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Abstract: Due to the diversity and the different distribution conditions of agricultural products, split
delivery plays an important role in the last mile distribution of agricultural products distribution.
The time-dependent split delivery green vehicle routing problem with multiple time windows
(TDSDGVRPMTW) is studied by considering both economic cost and customer satisfaction. A
calculation method for road travel time across time periods was designed. A satisfaction measure
function based on a time window and a measure function of the economic cost was employed by
considering time-varying vehicle speeds, fuel consumption, carbon emissions and customers’ time
windows. The object of the TDSDGVRPMTW model is to minimize the sum of the economic cost and
maximize average customer satisfaction. According to the characteristics of the model, a variable
neighborhood search combined with a non-dominated sorting genetic algorithm II (VNS-NSGA-II)
was designed. Finally, the experimental data show that the proposed approaches effectively reduce
total distribution costs and promote energy conservation and customer satisfaction.

Keywords: vehicle routing problem; fresh agricultural products; split delivery; NSGA-II algorithm

1. Introduction

Fresh e-commerce has become one of the main channels for fresh agricultural products,
however, logistics distribution has always been the bottleneck of the development of
fresh e-commerce. As a major consumer of fresh agricultural products, China has a huge
and growing e-commerce business market in fresh agricultural products. According to
the market report on e-commerce businesses of fresh agricultural products in China by
iResearch, a consulting company, the trade volume of China’s e-commerce market of fresh
agricultural products will reach 458.5 billion yuan in 2020, an increase of 64% over 2019. The
overall trade volume of the fresh food business in China is estimated to reach 11.1971 billion
yuan by 2023 [1]. The e-commerce business of fresh agricultural products has developed
rapidly, but it is difficult to achieve decent profits due to the low implementation rate of
cold-chain facilities, redundant circulation links and considerable cargo damage. Moreover,
the “last mile” distribution problem has become the most prominent one, impeding the
growth of e-commerce businesses in fresh agricultural products. According to statistics [1],
the cargo loss rate in the distribution of fresh agricultural products is around 10%, and
the cost of the distribution accounts for around 40% of the overall transportation costs.
Furthermore, due to delayed delivery and high cargo loss rate, the complaint rate also
remains high, and 90% of the complaints are about poor delivery service. Therefore,
management decisions in the distribution process have become the key to the success of
delivery service provided by e-commerce platforms of fresh agricultural products, as well
as a fascinating subject of academic research.
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The e-commerce operation mode of fresh agricultural products allows customers to
select the agricultural products they need and submit orders through online platforms.
These companies dispatch vehicles to deliver goods for each customer along the pre-
planned route from the distribution center after receiving orders from customers. Due to
the perishability of fresh agricultural products, maintaining a vehicle’s temperature and
transport efficiency during delivery is crucial for successful delivery. Customers buying
fresh agricultural products think highly of delivery efficiency, which means that the time it
takes to deliver agricultural products to customers has a significant impact on customer
satisfaction. For the distribution process of small batches and various categories, a variety of
products can be delivered by a vehicle with multiple compartments of different temperature
settings. According to Hsu and Chen’s research [2], the distribution mode of multiple
compartments is more appropriate to be applied to handle small but diverse customer
demands for fresh agricultural products. Reed et al. [3] and Chen et al. [4] also studied the
multi-compartment vehicle routing problem. In former models, the customer’s demand
is limited so that it does not exceed the capacity of a certain compartment. However,
according to the real cases in many studies [5–10], it is possible for a customer’s demand
to exceed the capacity of a compartment. Therefore, this study focuses on exploring and
determining whether the delivery with multi-compartment refrigerated vehicles serves the
best option even when the customer’s demand exceeds the capacity of a compartment. A
model under the condition of split delivery is also developed to research the cold-chain
distribution of agricultural products with large and diverse customer demands.

The split delivery vehicle routing problem (SDVRP), as a subtype of vehicle routing
problems, has drawn considerable interest from researchers in recent years. The split
delivery vehicle routing problem depicts a scenario in which many vehicles of the same
weight depart from the same warehouse to deliver items to multiple customers, with each
customer accepting the service of multiple vehicles [11]. The benefits of split delivery in
vehicle routing problems have been demonstrated [12]. The SDVRP has been applied in
many practical cases [13,14]. This paper will study the problem of single compartment
vehicle routing optimization based on split delivery, with an aim to provide a more rational
distribution strategy and route optimization method for fresh food e-commerce companies,
and to reduce the economic costs while improving customer satisfaction. Considering the
urban traffic conditions and the need to deliver various products, a split delivery vehicle
routing problem model with time-varying road network characteristics is developed, and a
multi-objective optimization algorithm is designed to obtain the optimal solution set and
screen out the suitable solution from the solution set.

The characteristics of diverse demand for fresh agricultural product delivery explored
in this paper are quite similar to the SDVRP model. As such, this paper will expand
on earlier research by applying the SDVRP to the problem of fresh agricultural product
delivery. Since customers will be serviced more than once after an order is split, it is
more practical to have multiple time windows for each customer. To make the model
better simulate the actual conditions of reality, the road network congestion constraints,
carbon emission and fresh agricultural product loss are considered in the calculation of
distribution costs. Therefore, this paper studies a time-dependent split delivery green
vehicle routing problem with multiple time windows (TDSDGVRPMTW) based on the
aforementioned criteria and takes the total cost and customer satisfaction as optimization
objectives. The NSGA-II algorithm framework [15] is improved in this study by combining
it with other heuristic algorithms [4,15] to improve the model in this paper. However, the
algorithm can only find the Pareto-optimal front but cannot provide a specific solution. In
reality, decision-makers must follow a single, well-defined solution when making decisions.
In order to solve this issue, the technique for order preference by similarity to the ideal
solution (TOPSIS) approach is used to screen the Pareto-optimal front for the best solution
of clear distribution that fulfills the actual needs.
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Based on the study of the traditional vehicle routing problem, the split delivery vehicle
routing problem (SDVRP) was first proposed by Dror and Trudeau [12]. Generally, SDVRP
research has been less comprehensive than studies on other VRPs. As with VRP, several SDVRP
formulations have been presented while taking into account various restrictions [16–18]. SDVRP
with time windows (SDVRPTW) [19–26] is one of those that has gained increasing attention.
Notably, this study investigated SDVRPTW in the distribution of fresh agricultural products
and presents a heuristic algorithm for solving it. The following parts are a literature review
of literature relevant to this paper.

