1
k

k

∑
i=1

pj.y, pj ∈ B∗

S2 =
1
k

k

∑
i=1
|pj.y− ȳt|, pj ∈ B∗

(10)

where pj.y is the value of the y-coordinate of pj. yt is the mean y-coordinate value of the
points in B∗. When the value of S2 exceeds a certain threshold T2, this indicates that the
body of the livestock is bent too much.

3. Results

We demonstrate the effectiveness of our method on point clouds containing multiple
species of animals. The values of the parameters mentioned in Section 2.3 are listed in
Table 1. Specifically, the size limitation ds determines the accuracy of the contour. Smaller
values can be used to capture more details of the contour. However, when the value of ds is
too small, holes form inside the extracted contour. Multiplying by xr enables ds to change
dynamically according to the scale of the livestock. In the DSE algorithm, the stopping
threshold dt relates to the importance of the branch in the 2D shape. When dt decreases,
shorter branches are retained. The number of branches nb limits the number of output
skeleton branches. According to our test, the values of dt and nb listed in Table 1 can retain
the required number of branches for most of the scanned pigs. The projected profiles of
different species are different. For the dataset of the other species, we apply different values
of dt, nb, and ds to obtain skeleton branches with the desired topological structure. The
optimal parameters for different species are listed in Table 2. The octree is used to down
sample the skeleton points, and its leaf size d f defines the density of the skeleton points.



Agriculture 2022, 12, 998 12 of 19

The larger the leaf size d f is, the sparser the skeleton points. The RANSAC algorithm with
the distance threshold dl can extract lines from the fold line that consists of a leg branch and
some torso points. The seed resolution dsr controls the supervoxel cluster with a proper
scale. The weight values a, b, and c of distance d(pi, Cj) guarantee that the closest cluster of
each leg skeleton is located on the leg point cloud. d∗ is the distance of the leg branches
moving inward, which is an estimation of the radius of the pig’s leg. These parameters are
held constant in the experiment when dealing with scanned datasets. We used the default
parameters of the L1-median [28] method during the comparison. Since Point2skeleton [32]
is an unsupervised learning method, this paper divides 200 pig body point clouds into a
training set and a test set in the ratio of 8 to 2. After training on the training set of 160 point
clouds, the results are tested on the test set of 40 point clouds.

Table 1. The parameters discussed in Section 2.3. r is the resolution of the input point cloud. xr is
the range of the x-coordinate value of the livestock data. ds is the maximum segment of the concave
hull. dt and nb denote the stopping threshold and the number of branches of DSE, respectively. d f is
the leaf size of the octree. dl is the distance threshold of the RANSAC algorithm for extracting the
leg branch. dsr is the seed resolution of the supervoxel algorithm. a, b, and c are weight values of
distance d(pi, Cj). d∗ is the distance of the leg branches moving inward.

Parameter ds dt nb d f dl dsr a b c d∗

Value 16r ∗ xr 0.003 5 6r 10r 0.5 1 1.5 0.5 4r

Table 2. Different values of parameters used in animal models.

Parameters Hippo Water Buffalo Cow Rhino Horse Cattle

nb 5 6 5 5 5 5
dt 0.003 0.001 0.001 0.08 0.003 0.003
ds 0.07 0.07 0.08 0.08 0.2 0.06

Notably, due to the limited amount of acquired data, part of the skeleton distinguished
by the detector is from the training set. Specifically, 140 point clouds from 14 pigs were
randomly selected as the training set. The remaining 60 point clouds were used as the test
set. For each point cloud of the training set, we created two virtual images from two sides
of the livestock. A total of 280 virtual images were created. We then applied the vertical flip
and horizontal flip to augment the dataset to 840 virtual images. We proved the validity of
the detection model on the test set, and the results show that all body parts of the livestock
data in the test set were correctly detected. The detector can provide a stable body position
for our processing pipeline. Therefore, we infer that it has little influence on the results of
the whole algorithm.

