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Abstract: Politicians and the general public are concerned about climate change, water scarcity, and
the constant reduction in agricultural land. Water reserves are scarce in many regions in the world,
negatively affecting agricultural productivity, which makes it a necessity to introduce sustainable
water resource management. Nowadays, there is a number of commercial IoT systems for irrigation
scheduling, helping farmers to manage and save water. However, these systems focus on using
the available fresh water sources, without being able to manage alternative water sources. In this
study, an Arduino-based low-cost IoT system for automated irrigation scheduling is developed and
implemented, which can provide measurements of water parameters with high precision using low-
cost sensors. The system used weather station data combined with the FAO56 model for computing
the water requirements for various crops, and it was capable of handling and monitoring different
water streams by supervising their quality and quantity. The developed IoT system was tested in
several field trials, to evaluate its capabilities and functionalities, including the sensors” accuracy,
its autonomous controlling and operation, and its power consumption. The results of this study
show that the system worked efficiently on the management and monitoring of different types of
water sources (rainwater, groundwater, seawater, and wastewater) and on automating the irrigation
scheduling. In addition, it was proved that the system is can be used for long periods of time without
any power source, making it ideal for using it on annual crops.

Keywords: irrigation scheduling; alternative water sources; low cost; IoT system

1. Introduction

Globally, the effects of climate change are evident and affect the daily lives of people
and the planet. One of its effects is water shortages in a large number of regions across the
world. Water scarcity often results in reduced agricultural productivity due to shortages
and/or poor water quality. Taking into consideration that agriculture consumes 70 percent
of the available freshwater [1] with low efficiency [2], the need to find sustainable water
resource management solutions becomes imperative.

Most of the existing research reports in the field of irrigation scheduling focus on the
development of low-cost loT-based solutions [3-5], the use of machine learning and fuzzy
logic [6-8], and the use of different irrigation methods and models [9-11]. A comprehensive
analysis regarding the research on smart irrigation systems was reported by Garcia et al. [12],
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where a detailed overview on the recent trends on sensors and IoT systems for irrigation
was presented. At the commercial level, there are many IoT systems that have been
developed for multiple agricultural purposes, including irrigation (e.g., Libelium [13] and
iMetos [14]). However, some of them only focus on weather and soil monitoring without
taking into account crop water requirements (e.g., WatchDog [15] and Netsens [16]).

Recently, significant research has been reported on the development of IoT systems for
water monitoring both in terms of quality and quantity [17-20]. A large number of these
systems focuses on monitoring natural water sources, such as lakes and rivers [21-23]. Fol-
lowing the research performed in water monitoring, a lot of systems are commercially avail-
able with the most well-known being Libelium [13], as its price is relatively low compared
to other solutions, but none can control different water sources for irrigation scheduling.

Following the Industry 4.0 revolution, a large variety of low-cost processors, con-
trollers, electronic components, and sensors have become available, which can be used for
developing low-cost IoT solutions. The most common example is the Arduino open-source
microcontroller-based development board [24]. These boards provide, at a very low cost,
all the characteristics needed for developing a monitoring/actuating device, namely, an
embedded microprocessor, connections for power supply, analogue and digital I/O chan-
nels for interfacing with peripheral devices (e.g., sensors), dedicated channels (e.g., USB
communication port), and a vast variety of different modules for various purposes (e.g.,
GSM modules). In addition, the extensive use of Arduino boards by a large community has
allowed the establishment of a broad range of supported features, making these boards
mature enough, and with great reliability and flexibility, which is necessary for precision
agriculture applications [25]. For this reason, significant research has been reported during
the last years on developing Arduino-based solutions for agriculture [26-28] and water
monitoring [29,30]. Following this trend, the extensive use of Arduino boards has con-
tributed to the development and further availability of a variety of low-cost sensors in the
market, whose efficiency in agriculture has been investigated with positive results [31-33].

As agriculture may be conducted in an open environment, wireless data transmission
is required. Many different types of wireless data communication protocols are used in
agriculture [34], including broadband cellular network technology protocols (GPRS, 4G,
and 5G), LPWA—Low Power Wide Area Network protocols (LoRaWAN, SigFOx, NB-IoT,
and LTE-M), WLAN—wireless LAN protocols (Wi-Fi), and IEEE 802.15 Protocols (ZigBee
and Bluetooth). Each one of them has its advantages and disadvantages in terms of power
consumption, range coverage, and data collection rate.