(1) Split delivery vehicle routing problem with multiple time windows

Split delivery vehicle routing problem with multiple time windows (SDVRPTW) is
a variant of SDVRP that imposes restrictions on each customer by defining an interval at
which a customer must begin to be served. Due to the added time window constraints,
the model of SDVRPTW is more complex and more difficult to solve than SDVRP. There is
not much former research on SDVRPTW. On the basis of SDVRP, Frizzell and Giffin [16]
considered the time window constraint and first proposed SDVRPTW, a path construction
method and two ways to improve the path. Ho and Haugland [19] proposed a tabu
search-based solution to the SDVRPTW model and analyzed the experiment results from
100 customers. Desaulniers [20] proposed a new exact branch-and-price-and-cut method
to solve the SDVRPTW, and the calculation results show that the method is effective.
Based on the research of Desaulniers, Archetti et al. [21] proposed an improved strategy of
the branch-and-price-and-cut algorithm, which further improved the performance of the
algorithm to solve SDVRPTW. Salani and Vacca [22] presented a mixed-integer program for
the SDVRPTW based on arc flow formulation, proposed a branch-and-price algorithm and
applied an improved approach to the pricing and master problem. Based on a new relaxed
compact model, Bianchessi and Irnich [23] proposed a new and tailored branch-and-cut
algorithm to solve SDVRPTW. Computational experiments show that the new method can
prove the optimality of several previously unsolved examples in the literature. Li et al. [26]
assumed that service time is proportionate to demand, that customers have many time
windows to choose from and can only be delivered in one of them. They came up with a
three-indicator traffic flow model and a combined coverage model to solve this challenge.
To overcome this problem, a branch-and-price-and-cut method is presented.

It is important to note, however, that the previous research on SDVRPTW focuses
on the solution method of the abstract model and rarely involves the application of the
model to specific fields. For example, there is no research that applies the SDVRPTW
model to the distribution of fresh agricultural products. Customers often need a variety
of fresh agricultural products that require different degrees of refrigeration. Thus, a split
delivery of fresh agricultural products is reasonable in such a case. Fresh agricultural
products are perishable and require cold-chain transportation, which will increase the
complexity of the model and require more efficient solutions. As for the service time, most
research adopted constant service time, and only Salani [22] and Li et al. [26] considered
the variable service times that depend on the delivery quantity. Considering the service
time depending on the delivery quantity represents a more pragmatic way of thinking.
Previous research overlooks traffic congestion in road networks, which makes it difficult to
apply the research results to reality. This study takes into account variable service time and
adds time-varying road network constraints to the SDVRPTW model, so as to make the
model fully represent reality.

The VNS-NSGA-II algorithm proposed in this paper belongs to the multi-point heuris-
tic algorithm. Compared with many works of literature [20–24] that use precise algorithms,
the method in this paper can solve large-scale problems. Compared with the research
from McNabb et al. [25], the method in this study includes an adaptive genetic evolution
process and is easier to jump out of the local optimum in the process of searching for a
solution. Both the model of this paper and the model of Li et al. [26] set multiple time
windows, however, their model only allows customers to select one window to receive
products, and the model of this paper allows customers to receive products at each time
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window. Most research on SDVRP focused on the optimization of a single objective, and
only a few of them focused on multi-objective optimization [27–29]. This paper focuses
on the application of fresh agricultural products distribution, which requires a high level
of delivery efficiency. In addition to transportation costs, customer satisfaction is also
a critical aspect. Therefore, establishing a multi-objective optimization model with two
distinct objectives of distribution cost and customer satisfaction as optimization objectives
is a reasonable choice.

(2) The Distribution of Fresh Agricultural Products

According to previous research [8–10], customers’ demand for the distribution of fresh
agricultural products mostly occurs in morning rush hours, during which the speed of
vehicles is very different from other time periods. Therefore, it is a reasonable choice to
regard the vehicle speed as a time-dependent function. At the same time, the amount of
carbon emissions produced would change in proportion to the speed of the vehicle [30],
hence considering carbon emissions in the model can make the final delivery solution
more environmentally friendly. Due to the requirement of high delivery efficiency in the
distribution of fresh agricultural products, whether the goods can be delivered in time
will have a huge impact on customer satisfaction, which is also an important indicator to
measure the service level of enterprises. Therefore, we should take customer satisfaction as
an optimization objective and strive to improve it. In order to make the model better, we
simulated actual conditions of fresh agricultural product distribution.

(3) Time-Dependent Vehicle Routing Problem

The time-dependent vehicle routing problem is another derivative of VRP. To simulate
road traffic congestion, Malandraki and Daskin [31] proposed TDVRP. They treat the
vehicle travel time at any two points as a step function of the vehicle departure time.
Malandraki and Dial [32] proposed a restricted dynamic programming heuristic for solving
the time-dependent traveling salesman problem. However, in the above research, there are
situations where vehicles that depart later arrive first, which do not meet the First-In-First-
Out (FIFO) criterion. Ichoua et al. [33] proposed a new time-varying model in which the
vehicle’s travel speed is a step function, and the corresponding travel time is a piecewise
linear function. Another time-varying model is proposed by Fleishmann et al. [34], which
is based on a smooth step function of travel time. The above two methods confirm the
principle of FIFO, which better simulates the actual conditions of the real world.