3.1. Curve Skeleton Extraction

The correctness of our algorithm relies on the correctness of the calculated concave
hull and the topology of the skeleton calculated by the DSE algorithm. However, as the
data are affected by the data quality and the poses of livestock, there is no strict guarantee
that the default parameter settings can calculate all the data correctly. Due to the complexity
of the errors, it is difficult to evaluate the robustness of the algorithm. To evaluate the
algorithm quantitatively, we summarize and define the errors as the detection error and
connection error. Since the properties of these two methods are different, the causes of
these errors are different. Therefore, the definitions of these two kinds of errors are based
on the similarity and potential consequences of errors. Specifically, the complete skeleton
consists of a torso branch and four leg branches that are extracted from the main body parts
of livestock. Detection error means that the method fails to extract all the skeleton branches
of the main body parts or the number of extracted branch points is too small. This results
in the skeleton points being distributed in a small area of its corresponding body part, as
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shown in Figure 9a,d,g. We regard an extracted skeleton branch with a number of points
less than 5 as a detection error when the data of its corresponding body part are not missing.
For our method, when a leg branch is labelled invalid because the branch extracted from the
symmetry plane is wrong or the skeleton division is wrong, the incorrect branch is erased
and replaced by a supplemental leg. Therefore, a leg that is supplementary but not detected
when the leg data are not missing still counts as a detection error, as shown in Figure 9g.
Connection error means that the extracted main branches fail to connect correctly, or the
connections of a branch are bad. The correct connections between the branches should be
consistent with the topology of livestock. Therefore, each leg branch should connect to the
torso branch, with no connections between different leg branches.

Figure 9. Detection errors and connection errors that occurred in the three methods. The results
extracted by L1-median method, Point2skeleton method and our method are listed in the first
row (a–c), second row (d–f), and third row (g–i), respectively. Detection errors are labeled in red.
Connection errors are labeled in blue.

Figure 9b,c,f show the connection error caused by failures when connecting the main
branches in a correct topological structure. As each skeleton point extracted by our method
belongs to a specific branch and all the skeleton points on the same branch are connected
in order, a connection error is represented as a branch containing points that are severely
out of position. As shown in Figure 9e,h,i, the incorrect points may be the outliers of a
branch that breaks the smoothness of the total branches or the points in an incorrectly
detected branch.

We evaluate the robustness of the algorithm by calculating the percentage of erroneous
skeletons among all test results and the average number of errors per erroneous skeleton
(ANE). The ANE is equal to the total number of errors divided by the number of skeletons
with errors. We present quantitative results in Table 3. Projection-based curve skeleton
(PBCS) stands for our method. In Section 2.3.2, we proposed two methods for skeleton
division. PBCS–S is based on the spatial relationship, and PBCS–D is based on detection.
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Table 3. Results of the comparison between the L1-median skeleton approach and our curve skeleton
extraction method. The percentage represents the percentage of data with errors out of the total data.
ANE stands for the average number of errors per erroneous data point.

Method
Detection Error Connection Error

Percentage (%) ANE Percentage (%) ANE

Point2skeleton(40) 0 0 52.5 2.33
L1-median 20 1.3 74 1.61
PBCS–S 8.5 1.24 11 1.14
PBCS–D 10.5 1.1 2.5 1.2

The detection error rate of our method is slightly lower than that of the L1-median
approach, and the average number of errors per erroneous skeleton is smaller than that
of the L1-median approach. On average, 1.3 branches cannot be detected in the erroneous
data extracted by the L1-median method, while the ANE of PBCS–S equals 1.24 and
the ANE of PBCS–D equals 1.1. The detection error rate of Point2skeleton is 0, which
means it can calculate all skeleton points from a given livestock point cloud. However, the
connection error rate of the Point2skeleton and L1-median method are much larger than
that of our method. The percentage of the skeletons with connection errors extracted by
Point2skeleton approach reaches 52.5%, and there is an average of 2.33 errors per erroneous
result. The connection error rate and the ANE calculated by the L1-median are 74% and 1.61,
respectively. The connection error rate and the ANE calculated by PBCS–S are 13.5% and
1.11, respectively. For PBCS–D, the percentage of connection errors and the ANE are 2.5%
and 1.2, respectively. This shows that our method significantly outperforms the L1-median
and Point2skeleton in preserving the correct topological structure of pig point clouds.