In this context, the HYDROUSA H2020 project [35] objectives were the sustainable
management of water and the increase in agricultural production in water-scarce areas
by applying precision irrigation using water that comes from a variety of water sources
(rainwater, groundwater, seawater, and wastewater). Therefore, the main aim of this
study is to develop a reliable and accurate low-cost IoT system to monitor and control
irrigation scheduling, which is able to operate using different water sources. To achieve
this, the system was: (i) developed using open source hardware for minimizing its cost,
(ii) capable of supporting a variety of sensors and actuators, (iii) evaluated for its accuracy,
and (iv) validated for its functionality and capabilities on using different water sources for
automating irrigation scheduling.

The innovation of the present study is the design and development of an Arduino-
based low-cost IoT node with extensive energy autonomy, capable of autonomously han-
dling the various water sources and applying precision irrigation based on weather data
and plant requirements. This study can contribute to increasing irrigation sustainability,
especially in water-scarce areas, as water coming from alternative water sources can be
used for irrigation, minimizing the use of the conventional irrigation water sources.
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2. Materials and Methods
2.1. Design and Development of the IoT Node

The IoT node was designed and developed using Arduino architecture (Figure 1), as it
has a very low price for all the components needed for developing a low cost IoT system.
A typical wireless node consists of a microcontroller that is also capable of performing data
processing; the transceiver, which is responsible for the wireless communication; the power
source; and finally the various circuits needed (e.g., AD converters) for supporting the
reading of analog and digital signals of the sensors and the actuators. To implement the
node, a board was developed by splitting it into 4 distinct layers:

e  The power management layer, which was designed using methodologies for minimiz-
ing power consumption;

e  The interfacing layer, responsible for the connectivity of peripherals (sensors and
actuators) with the system;
The processing/ controlling layer, responsible for the initial data processing;
The connectivity layer, responsible for the data transmission to the cloud.
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Controller (Arduino)
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Figure 1. IoT node architecture.

The node (Figure 2) has a small size of 12 x 8 cm and IP67 protection so that it can
be used in a large number of applications in harsh environments. Moreover, it supports
both analog and digital sensors and various communication protocols (e.g., RS-485 serial
communication protocol) for supporting most of the available sensors/actuators (even
industrial ones).

Figure 2. JoT node implementation.

Data can be uploaded using general (GPRS and 4G) or low-power (NB-IoT and LTE-M)
cellular network communication protocols. The communication between the node and the
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cloud was bidirectional in order to enable remote control and configuration of the system
(e.g., open/close valve), and it achieved almost real-time measurements with a minimum
sampling rate of 30 s.

To avoid the configuration process on behalf of the user, making the system “plug
and play” and able to work with the simple click of the start button, it was decided that
the developed node should also act as a getaway node, with direct communication to the
cloud. Using this methodology, the nodes were preconfigured, while the cloud services
were developed in such way to make them capable to automatically understand the type of
the sensors connected to each node.

2.2. Reduction in Power Consumption

The power consumption of an IoT system is a quite critical parameter, as there are
cases in which sensors have to be placed into dense and high crops (e.g., maize), where the
charging of batteries is a difficult task. To minimize the power consumption of the node,
3 different prototypes were developed. The first one was developed using a commercial
Arduino board, while the second was developed by designing a custom board for reducing
power consumption. The third one (Figure 2) was an update of the second prototype, which
was developed by enhancing the board design for minimizing the power consumption
even more.