What is more, based on the research in the previous work and the innovations in this
study are summarized as follows:

1. The SDVRPTW model has been applied rarely in the research of fresh agricultural
product distribution. The basic SDVRPTW model normally takes into account load
constraints, split delivery and the precondition that the consumer has just one time
window. In order to make the model better simulate the actual conditions of fresh
agricultural product distribution, this study will consider and evaluate a time-varying
road network, carbon emissions and customer satisfaction on the basis of SDVRPTW
to develop the TDSDGVRPMTW model.

2. While multi-objective optimization problems are frequently aimed at obtaining a
Pareto-optimal front, decision-makers expect a complete and feasible solution. Fur-
thermore, the TOPSIS method is employed to select the solution that satisfies the
requirements from the Pareto-optimal front.

3. It is verified by a real-world case that as a delivery strategy, the TDSDGVRPMTW
model proposed in this paper not only can effectively reduce the total cost of fresh
agricultural products distribution, but also improve customer satisfaction.

The description of the problem and the hypotheses are as follows.
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The TDSDVRPMTW proposed in this paper can be described as follows: a group of cold-
chain vehicles depart from the distribution center, visit customer nodes in the order indicated
in the distribution scheme, and then return to the distribution center. K = {1, 2, · · · , k} is the
set of vehicles. N = {0, 1, 2, · · · , n} is the set of all nodes in the distribution network where
{0} represents the distribution center, N′ = N\{0} denotes the customers. The distance
traveled by vehicle k between node i and node j is Dij, and the travel of the vehicle incurs
a travel cost TC. Fixed cost FC is incurred when the vehicle is used. Service costs SC are
incurred when the vehicle serves the customer. The speed of vehicles is related to time.
Vehicles travel at varying speeds during various time periods. H = {1, 2, · · · , h} is the set
of all time periods. Carbon dioxide CC is emitted into the atmosphere when a vehicle is
driven. Fresh agricultural products are divided into several types based on their respective
temperature requirements for transportation. W = {1, 2, · · · , w} is the set of all types of
fresh agricultural products. The refrigeration cost RC of fresh product w is ew. Vehicle k is
only allowed to deliver one type of product w. Each customer requires a variety of fresh
agricultural products, and each customer has a number of service acceptance time windows
equal to the number of fresh product varieties required by the customer. Additionally, it
is allowed that a single customer can be served by multiple vehicles. The service time sik
is proportional to the quantity of products delivered. The customer satisfaction ACSi of
customer i is determined by the remaining delivery time after the customer received goods.
Total costs include travel costs TC, fixed costs FC, service costs SC, refrigeration costs RC and
carbon emissions costs CC. The purpose of this study is to produce a delivery solution that
has a lower total cost and a higher level of customer satisfaction. Table 1 lists all notations
used in the proposed model. In addition, the following basic assumptions are made in
this paper:

1. The customer’s demand for fresh agricultural products is split and distributed accord-
ing to the temperature required for distribution, and each customer has multiple time
windows for receiving services.

2. For each service, every customer will complete a satisfaction rating, the value of
satisfaction evaluation depends on the deviation degree between the remaining time
when the vehicle leaves the customer and the time window.

3. Only one type of produce can be delivered by a single vehicle. A vehicle can only
serve a customer once.

4. The day is divided into several time periods, and vehicles travel at various speeds at
different periods.

The rest part of this paper is organized as follows. In Section 2, the mathematical
formulation of the time-dependent green vehicle routing problem with multiple time
windows (TDSDGVRPMTW) is given. Then, the algorithm for obtaining the Pareto-optimal
front based on variable neighborhood search combined with non-dominated sorting genetic
algorithm II (VNS-NSGA-II) is presented. Besides, the technique for order preference
by similarity to the ideal solution method (TOPSIS) is introduced, and the process of
experiments is shown in the final part of the section. In Section 3, the results of the
numerical experiments are analyzed and compared with the relevant literature, and also
the reasons for the similarities and differences are discussed. Finally, conclusions and future
research directions are given in Section 4.
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Table 1. Symbol definitions in the TDSDGVRPMTW optimization.

Variable Definition Parameter Definition Set Definition

TC The cost of the vehicle’s travel n The number of customers that need to be delivered N
Set of all nodes in the distribution
network, including the distribution
center and all customer points

FC The cost of vehicle’s fixed use ϕ The vehicle’s travel cost per unit distance N′ Set of all customer points N′ = N\{0}
SC The cost of customer service δ The fixed cost per vehicle K Set of all vehicles
RC The cost of refrigeration ew The cos t per unit time of transportation temperature of fresh agricultural product w H Set of all time periods

CC The cost of carbon emissions QL The maximum capacity of the vehicle W Set of all types of fresh agricultural
products

ACSi The average level of satisfaction for customer i QK Maximum number of vehicles that can be used

Dij
Distance between nodes i and j in the logistics
distribution network Qi The total demand of customer i for various fresh agricultural products

Lik
The time when vehicle k
completes its service and leaves customer i. qiw The demand of customer ifor fresh agricultural product w

Tik
The time when the vehicle k
arrives at the customer i ETi The earliest time for node i to receive service

T′ik
The time when the vehicle k
starts to serve customer i
and also when the product is received by customer i

LTi The latest time for node i to receive service

sik The time that vehicle k serves customer i
tijk The driving time of vehicle k on sec tion (i, j)

th
ijk

The driving time of vehicle k on road sec tion (i, j)
in time period h

dh
ijk

The distance of vehicle k on road sec tion (i, j)
in time period h

sti The total number of services received by customer i.