This performance comes from our top-down design. Specifically, the skeleton extracted
from the contour preserves the correct topology well, and the separate processing for each
side of the livestock enables our method to avoid connection errors between the legs.
Compared with PBCS–S, PBCS–D further avoids connection errors. PBCS–S distinguishes
different branches through their relative positions, while PBCS–D predicts a location range
for each branch. Therefore, PBCS–D prevents the wrong branch from being considered a
branch of the main body part. In our method, errors mainly occur during the construction of
the contour and the extraction of the 2D skeleton. The contour of the side view is captured
by the concave hull algorithm. When the concave hull forms holes in the contour, making
the contour severely irregular, the position of the 2D skeleton extracted by DSE severely
deviates or even becomes amiss. Additionally, DSE cannot ensure that all extracted 2D
skeleton branches correspond to the main body parts of the pig. Stabilizing the contour
construction and the 2D skeleton extraction processes can improve the robustness of
our method.

Even if our curve skeleton satisfies the thinness requirement, its smoothness is not
strictly guaranteed. Figure 10 shows an example of a skeleton of a live pig effectively
extracted by our method and another extracted by the L1-median method to visually
demonstrate the aforementioned difference in smoothness. Intuitively, the skeleton ex-
tracted by the L1-median method is smoother, especially the connection between the leg
branch and torso branch. Additionally, L1-median utilizes ellipse fitting to improve the
centrality of the skeleton. However, such a recentering step is not the right solution for
raw scanned point clouds characterized by missing areas. The ellipse fitting algorithm
requests the local cylindrical shape, and this request cannot always be satisfied by raw
scanned pig point clouds due to missing data. In Section 2.3.3, we constructed the banded
shape for each leg point by pass-through filtering the nearest supervoxel and its adja-
cency, and this also provides an excellent way to find a proper subset of point clouds for
performing recentering.
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Figure 10. Visualization of a skeleton of a live pig effectively extracted by our method and another
extracted by the L1-median method. The pictures in the first line show the skeleton extracted by our
method, and the pictures in the second line show the skeleton extracted by L1-median.

3.2. Results of Posture Evaluation

In this section, based on our extracted skeleton, we evaluate the postures of the
20 Landrace pig sequences mentioned above. Since our method is susceptible to incorrect
scanning postures, we formulate a selection scheme to ensure that the correct measurement
posture is selected. We use S1 in Section 2.4.1 to evaluate the postures and set the threshold
T1 to 1.5. In a sequence, we first consider the frames that are not labelled missing a leg. If
there are frames with S1 values that are lower than T1, we choose the frame with the smallest
S1 among these frames. When there is no unlabelled frame satisfying the threshold, we use
the same criteria to select from the frames with one missing leg. If there is no satisfying
frame in a sequence, no frame is selected. Out of the 20 total sequences, we select data with
correct postures for 17 sequences in this manner. Several pigs with postures leading to
different S1 values are shown in Figure 11.

S1 = 0.61 S1 = 1.03 S1 = 2.5 S1 = 3.3

Figure 11. Illustration of pigs with different postures and their corresponding S1 values.