2.3. Sensors Supported

As there are low-cost sensors that are able to provide measurements of high accuracy
with a careful calibration [36] or by using deep-learning-based sensor modelling [37], more
than 80 different sensors were tested and evaluated to select the ones with the highest
accuracy and durability. In the case of the ones that passed these functional tests, in some
cases (pH, temperature, and turbidity sensors), modifications were made to increase their
accuracy and make them waterproof. Waterproofing was achieved by potting the sensitive
electrical / electronic parts, wiring, and connections of the aforementioned sensors using
epoxy resin. Moreover, as the majority of the low-cost sensors were OEM-branded operating
using circuits developed from multiple manufacturers (e.g., TDS, pH, and Ultrasonic level
sensor), new circuits were developed and embedded into the IoT node for ensuring the
proper functionality of the low-cost sensors as well as their measurements’ accuracy. The
sensors that have been supported to date by the IoT node are:

o  Weather measurements: Temperature, humidity, atmospheric pressure, precipitation,
wind speed, wind gust, wind direction, solar radiation, and UV index;
Soil measurements: Moisture content, temperature, pH, and electrical conductivity;
Water measurements: Temperature, pH, electrical conductivity, turbidity, TDS, water
flow, and storage tank level.

2.4. Actuation

To enable remote control and automation, the communication between the node and
the cloud was bidirectional, and the actuation could be achieved by remote control through
a website in which the user can:

Open or close an actuator;
Enter the thresholds of an actuator to change its state (e.g., specific temperature and
water level);

e  Enable autonomous operation (e.g., applying precision irrigation).

2.5. Field Trials

The ability of the system to efficiently manage different water sources for automated
irrigation scheduling was evaluated at 3 different pilot sites developed for the needs of
the HYDROUSA project. More specifically, the evaluation procedure was held at Ano
Mera, Mykonos, Greece (37°26'51.4"” N 25°24’15.7" E), at Agios Fokas, Tinos, Greece
(37°31'59.1” N 25°10/44.0” E), and at an eco-tourist facility in Tinos Greece (37°33'56.7" N
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25°12'55.5" E). Field trial tests included the evaluation of: (i) low-cost sensors’ accuracy,
(ii) system’s monitoring and water management capabilities, (iii) automated irrigation
scheduling efficiency, and (iv) the system’s energy autonomy.

3. Results
3.1. Evaluation of the Low-Cost Sensors” Accurancy

The water quality sensors were tested and evaluated at the pilot site of Agios Fokas,
Tinos, Greece, by comparing their measurements with industrial type sensors that were
installed in parallel in closed tanks used for water storing. Both low-cost (Temperature:
DS18B20, AGENSO, Athens, Greece; pH: H-101, HAO SHI, Taiwan) and industrial sensors
(Temperature and pH: Sensolyt 700 1Q, YSI, Yellow Springs, OH, USA) were calibrated
before their installation. The measurement rate was 1 h for the low-cost sensors and
15 min for the industrial sensors. To compare their results, the average daily values of
each sensor were calculated. For pH measurements, the maximum difference recorded
between the low-cost and the industrial sensor was 0.22 with a mean difference at 0.08 and
R? = 0.8392 (Figures 3 and 4), with the low-cost sensor having an accuracy of £0.1 at 25 °C
and the industrial one +0.05 (from 0 °C to 60 °C). For water temperature measurements,
the maximum difference recorded was 1.78 °C with a mean difference of 0.75 °C and
R? = 0.9914 (Figures 5 and 6), with both sensors having an accuracy of +0.5 °C (low cost:
from —10 °C to +85 °C; industrial: from 0 °C to 60 °C). The average values per day and
their differences are shown in Table 1.

Comparison between Low-cost and Industrial pH sensors
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Figure 3. Comparison of industrial and low-cost pH sensors’ measurements.

In order to perform a robust comparison and further determination of the statistically
significant differences between the obtained measurements, an analysis of variance was
performed by conducting a one-way ANOVA using a Fisher’s least significance difference
(LSD) test at a 95% confidence level (p < 0.05). As pH industrial sensors have a temper-
ature compensation function to correct the measured pH value according to the water
temperature, the accuracy of the low-cost pH sensor had to be improved. For this reason,
a firmware update of the IoT node was developed and will be tested in summer 2022, to
regulate the pH results according to the water temperature, for increasing the accuracy of
the low-cost pH sensor. The low-cost temperature sensor that was used showed a very
high level of accuracy (R? = 0.9914), which was proved also during the initial lab tests that
were conducted.
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Figure 4. Correlation of industrial and low-cost pH sensors’ measurements.
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Figure 5. Comparison of industrial and low-cost temperature sensors’ measurements.