Xijk
Equal to 1 if the vehicle k
runs on the road sec tion (i, j), and 0 otherwise

xh
ijk

Equal to 1 if the vehicle k
runs on the road sec tion (i, j) in time period h, and
0 otherwise

yik Equal to 1 if vehicle k visits client i, and 0 otherwise
zk Equal to 1 if vehicle k is used, and 0 otherwise
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2. Materials and Methods
2.1. TDSDGVRPMTW Model

Based on the needs of building the model, this paper uses the corresponding symbols
which are listed in Table 1.

Through the comprehensive analysis above, the multi-objective optimization model
of TDSDVRPMTW is given by the following, this model objectives include minimize total
cost F1 and maxmize average customer satisfaction F2.

Minimize F1 = TC + FC + SC + RC + CC (1)

Maximize F2 =
1
n

[
∑
i∈N

ACSi(Lik)

]
(2)

Subject to:
∑

i∈N′
qiwyik ≤ QL, ∀k ∈ K, w ∈W (3)

Qi = ∑
w∈W

qiw, ∀i ∈ N′ (4)

∑
j∈N′

X0jk ≤ 1, ∀k ∈ K (5)

1 ≤ ∑
k∈K

yik ≤ QK, ∀i ∈ N′ (6)

∑
i∈N

Xijk = ∑
j∈N

Xijk, ∀k ∈ K (7)

tijk = ∑
h∈H

Xijkth
ijk, ∀i ∈ N, j ∈ N, k ∈ K (8)

Dij = ∑
h∈H

dh
ijkXijk, ∀i ∈ N, j ∈ N, k ∈ K (9)

ET0 ≤ Xi0k
(
T′ik + sik + ti0k

)
≤ LT0, ∀i ∈ N′, k ∈ K (10)

T′ik ≥ Tik, ∀i ∈ N′, k ∈ K (11)

Lik = T′ik + sik, ∀i ∈ N, j ∈ N, k ∈ K (12)

t0i = T′ik, ∀i ∈ N′, k ∈ K (13)

∑
k∈K

yik = sti, ∀i ∈ N′ (14)

xh
ijk ∈ {0, 1}, Xijk ∈ {0, 1}, yik ∈ {0, 1}, zk ∈ {0, 1} (15)

Equation (1) is a function to minimize the total cost. It includes the vehicle travel cost
(TC), fixed cost (FC), customer service cost (SC), refrigeration cost (RC) and carbon emission
cost (CC). Equation (2) measures the average customer satisfaction (ACS). ACS is the propor-
tion of fully satisfied customers to the total number of customers. Constraint (3) expresses
the carrying weight limit of each vehicle. The combined demand of all customers on each
vehicle’s delivery route cannot exceed the maximum vehicle load limit. Constraint (4)
ensures that the demand of each customer is equal to the sum of the customer’s demand
for each type of fresh agricultural product. Constraint (5) ensures that each customer
can only be served once by each vehicle. Constraint (6) ensures that each customer must
be served and the number of times served does not exceed the total number of vehicles.
Constraint (7) ensures that the number of vehicles starting and arriving at each node should
be balanced. That is to say, when a vehicle arrives at a customer, it will inevitably leave
the customer. Constraint (8) expresses the relationship between road section driving time
and vehicle driving time within a period. In other words, the total time spent on a road
section is equal to the sum of the time spent on that road section in each time period.
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Constraint (9) expresses the relationship between road section distance and vehicle driving
distance in each time period. That is to say, the distance traveled by the vehicle on the road
segment is equal to the sum of the distance traveled by the vehicle on the road section in
each time period. Constraint (10) indicates that the vehicles returning to the distribution
center should be restricted to the constraint of the working time window of the distribution
center. Constraint (11) indicates the relationship between service start time and arrival time.
Constraint (12) indicates the relationship between service start time, service duration and
departure time. Constraint (13) ensures the time the customer receives the fresh products
is equal to the time the service starts. Constraint (14) indicates that the number of times
service received by each customer is equal to the total number of vehicles serving this
customer. Constraint (15) states the binary decision variable.

• The travel cost

The travel cost (TC) refers to the variable cost incurred by each vehicle for delivery
activities, mainly consisting of fuel consumption, repairs and driver pay rate. For simplicity,
only the effect of distance on travel cost is considered. The cost of the vehicle’s travel is
generally proportional to the distance and can be calculated as follows:

TC = ∑
i∈N

∑
j∈N

∑
k∈K

XijkDij ϕ (16)

where Xijk is a binary variable, Xijk = 1 when vehicle k runs through the road section (i, j),
otherwise Xijk = 0. Dij is the distance between node i and j, ϕ is the vehicle’s travel cost
per unit distance.

• The fixed cost

Vehicles’ fixed costs are typically constant. It is unrelated to customer demand or
delivery distance. It mostly consists of rent or use loss, and other labor costs. Calculate the
cost of the vehicle’s fixed (FC) use by:

FC = ∑
k∈K

zkδ (17)

where zk is a binary variable, when vehicle k is used, zk = 1; otherwise, zk = 0. δ is the
fixed cost per vehicle.

• The service cost

Since each customer can be serviced by multiple vehicles, the cost impact of the
number of times each customer is serviced needs to be considered. The service cost (SC) is
proportional to the frequency with which each customer is served. The service cost can be
calculated as follows:

SC = ∑
i∈N′

stiκ (18)

where sti is the number of times the consumer i receives services and κ is the cost of
each service.