3.3. Results and Comparison with Other Animals’ References

From the above experimental results, we can see that the detection accuracy of our
method is 91.5% when using the method based on spatial relationship and 89.5% when
using the method based on computer detection, which is significantly higher than that
of L1-median method, but lower than Point2skeleton method. However, the connection
error of our method is 11.5% using spatial relationship and 2.5% using detection, while
the connection error of other methods are over 50%. Furthermore, We test our method on
the synthetic dataset to verify its applicability for different species. As shown in Figure 12,
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compared to Point2skeleton and L1-median, our method can preserve the topological
structures of different species. For the horse point cloud, the constructed 2D shape cannot
outline the contour between the hind leg and the tail, resulting in the leg branch of the
extracted skeleton being out of position. Landmark detection provides a way to estimate
the position of the tail, and segmenting the tail before processing may be a good way to
handle this situation.

Figure 12. Curve skeletons of different species extracted by the three methods. The results
of Point2skeleton, L1-median, and our method are displayed in the first, second, and third
columns, respectively.

4. Conclusions

In this paper, a novel curve skeleton extraction method specifically designed for
incomplete point clouds of livestock has been proposed. Compared to the well-known
and general skeleton extraction methods, connection errors are mostly avoided in our
results; furthermore, our algorithm is efficient and has important advantages in terms of
processing livestock point clouds with a larger number of points. The extracted skeleton is
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able to evaluate the posture of the raw scanned pig, and this can assist in selecting data
suitable for body size measurements. The algorithm was also tested for other quadrupeds,
and we extracted skeletons with the correct topologies. However, the skeletons extracted
from live cattle data have a high error rate, which is mainly caused by the process of 2D
skeleton extraction and skeleton division. A shortcoming associated with our processing
pipeline is its reliance on parameters. When dealing with animals of different species, some
parameters in our algorithm need to be adjusted.

We tried using a detection-based deep learning method for skeleton division to im-
prove the robustness of our method. This improvement reduces the error rate on the
pig dataset. However, more data of other species need to be acquired and we need to
improve the data acquisition system. As an efficient way of reducing dependencies and
optimizing the processing pipeline, improvements based on deep learning methods will be
investigated in the future. To make our method more applicable to motion-related tasks, we
need to further improve the robustness and accuracy of our method. Future research will
also include skeleton-based behavioural analyses to extract valuable information related to
the health status of animals.
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31. Seylan, Ç.; Sahillioğlu, Y. 3D skeleton transfer for meshes and clouds. Graph. Model. 2019, 105, 101041. [CrossRef]
32. Lin, C.; Li, C.; Liu, Y.; Chen, N.; Choi, Y.; Wang, W. Point2Skeleton: Learning Skeletal Representations from Point Clouds. In

Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE Computer Society: Los Alamitos, CA,
USA, 2021; pp. 4275–4284. [CrossRef]

33. Garcia, F.; Ottersten, B. Real-time curve-skeleton extraction of human-scanned point clouds. In Proceedings of the International
Conference on Computer Vision Theory and Applications (VISAPP 2015), Berlin, Germany, 3–5 May 2015; pp. 54–60.

34. Barros, J.M.D.; Garcia, F.; Sidibé, D. Real-time Human Pose Estimation from Body-scanned Point Clouds. In VISAPP 2015,
Proceedings of the 10th International Conference on Computer Vision Theory and Applications, Berlin, Germany, 11–14 March 2015; Braz,
J., Battiato, S., Imai, F.H., Eds.; SciTePress: Setúbal, Portugal, 2015; Volume 1, pp. 553–560. [CrossRef]

35. Li, R.; Si, W.; Weinmann, M.; Klein, R. Constraint-Based Optimized Human Skeleton Extraction from Single-Depth Camera.
Sensors 2019, 19, 2604. [CrossRef]

36. Livny, Y.; Yan, F.; Olson, M.; Chen, B.; Zhang, H.; El-Sana, J. Automatic reconstruction of tree skeletal structures from point clouds.
In ACM SIGGRAPH Asia 2010 Papers; Association for Computing Machinery: Seoul, Korea, 2010; pp. 1–8.