As no low-cost sensors for measuring electrical conductivity on water exist, the mea-
surements of a low-cost TDS sensor (TDS-1000, AGENSO, Athens, Greece) were evaluated
in comparison with the measurements of an industrial sensor for measuring electrical con-
ductivity. Thus, the TDS and electrical conductivity (EC) on water are correlated. As shown
in Figure 7, the results show a high correlation between the TDS and EC measurements
at an EC up to 3 mS/cm. After that point, the correlation was lower as the TDS sensor
reached its maximum range. The general rule for the salinity hazard of irrigation water
based upon conductivity is that EC over 3 mS/cm creates severe damage to crops [38,39].
The low-cost TDS sensor can be used to evaluate the quality of the water and its properness
for irrigation, or to select crops that are tolerant to saline water.

In addition, as weather parameters are the most important factors in decision making
in agriculture, the selected low-cost that station (MeteoloT 2100S, AGENSO, Athens, Greece)
was evaluated in an experiment which run at the Municipality of Trikala, Greece, where
the data of the station were compared with the data of a high-end weather station (Vantage
Pro 2, Davis, Hayward, CA, USA) used by the municipality. This high-end station was
connected to the network of weather stations of the National Observatory of Athens, which
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is the largest network of weather stations in Greece, used for weather monitoring and
forecasting. Both stations were installed in open places within the municipality and their
distance in a straight line was about 400 m. Figure 8 presents the comparison of the daily
average temperature and the total rain recorded using the low-cost and the high-end
weather stations for a 30-day period. The average temperatures recorded using the low-cost
and high-end weather stations were 10.33 °C and 10.37 °C, respectively, while the total rain
recorded was 142.50 mm for the low-cost weather station and 145.80 mm for the high-end
weather station, proving the reliability of the measurements retrieved with the low-cost
weather station (Table 2).

Temperature sensors - Industrial to Low-cost correlation
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Figure 6. Correlation of industrial and low-cost temperature sensors’ measurements.
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Figure 7. Comparison between the low-cost TDS and industrial EC sensors to determine water
salinity for irrigation needs.
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Table 1. Comparison of the measurements of the low-cost and industrial sensors. The different letters
accompanying daily means and monthly average values of each distinct measurement type (pH
and temperature) for each set of the industrial and low-cost sensors indicate a significant difference
between the measurements, based on a Fisher’s least significance difference (LSD) test (p < 0.05).