• The refrigeration cost

Refrigeration cost (RC) refers to the energy cost of refrigeration. According to the
study of Wang et al. [35], this paper treats refrigeration costs as a time-dependent function,
assigns a fixed unit time cost to each temperature, and considers the refrigeration cost of
the unloading service. The cost of refrigeration can be calculated as follows:

RC = ∑
i∈N

∑
j∈N

∑
w∈W

∑
k∈K

Xijkew

(
tijk + sik

)
(19)

where Xijk is a binary variable, Xijk = 1 when vehicle k runs through the road section (i, j),
otherwise Xijk = 0. ew is the refrigeration cost per unit time of fresh agricultural product
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w. tijk is the driving time of vehicle k on section (i, j). sik is the time that vehicle k serves
customer i.

• The carbon cost

This paper uses the MEET model in reference [30] to explore the calculation of carbon
emissions. The carbon emission estimation function for freight vehicles weighing between
3.5 and 40 tonnes is εh(v) = a0 + a1v + a2v2 + a3v3 + a4

v + a5
v2 +

a6
v3 , while the load correction

function is λh(v, ϕ) = b0 + b1 ϕ + b2 ϕ2 + b3 ϕ3 + b4v + b5v2 + b6v3 + b7
v . ϕ is the ratio of the

vehicle’s actual load to its capacity, ν is the vehicle speed (km/h), and parameters a and b
are the load correction coefficient, whose value is related to the vehicle’s weight range. If
vehicle k’s driving distance in time period h is dh

ijk (km), the carbon emissions Eh
ijk (kg)

can be computed as follows:

Eh
ijk = εh ·
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The cost of carbon emissions (CC) is mainly generated by the energy consumed by
vehicles while on the road. The carbon emission calculation function adopted in this paper
is related to the vehicle speed, travel time and load capacity. The cost of carbon emissions
can be calculated as follows:

CC = ∑
h∈H

∑
i∈N

∑
j∈N

∑
k∈K

xh
ijkEh

ijkµ (21)

where xh
ijk is a binary variable, xh

ijk = 1 when the vehicle k runs on the road section (i, j)

in time period h, otherwise xh
ijk = 0. Eh

ijk is the carbon emission generated by vehicle k
driving on the road section (i, j) in time period h. µ is the unit price of carbon emissions.

2.2. Customer Satisfaction Measurement Method

Customer satisfaction is an important indicator used to gauge the service quality of
firms in the study on the vehicle routing problem for fresh agricultural products. The mea-
surement methods of customer satisfaction can be divided into three categories: measure
satisfaction by the freshness of products, by product delivery time, and by both freshness
and delivery time. Wang et al. [36] used the freshness of perishable products to measure
customer satisfaction, and proposed a multi-objective VRP optimization model with mixed
time windows and perishability assessment to minimize transportation costs and maximize
the freshness of perishable products. Wang et al. [37] established a customer satisfaction
evaluation model, in which both the timeliness of the distribution of fresh agricultural
products and the loss of freshness of agricultural products are considered. We adopts
the satisfaction function based on the time window. Because this paper considers that
each customer has many time windows and may receive vehicle services throughout each
window, the satisfaction of each customer is averaged by the number of vehicle visits.
Customer satisfaction is determined by the time the vehicle completes its servicing. The
satisfaction function curve for customer i in the gth time window is depicted in Figure 1. In
Figure 1, the horizontal coordinate represents time, and the vertical coordinate represents
customer satisfaction. When the vehicle completes the service in

[
ETig, LTig

]
, and customer

satisfaction is 100, this is the best time for service. The service can begin when the vehicle
arrives at the customer within

[
EETig, ETig

]
or
[
LTig, ELTig

]
. On the other hand, customer

satisfaction is low when the service is completed within this time limit, and satisfaction
decreases as the deviation from the optimal service time period increases. If the vehicle
provides service to the customer prior to EETig or after ELTig, the customer’s satisfaction
level is 0. EETig = ETig − θsi, ELTig = LTig + θsi are the boundaries of the customer’s
tolerable time points. Where θ is the customer tolerance coefficient, si is the customer
i’s service time, and Lik is the time when vehicle k completes its service and departs for
customer i. G denotes the set of all of customer i’s time windows, and sti denotes the
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number of times customer i gets served. Then, the average level of satisfaction for each
customer (ACS) is as follows:

ACSi(Lik) = ∑
g∈G

CSig(Lik)

sti
(22)

where the satisfaction function is:

CSig(Lik) =



0, Lik ≤ EETig( Lik−EETig
ETig−EETig

)
× 100, EETig < Lik ≤ ETig

100, ETig < Lik ≤ LTig( ELTig−Lik
ELTig−LTig

)
× 100, LTig < Lik ≤ ELTig

0 ELTig < Lik

(23)

Figure 1. Customer satisfaction curve.

This paper adopts average customer satisfaction to measure the overall satisfaction
level of the distribution schemes. The average customer satisfaction function can be
expressed as Equation (2).

2.3. Time-Dependent Vehicle Speed Calculation Method

Based on existing approaches [38,39], this paper proposed a method of time division
for calculating travel time. The distribution center’s opening hours are divided into many
time periods, and the vehicle speed varies according to the time period. Let F be the length
of the time period; H = {0, 1, 2, · · · , h} is a set of all time periods, [h, h + 1] said the
number of h time period. dh

ijk, th
ijk, gh

ijk denote the distance, time and speed of vehicle k
on the road section (i, j) in time period h, respectively, and Dij denotes the road section’s
distance (i, j). Dh

ij is the distance traveled by vehicle k to complete the remaining distance
(i, j) after time h; Lik is the time when vehicle k departs from customer i; and hk is the
remaining drivable time of vehicle k in time period h. As a result, the following steps are
used to calculate the driving time tijk of vehicle k on road section (i, j):