37. Wu, S.; Wen, W.; Xiao, B.; Guo, X.; Du, J.; Wang, C.; Wang, Y. An accurate skeleton extraction approach from 3D point clouds of
maize plants. Front. Plant Sci. 2019, 10, 248. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2020.105543
http://dx.doi.org/10.1016/j.biosystemseng.2017.06.006
http://dx.doi.org/10.1088/1755-1315/341/1/012147
http://dx.doi.org/10.1088/1755-1315/341/1/012148
http://dx.doi.org/10.1016/j.compag.2018.11.042
http://dx.doi.org/10.1016/j.biosystemseng.2014.01.009
http://dx.doi.org/10.1016/j.biosystemseng.2016.09.017
http://dx.doi.org/10.3390/s18113603
http://dx.doi.org/10.1016/j.compag.2019.104977
http://dx.doi.org/10.3168/jds.2018-15238
http://dx.doi.org/10.1016/j.biosystemseng.2021.12.013
http://dx.doi.org/10.1016/j.compag.2022.107059
http://dx.doi.org/10.1109/TPAMI.2007.59
http://www.ncbi.nlm.nih.gov/pubmed/17224615
http://dx.doi.org/10.1145/1531326.1531377
http://www.ncbi.nlm.nih.gov/pubmed/18369274
http://dx.doi.org/10.1016/j.gmod.2019.101041
http://dx.doi.org/10.1109/CVPR46437.2021.00426
http://dx.doi.org/10.5220/0005309005530560
http://dx.doi.org/10.3390/s19112604
http://dx.doi.org/10.3389/fpls.2019.00248


Agriculture 2022, 12, 998 19 of 19

38. Lu, X.; Deng, Z.; Luo, J.; Chen, W.; Yeung, S.K.; He, Y. 3D articulated skeleton extraction using a single consumer-grade depth
camera. Comput. Vis. Image Underst. 2019, 188, 102792. [CrossRef]

39. Au, O.K.C.; Tai, C.L.; Chu, H.K.; Cohen-Or, D.; Lee, T.Y. Skeleton extraction by mesh contraction. ACM Trans. Graph. (TOG) 2008,
27, 1–10. [CrossRef]

40. Guo, H.; Li, Z.; Ma, Q.; Zhu, D.; Su, W.; Wang, K.; Marinello, F. A bilateral symmetry based pose normalization framework
applied to livestock body measurement in point clouds. Comput. Electron. Agric. 2019, 160, 59–70. [CrossRef]

41. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, 9–13 May 2011.

42. Moreira, A.J.C.; Santos, M.Y. Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set
of points. In GRAPP 2007, Proceedings of the Second International Conference on Computer Graphics Theory and Applications, Barcelona,
Spain, 8–11 March 2007; Braz, J., Vázquez, P., Pereira, J.M., Eds.; Volume GM/R; INSTICC—Institute for Systems and Technologies
of Information, Control and Communication: Lisboa, Portugal, 2007; pp. 61–68.

43. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

44. Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel cloud connectivity segmentation-supervoxels for point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 2027–2034.

45. Wongsriworaphon, A.; Arnonkijpanich, B.; Pathumnakul, S. An approach based on digital image analysis to estimate the live
weights of pigs in farm environments. Comput. Electron. Agric. 2015, 115, 26–33. [CrossRef]

http://dx.doi.org/10.1016/j.cviu.2019.102792
http://dx.doi.org/10.1145/1360612.1360643
http://dx.doi.org/10.1016/j.compag.2019.03.010
http://dx.doi.org/10.1016/j.compag.2015.05.004

	Introduction
	Materials and Methods
	Experimental Data
	Livestock Data Pre-Processing
	Curve Skeleton Extraction
	Construct the Contours of the Side Views
	Skeleton Extraction and Division
	Calculation of the Leg Skeleton Position
	Calculation of the Torso Skeleton Position

	Experimental Data and Posture Evaluation Application 
	Evaluation of Correct Body Posture Measurement


	Results
	Curve Skeleton Extraction
	Results of Posture Evaluation
	Results and Comparison with Other Animals' References

	Conclusions
	References