Date pH pH pH Temperature Temperature Temperature
Industrial Low Cost Difference Industrial Low Cost Difference
10 September 2021 6.61 a 6.80 b 0.19 25.63 a 26.20 a 0.57
11 September 2021 6.58 a 6.80 b 0.22 26.18 a 27.00 a 0.82
12 September 2021 6.52 a 6.70 b 0.18 26.17 a 27.10 b 0.93
13 September 2021 6.52 a 6.70 b 0.18 26.11 a 26.90 a 0.79
14 September 2021 6.53 a 6.70 b 0.17 25.93 a 26.70 a 0.77
15 September 2021 6.53 a 6.70 b 0.17 26.43 a 27.30 b 0.87
16 September 2021 6.48 a 6.60 b 0.12 27.32 a 28.50 b 1.18
17 September 2021 6.43 a 6.60 b 0.17 27.71 a 29.30 b 1.59
18 September 2021 6.42 a 6.60 b 0.18 28.39 a 29.60 b 1.21
19 September 2021 6.40 a 6.50 b 0.10 28.77 a 30.10 b 1.33
20 September 2021 6.37 a 6.50 b 0.13 29.40 a 30.60 b 1.20
21 September 2021 6.30 a 6.40 b 0.10 29.21 a 30.70 b 1.49
22 September 2021 6.30 a 6.40 b 0.10 28.26 a 29.30 b 1.04
23 September 2021 6.17 a 6.10 a 0.07 24.65 a 25.30 a 0.65
24 September 2021 6.11 a 6.10 a 0.01 25.77 a 26.90 b 1.13
25 September 2021 6.52 a 6.60 a 0.08 25.82 a 27.60 b 1.78
26 September 2021 6.41 a 6.40 a 0.01 25.60 a 26.30 a 0.70
27 September 2021 6.45 a 6.40 a 0.05 24.70 a 25.50 a 0.80
28 September 2021 6.57 a 6.60 a 0.03 23.83 a 24.40 a 0.57
29 September 2021 6.73 a 6.80 a 0.07 22.91 a 23.40 a 0.49
30 September 2021 6.74 a 6.80 a 0.06 22.21 a 22.50 a 0.29
1 October 2021 6.75 a 6.80 a 0.05 22.02 a 22.50 a 0.48
2 October 2021 6.79 a 6.80 a 0.01 21.94 a 22.20 a 0.26
3 October 2021 6.75 a 6.80 a 0.05 22.44 a 22.90 a 0.46
4 October 2021 6.61 a 6.70 b 0.09 22.25 a 22.60 a 0.35
5 October 2021 6.47 a 6.50 a 0.03 22.45 a 22.70 a 0.25
6 October 2021 6.54 a 6.50 a 0.04 23.29 a 23.60 a 0.31
7 October 2021 6.67 a 6.70 a 0.03 24.22 a 24.50 a 0.28
8 October 2021 6.79 a 6.80 a 0.01 24.59 a 25.00 a 0.41
9 October 2021 6.80 a 6.80 a 0.00 23.85 a 23.90 a 0.05
10 October 2021 6.66 a 6.70 a 0.04 22.50 a 22.70 a 0.20
Average 6.53 a 6.61 a 0.08 25.18 a 25.93 a 0.75
Comparison between Low-cost and High-End Comparison between Low-cost and High-End
S 200 air temperature sensors 50.0 precipitation sensors
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Figure 8. Comparison of the average temperatures and the total rain recorded using the low-cost and
high-end weather stations.
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Table 2. Comparison of measurements between the low-cost and high-end weather stations. Different
letters accompanying monthly means and monthly sum values of each distinct measurement type
(temperature and total rain) for each set of the industrial and low-cost sensors indicate a significant
difference between the measurements, based on a Fisher’s least significance difference test (p < 0.05).

Average . Total Rain .
Date Temperagture A(‘II-;Fa}%?ETilmsaei?tuie Tﬁry}gerature Total Rsatmt .(Lo)w-Cost (High-End ]"l)"(.);?l Rain
(Low-Cost Station) igh-En ation ifference ation Station) ifference
11 December 2020 7.00 7.10 0.10 6.00 5.00 1.00
12 December 2020 8.30 8.10 0.20 0.90 1.60 0.70
13 December 2020 9.40 9.10 0.30 8.10 7.60 0.50
14 December 2020 11.50 11.20 0.30 0.00 0.00 0.00
15 December 2020 10.70 10.60 0.10 0.00 0.00 0.00
16 December 2020 8.80 8.90 0.10 0.00 0.00 0.00
17 December 2020 10.50 10.10 0.40 0.00 0.00 0.00
18 December 2020 8.30 8.90 0.60 0.00 0.00 0.00
19 December 2020 9.50 9.10 0.40 0.00 0.00 0.00
20 December 2020 10.50 10.20 0.30 0.00 0.00 0.00
21 December 2020 10.20 10.10 0.10 0.30 0.60 0.30
22 December 2020 9.90 10.00 0.10 0.00 0.00 0.00
23 December 2020 8.20 8.50 0.30 0.00 0.00 0.00
24 December 2020 8.50 9.10 0.60 0.00 0.00 0.00
25 December 2020 12.00 12.80 0.80 0.00 0.00 0.00
26 December 2020 11.90 12.90 1.00 2.10 2.40 0.30
27 December 2020 10.60 10.70 0.10 2.10 1.80 0.30
28 December 2020 10.30 10.10 0.20 1.20 1.00 0.20
29 December 2020 12.60 13.10 0.50 0.00 0.00 0.00
30 December 2020 11.10 11.50 0.40 0.00 0.00 0.00
31 December 2020 11.10 11.00 0.10 6.60 7.00 0.40
1 January 2021 9.30 9.10 0.20 0.00 0.00 0.00
2 January 2021 8.00 7.80 0.20 4.20 4.80 0.60
3 January 2021 9.90 9.60 0.30 27.60 28.00 0.40
4 January 2021 8.50 8.20 0.30 40.80 42.20 1.40
5 January 2021 8.00 8.60 0.60 0.30 0.20 0.10
6 January 2021 8.60 8.50 0.10 0.30 0.20 0.10
7 January 2021 10.00 10.00 0.00 0.00 0.00 0.00
8 January 2021 15.50 15.70 0.20 0.00 0.00 0.00
9 January 2021 15.90 15.70 0.20 0.60 0.80 0.20
10 January 2021 13.10 12.80 0.30 2.70 3.00 0.30
11 January 2021 12.90 12.70 0.20 38.70 39.60 0.90
Average 1033 a 1037 a 0.04 géilfg a %égfg a (531'1312)