Step 1: Determine how long the initial phase will last. dh
ijk = gh

ijkhk. If dh
ijk ≥ Dij, then

th
ijk =

Dij

gh
ijk

, tijk = th
ijk, end of calculation; if dh

ijk < Dij, Dh
ij = Dij − dh

ijk, th
ijk = hk, continue to

step 2.
Step 2: ζ = 1; dh+ζ

ijk = gh+ζ
ijk F, If dh+ζ

ijk < Dh+ζ−1
ij , then th+ζ

ijk = F, Dh+ζ
ij = Dh+ζ−1

ij − dh+ζ
ijk ,

Step 2 should be repeated; otherwise, th+ζ
ijk =

Dh+ζ−1
ij

gh+ζ
ijk

, tijk = ∑ th
ijk

h∈H

. The section (i, j) driving

time computation is finished.
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2.4. VNS-NSGA-II Algorithm

A variable neighborhood search combined with the non-dominated sorting genetic al-
gorithm II (VNS-NSGA-II) was designed. NSGA-II has been extensively applied in research
on VRP-related problems as a multi-objective combinatorial optimization algorithm [38–41].
The NSGA-II algorithm decreases the complexity of the non-dominated sorting genetic
algorithm and has the advantages of rapid execution and good solution set convergence.
A number of heuristic strategies [4,15] are introduced into the NSGA-II algorithm in this
study to boost search efficiency and avoid local optimum. Adaptive functions [42] are
introduced to the crossover and mutation processes to dynamically alter the likelihood
of crossover and mutation, and the variable neighborhood search algorithm (VNS) [4] is
added to conduct a variable neighborhood search for good individuals in the population.
It has the potential to improve the algorithm’s local search capacity. Based on the advan-
tages of the preceding techniques, the VNS-NSGA-II algorithm is constructed to solve the
TDSDGVRPMTW model in this study. The VNS algorithm is divided into three stages:
initialization, genetic evolution and variable neighborhood search. The initialization step
generates the initial population in a random manner. In the process of genetic evolution,
there exist crossover and mutation operators whose likelihood of execution is dynamically
governed by adaptive functions. In the process of the variable neighborhood search, there
are three types of neighborhood search operators. Non-dominated sorting and crowding
distance calculation are at the end of the variable neighborhood search process. Figure 2
shows the detailed process of the algorithm.

Figure 2. Algorithm flow chart.
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2.4.1. Population Initialization

The chromosome in this study uses mixed natural number and letter coding, with
natural numbers ranging from 1 to n representing the customer node and capital letters
A, B, C, and D representing various types of fresh agricultural products. Each vehicle
delivers the same type of fresh agricultural product, and each chromosome holds the
delivery schedules of all vehicles and therefore contains each customer’s fresh produce
needs. A chromosome is depicted in Figure 3 as an example. Where “A1” means that
customer 1 needs type A fresh agricultural products. The chromosome can be divided
into three segments according to the type of fresh products. Each segment is delivered by
a different vehicle. When decoding chromosomes into vehicle routes, the chromosomes
are first divided into segments based on the type of fresh agricultural product, and then
the chromosome segments with the same type of fresh agricultural product are divided
into route segments based on the vehicle load capacity and the distribution center’s op-
erating time. This study employs a random method to generate the initial population. In
other words, the customer numbers are randomly arranged according to the type of fresh
agricultural products that suit customers’ demands.

Figure 3. One example of a chromosome.

2.4.2. Genetic Operator

• Selection Operator

This paper combines the optimal protection strategy and roulette selection method to
select chromosomes. The specific steps of the optimal protection strategy are to find the
two chromosomes with the highest fitness and the lowest fitness in the current population;
the fitness value of the chromosome with the highest fitness is compared with the highest
fitness value of each generation in history. If the current value is higher, it will be regarded
as the chromosome with the best protection; otherwise, the best protection object remains
unchanged and remains the best chromosome in history. The chromosome with the worst
fitness in the current population is replaced with the one with the best protection. The

probability of each chromosome being selected in the roulette method is pn = fn/
(

∑ fn
n

)
,

and the greater the fitness of the chromosome, the greater the probability of being selected
for the cross-mutation operation.

• Crossover Operator

Because chromosomes contain vehicle routes for delivering various types of agri-
cultural products, all vehicle route segments in chromosomes are classified prior to the
crossover to ensure that the crossover occurs only between vehicle route segments of
the same type. By randomly generating two crossover points on parent chromosomes
X and Y and separating the two parent chromosomes into three pieces, we improved
the crossover approach in this paper. The center sections of chromosomes X and Y were
excised and inserted into the front and back sections of offspring chromosomes Y1 and X1,
respectively. The remaining front and back sections of parent chromosomes X and Y were
placed in the same order into chromosome Y1’s back section and chromosome X1’s front
section. In the two offspring chromosomes, leave the chromosome segment in the two
crossover sections alone and delete the duplicated chromosome segment in the remaining
places. The advantage of this crossover approach is that two identical parent chromosomes
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produce two different offspring. Figure 4a depicts the unique crossover procedure. In
order to make the crossover operator work more efficiently, this study uses the improved
adaptive adjustment approach presented in reference [42], which takes into account the
number of iterations, the fitness values of chromosomes and populations, and the number
of unmodified chromosomes in each generation population, as indicated in Equation (24).

Pc =


Pc1 −

(Pc1−Pc2)( fl− favg)

( fmax− favg)
[
1+exp

(
−gen×U

M×popsize

)] , fl ≥ favg

Pc1
[1+exp (

−gen×U
M×S )] , fl < favg

(24)

where pc stands for adaptive crossover probability, pc1 and pc2 stand for adaptive adjust-
ment parameters, and pc1 > pc2. fl stands for the fitness value of individuals with high
fitness in the chromosomes to be crossed; favg stands for the average fitness value of each
generation population, and fmax stands for the maximum fitness value of each generation
population. The popsize denotes the population size, whereas gen represents the current
iteration number, M represents the maximum iteration number, and U represents the
number of individuals with unchanged chromosomes.

Figure 4. Examples of crossover and mutation.

• Mutation Operator

Before mutation, route segments in chromosomes should also be classified to ensure
that mutation occurs between vehicle routes of the same type. The mutation method of
the random chromosome point exchange is used in this study. The specific processes are
as follows: initially, the chromosomes to be mutated are chosen, and then two random
mutation points on the chromosomes are chosen in a random manner. Swap two points to
form a new chromosome. Figure 4b depicts the mutation process. Similar to the crossover
process, this study adopts an improved adaptive adjustment function to determine the
probability of the mutation operator’s operation and to improve the efficiency of the
mutation operator [42]. Equation (25) is the adaptive function of mutation probability:

Pm =

 Pm1 − (Pm1−Pm2)( fmax− f )

( fmax− favg)
[
1+exp

(
gen×U

M×popsize

)] , f ≥ favg

Pm1
[1+exp (

gen×U
M×S )] , f < favg

(25)

where pm represents the adaptive mutation probability, pm1 and pm2 are adaptive adjust-
ment parameters and pm1 > pm2, f is the fitness value of chromosomes to be mutated.
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2.4.3. Variable Neighborhood Search Operators

In order to further improve the quality of chromosomes in the population, we added a
neighborhood search operator to the algorithm to perform a deep search for some excellent
solutions. The excellent chromosomes in the population are the operation object of variable
neighborhood search, and the chromosomes in the population are sorted according to fit-
ness from high to low, with the chromosomes in the top half as the excellent chromosomes.
In each neighborhood search operator, a node is chosen in a random manner, the distance be-
tween it and all other nodes is calculated, and the remaining nodes are organized in ascend-
ing order to generate a list of distance values. The variable neighborhood search operator
used in this paper is similar to the neighborhood structure proposed by Sánchez et al. [43].
The following are the variable neighborhood search operators proposed in this paper.

• 2-opt operator

Node i is randomly selected from the chromosome segment. Select the first node from
the list of distance values for node i as node j. If the first node in the distance value list
does not exist in the current chromosome segment, select the next node in turn. The 2-opt
operator disconnects node i from the node behind it and node j from the node behind
it and reconnects node i with node j. This operation will be kept if the fitness improves,
otherwise, the next node in the list of distance values is tried, and the process repeats until
a better chromosome is found or the maximum number of searches is reached. The process
of the 2-opt operator is shown in Figure 5a.

Figure 5. Examples of variable neighborhood search.

• Single node move operator

Node i is randomly selected from the chromosome segment. Select the first node in
the list of distance values for node i as node j. If the first node does not exist in the current
chromosome segment, the next node in the list is selected as node j. The single node move
operator removes node j from its original position and inserts it behind node i, making
node i adjacent to node j. After insertion, the chromosomal fitness value is calculated. The
operation is kept if the fitness was increased, otherwise, the next node in the list of distance
values is tried, and the process repeats until a better chromosome is found or the maximum
number of searches is reached. The process of the single node move operator is shown in
Figure 5b.
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• Double nodes move operator

Two adjacent chromosome nodes are randomly selected. Node i is the first of the two
nodes. Select the first node in the list of distance values for node i as node j. If the first
node does not exist in the current chromosome segment, the next node in the list is selected
as node j. Insert two adjacent nodes containing node i after node j so that node i and node
j are adjacent. The operation was kept if the fitness was increased, otherwise, the next node
in the list of distance values is tried, and the process repeats until a better chromosome is
found or the maximum number of searches is reached. The process of the double nodes
move operator is shown in Figure 5c.

2.4.4. Non-Dominated Sorting and Crowding Distance Calculation

The objective function values of all chromosomes in the population are calculated, and
the crowding distance is calculated. Finally, the Pareto-optimal front is obtained. Let Fmax

m
and Fmin

m be the maximum and minimum values of the mth objective function, respectively,
while Fi−1

m and Fi+1
m are the mth objective function values of the two solutions adjacent to

the ith solution. Then, the crowding distance CDi of the ith solution can be calculated by
Equation (26).

CDi =
M

∑
m=1

(
Fi+1

m − Fi−1
m

Fmax
m − Fmin

m

)
(26)

The new population is selected according to the Pareto-optimal front and crowding
distance. Then, it is judged whether the maximum number of iterations is reached. If the
maximum number of iterations is not reached, return to the genetic evolution process and
continue to iterate. When the maximum number of iterations is reached, the algorithm
is terminated and the Pareto-optimal front is printed. The Pareto-optimal front can be
regarded and thought of as a solution set, including numerous potential delivery schemes.
To determine which of these delivery schemes best fits the needs, the TOPSIS approach is
employed in this study.

2.5. Select the Optimal Solution Strategy

When the Pareto-optimal front is created using the VNS-NSGA-II algorithm, we used
the TOPSIS method to analyze all solutions and select the optimal strategy. The following
are the specific steps:

Step 1: Complete the index homogenization process. The objective function F2 is
adjusted to F′2 = 100− F2 in this study so that it can be minimized alongside F1.

Step 2: Construct the original data matrix. Assume that there are n solutions and m
objective functions in the solution set, then matrix B is shown in Equation (27).

B =


b11 b12 . . . b1m
b21 b22 . . . b2m

...
...

bn1 bn2 . . . bnm

 (27)

Step 3: Vector normalization of indicators:

zij =
bij√
n
∑
i

b2
ij

(28)
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Obtain the normalized matrix Z.