Daily measurements, meaning daily average temperature and sum of total daily rain,
were obtained from the open source access www.meteo.gr [40], supported by the National
Observatory of Athens, as single point measurements; thus, any further analysis of variance
between the measurements was not applicable due to the lack of access to the hourly data
from which the means and sums were generated. As a result, a statistical analysis was
performed at monthly level, using the available data, for assessing and determining the
statistically significant differences between the monthly values, by conducting a one-way
ANOVA using a Fisher’s least significance difference test at a 95% confidence level (p < 0.05).
The results indicate the lack of statistical differences between the operation of the low-cost
and industrial components for both average temperatures and total rain, indicating the
sufficient function of both components in the long term.

3.2. Management of Stored Water

In Mykonos Island, two open top tanks were constructed for storing rainwater from a
sub-surface rainwater collection system (Figure 9).

The collected water was used for the irrigation of a 0.4 ha oregano field using the
rainwater stored into the open tanks. As the intention was to minimize electrical power
consumption, one small pressure booster pump in combination with electrovalves con-
trolled by the IoT nodes was placed for controlling the water flow between the two tanks
and for enabling irrigation (Figure 10a), while to determine the level of stored water into
the tanks, ultrasonic sensors (SR04T, AGENSO, Athens, Greece) were used (Figure 10b).
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(a) (b)

Figure 9. (a) Open top water tanks; (b) Sub-surface rainwater collection system.

(b)

Figure 10. (a) Electrovalve for controlling the water flow; (b) Level sensor installed in one of the tanks.

Depending on the water quantity monitored in each tank, and according to the thresh-
olds defined by the user, the appropriate electrovalve is opened to irrigate the crop using
the water stored in one of the two tanks. Figure 11 projects the sum of the water quantity
stored in both tanks during the period from 22 July 2021 to 23 September 2021. The small
differences that were observed during the monitoring (+0.5 m®) come from the effect of
sunlight on the accuracy of the level measured by the sensors.
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Figure 11. Water quantity monitoring.
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Additionally, on a nearby house, a tank was constructed on its terrace to provide
water for domestic use and to irrigate the 0.2 ha lavender field adjacent to it. To monitor its
quantity, a node with an ultrasonic sensor was installed (Figure 12).

Figure 12. Measurement of the water level in a roof tank.

This tank can be refilled with rainwater collected on the rooftop or by pumping water
from a nearby well. When the tank level is lower than the threshold defined by the user,
the pump of the well is activated by another node. Figure 13 presents the water level of the
aforementioned tank on a daily basis.

Water level into tank
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Figure 13. Monitoring of the water level in the roof tank.

In the case of rain, the excess water on the rooftop is directed after slow sand filtration
to recharge water into a nearby confined aquifer, mitigating the long-encountered problem
of saline water intrusion. To monitor the water in the aquifer, a well was constructed
(Figure 14a) and its water depth was monitored using a submersible pressure transducer
(SRO5W, AGENSO, Athens, Greece) (Figure 14b). The measurements showed that the water
depth reduced day by day in an almost steady rate, leading to the discovery of a fracture
on the selected aquifer, which caused this water loss.
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Figure 14. (a) Nodes for monitoring the well depth. (b) Water depth in the well (depth of the aquifer).

3.3. Water Quality Measurements for Decision Making According to Its Quality

In Tinos Island, a low-cost desalination system based on the principles of evaporation
and condensation was developed, as shown in the lower part of Figure 15, for irrigating
the crops in the greenhouse that was constructed beside it.

Figure 15. Solar power desalination system.

Seawater was pumped into a tank used for storing sea water, then transferred into the
system for desalination, stored in a second tank (Figure 16a), and finally was transferred to
a third bigger tank used for the irrigation of the greenhouse crops (Figure 16b).

—

§\, \

(a) (b)

Figure 16. Monitoring of water quality: (a) seawater tank; (b) irrigation tank.

To evaluate the performance of the desalination process, IoT nodes with water quality
sensors were placed in the tanks for monitoring its quality parameters. Figure 17 presents
the pH measurements in the seawater and desalinated water tanks.
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Figure 17. pH monitoring.

The pH in the seawater tank varied between 8 and 8.2, with the desalinated water
having differentiations on its pH, as it was affected by the performance of the desalination
system, which varies depending on the weather conditions. As the salinity of the water can
affect crop performance, the total dissolved solids (TDS) of the water stored in the irrigation
tank were monitored. When TDS measurements exceeded the threshold defined by the
user, tap water from the municipality’s water supply network was added into the irrigation
tank for mixing the salty water and reducing its final salinity, as shown at Figure 18.
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Figure 18. Salinity reduction by mixing the desalinated water with tap water.

Moreover, the proposed system was used to measure the water quality and quantity
of various open and closed type tanks in an eco-tourist facility. The quality measurements
were used by the system to decide whether the water can be used to irrigate edible crops.
In the case that the quality of the water was not acceptable for irrigation of edible crops
as a result of its high turbidity, the water was used for the irrigation of non-food crops
that were cultivated according to EU 2020/741 water reuse standards. Figure 16 presents
the installation of the developed system in an open cistern used for collecting rainwater
(Figure 19a) and in a closed tank (Figure 19b) used for collecting the reclaimed water
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coming from the facility. The pH and turbidity measurements of each tank are presented in
Figure 20a and 20b, respectively.

4

(b)

Figure 19. Installations of the system for water quality and quantity measurements in: (a) open

cistern; (b) closed tank.
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Figure 20. Water quality measurements retrieved from: (a) open cistern; (b) closed tank.

3.4. Irrigation Scheduling

The accuracy of the data provided in combination with the IoT node, which can be
installed in any agricultural cropping system and activate different actuators, shapes the
system’s ability to perform precise calculations of irrigation water needs and apply auto-
mated irrigation. To achieve this, the FAO56 Penman-Monteith model [41] for computing
crop water requirements was used. All the parameters for determining evapotranspiration
were retrieved from sensors connected to the IoT node for monitoring the microclimate
and the soil, while electrovalves were controlled from the node for enabling automated
irrigation. A greenhouse was split into four plots, in which different tropical crops, such
as bananas and pineapples, were cultivated. The irrigation of each plot was achieved
using a drip irrigation system, and the irrigation schedule was fully automated using the
developed IoT node (Figure 21).
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Figure 21. IoT nodes for automating the irrigation in the greenhouse.

Figure 22 presents the average soil moisture per day and the days in which irrigation
was applied (1 = Irrigation, 0 = No irrigation) from 15 October 2021 to 12 November
2021. From the figure, it is clear that the system was capable of efficiently irrigating the
crops without stressing them, keeping soil moisture between 30 and 38%. Moreover,
as evapotranspiration reduces during the winter, it clearly seems that the frequency of
irrigation is lower in November compared to that in October.

Soil moisture and Irrigation per day (1 = Irrigation, 0 = No Irrigation)
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Figure 22. Automated irrigation using the IoT node.

The system was also tested in open crops. Figure 23 presents the average soil moisture
per day, in a clay loam field cultivated with onions that was automatically irrigated by
the system.
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Figure 23. Average soil moisture per day.

3.5. Energy Autonomy

As the developed node can provide extensive autonomy, a node was installed on
1 December 2020 in a forest, configured to have a sampling rate of 8 h for minimizing its
consumption, as the high and dense canopy of the trees does not allow recharging using
solar panels and negatively affects the mobile network signal strength. As a result of the
weak signal, the node communicated using a normal communication protocol (GPRS-2G),
which has a higher energy consumption compared to low-power protocols, but provides a
higher range of coverage. After one year of operation, on 20 February 2022, the remaining
battery capacity was 64%, achieving an average energy consumption of 2.4% per month.

With a sampling rate of one hour, which is acceptable in most cases of agricultural
monitoring (e.g., soil moisture content measurements), the system has an energy autonomy
of 210 days. This makes the IoT node ideal for using it on any annual crop, as it can work
during the entire cropping period without recharging. In the case that more intensive
measurements are needed, a solar panel of less than 0.5 W is capable of providing to the
node the energy required for its operation.

4. Discussion

The findings in this study indicate that low-cost technologies and standards can be
used for developing low-cost, highly accurate, and easy-to-use systems that can be applied
to enable irrigation scheduling and water management. As the node was exclusively based
on the Arduino architecture and components, its hardware cost was very low, making it
affordable to any farmer. The node was developed as a pure IoT device supporting cellular
network technology protocols, making it capable of working in any area in which a cellular
network is available.

Furthermore, as the price of sensors is constantly dropping, farmers can purchase
sensors of high accuracy that can almost provide a perfect coefficient of determination
(R? = 0.9914) at a very low price, permitting the fast depreciation of the investment for the
system. As these sensors can provide data of high quality, their use can help farmers in
decision making, by minimizing the inputs’ cost and increasing their production. Like-
wise, low-cost actuators can be applied for automating and for remote controlling water
management, increasing the usability of the system.
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The sensors, after small modifications mostly related to making them waterproof,
were introduced to be sufficiently reliable. More testing will be needed for evaluating their
durability over time in the open agricultural environment.

The system was able to provide a variety of different type of measurements, including
weather data, water quantity data, water quality data, and soil data. By computing crop
water requirements, it was possible to automate irrigation scheduling providing the optimal
water quantity, while simultaneously minimizing its consumption. Moreover, the system
proved its capabilities on managing the different water sources in real environment in an
extensive pilot testing that was conducted in three different pilot sites.

The system was developed as a “plug and play” device and pushing its start button is
the only action needed for making the node fully functional. By adopting this simplified
user experience, there is no need of any special knowledge or training for installing and
configuring it, contributing on removing the demographic traits of the farmers barriers,
which affect the adoption of new technologies.

Its small size, its durability, and its extensive energy autonomy make it suitable for
a lot of cases, providing its effectiveness and usability. The final prototype was ready for
testing in an operational environment in January 2020, and to date more than 200 systems
have been installed. The system has proved to be extremely reliable, as to date there have
been no hardware fails. Its development with open source Arduino technologies makes it
modular, flexible, and upgradable to support more sensors and actuators than the existing
ones, finally suggesting its capability for application in a vast number of agricultural
operations in the future.

As the global population is constantly increasing and the cultivated areas are decreas-
ing, new technologies will become a necessity as the only sustainable way for increasing
agricultural output. It seems that low-cost IoT technologies will play a critical role in
this transition, and they will contribute to the entering in the new era of holistic farm
management, assisted by the extensive monitoring of the agricultural environment and
automation of field operations.

Originally, the IoT system was developed for monitoring and controlling water to en-
able smart irrigation in open fields. As a result of its characteristics (very small size, energy
autonomy, automation capabilities, high accuracy, support of different types of sensors,
IP67 protection, and its low price), the node was already tested in various environments as
forestry (monitoring of environmental parameters in forests), large water infrastructures
(monitoring of water quantities), meteorology (for monitoring the weather), and for smart
cities with very promising initial results.

5. Conclusions
From the presented results, it can be concluded that:

e A low-cost, low power consumption, fully autonomous system of IoT for irrigation
scheduling using different water sources was developed and tested successfully;

e  The easiness of setting up by incorporating low-cost sensors was proved in the pre-
sented applications;

e The presented applications proved the reliability, accuracy, and flexibility of the pro-
posed configuration of the system;

e  Low-cost solutions for automating field operations can be efficiently applied in the
agricultural domain;

e  Easy-to-use systems can used by small size and elderly farmers and enhance the
resilience of the farms.
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