Z =


z11 z12 . . . z1m
z21 z22 . . . z2m

...
...

zn1 zn2 . . . znm

 (29)

Step 4: Determine the optimal scheme Z+ and the worst scheme Z− for each indicator:

Z+ =
(
Z+

1 , Z+
2 , · · · , Z+

m
)

(30)

Z− =
(
Z−1 , Z−2 , · · · Z−m

)
(31)

Step 5: Calculate the proximity of each solution to the optimal scheme and the
worst scheme:

S+
i =

√√√√ m

∑
j=1

ιj

(
Z+

j − zij

)2
(32)

S−i =

√√√√ m

∑
j=1

ιj

(
Z−j − zij

)2
(33)

where ιj is the weight of the jth indicator, which is determined based on actual need.
Step 6: Calculate the closeness of each solution to the optimal solution.

Ci =
S−i

S+
i + S−i

(34)

where 0 ≤ Ci ≤ 1, the closer Ci is to 0, the better the evaluated solution. After selecting the
solution that best fits the requirements using the TOPSIS technique, the decision-making
process is complete.

2.6. Validation of the Simulation Model

In order to verify the validity of the method proposed in this study, we conducted three
experiments, respectively is algorithm comparison experiment, solution selection experi-
ment and real case experiment. The algorithm comparison experiment and solution selec-
tion experiment used R201 dataset from Solomon [44] benchmark. The customer demands
in the dataset are randomly divided into several parts, whose numbers are limited up to
four. The time window is also randomly split into several periods. Python 3.8 programming
is used to carry out the experiment. According to the work of Fan et al. [42], the algorithm’s
parameter settings are connected to the size of the dataset utilized in the experiment as
follows: pc1 = 0.7, pc2 = 0.5, pm1 = 0.01, pm2 = 0.008, maxit = 100 ∼ 300 iterations,
population size popsize = 100 ∼ 200, and maximum field search times St = 15 ∼ 30. The
related parameters for calculating the vehicle travel time and carbon emissions are identical to
those in the work of Liu et al. [45], which are shown as follows: the distribution center’s time
0 is 7:00 a.m., the traffic congestion periods are 8:00~9:00, 18:00~19:00, and the vehicle speed
is 20 km per hour. For the time period h, according to the remainder function η = h mod 3,
η is (1, 2, 0) corresponding to (54, 72, 42) km/h, respectively, with three time-varying veloc-
ities. The correlation coefficients for the carbon emission model are as follows: a0 = 110,
a1 = 0, a2 = 0, a3 = 0.000375, a4 = 8702, a5 = 0, a6 = 0, b0 = 1.27, b1 = 0.0614, b2 = 0,
b3 = −0.0011, b4 = −0.00235, b5 = 0, b6 = 0, b7 = −1.33. The carbon emission price
µ = 0.0528 yuan per kilogram, the time window correlation tolerance coefficient is θ = 0.5,
the driving cost per kilometer is ϕ = 1.3, the fixed usage fee is set at δ = 20, and the single
service cost is set at κ = 3. All the experiments were carried out ten times, with the best result
being chosen. The results of all experiments will be analyzed in detail in the Section 3.
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3. Results and Discussion
3.1. Comparison with Other Efficient Algorithms

This paper compares the VNS-NSGA-II algorithm with other algorithms designed
to solve multi-objective VRP problems. The VNS-NSGA-II algorithm is also compared to
other algorithms designed to solve multi-objective VRP problems. As the VNS-NSGA-II
algorithm is improved on the basis of the NSGA-II algorithm, the NSGA-II algorithm [38]
is selected for comparison in order to verify the improvement. Three neighborhood search
operators are added to the VNS-NSGA-II algorithm, while the many-objective gradient
evolution (MOGE) algorithm [46] also has three search operators. In order to test the
search ability of the variable neighborhood operators, the MOGE algorithm is selected
for comparison.

Both the MOGE algorithm and NSGA-II algorithm are designed to solve multi-
objective VRP. These two algorithms can be applied to the model in this paper. There
are some differences between the two algorithms. The MOGE algorithm is designed on the
basis of the gradient approximation, while the NSGA-II algorithm is designed based on the
laws of biological evolution. The MOGE algorithm uses three operators to explore search
space, improve the quality of the solution, avoid local optima, and promote population
diversity. The NSGA-II algorithm uses two operators to explore search space, which are
used for global search and local search, respectively.

This experiment used datasets of various sizes to verify the efficiency of the VNS-
NSGA-II algorithm provided in this paper. The Pareto-optimal front and convergence
of the VNS-NSGA-II, NSGA-II [38] and MOGE algorithms [46] were compared. For the
experiment, 30, 50, 70, and 100 customers were chosen from the datasets. According to
Wang et al. [35], the fresh agricultural products in this experiment are classified into four
types based on their required temperatures. For simplicity, we use A, B, C and D for different
types of products. For each type of agricultural product, a time-sensitive regulatory factor
r was assigned [26]. Table 2 shows the features of each scale dataset, including the number
of customers, the number of vehicles, the total demand, the type of agricultural products,
the value of time-sensitive adjustment factors, and the unit price of agricultural products.
Figure 6 shows the Pareto-optimal front of each algorithm obtained in the experiment.
Table 3 shows the optimal value of each objective function in the Pareto-optimal front of
each algorithm. It should be noticed, however, that TTC in Table 3 represents the total cost.
The optimal total cost and satisfaction values, as well as the number of iterations, is shown
in Figure 7. Table 3 and Figure 7 show the total costs and satisfaction for two different
solutions. Next, we will analyze these figures and tables in detail.

Table 2. Characteristics of datasets of different sizes.

Number of
Customers

Number of
Vehicles

Total
Demand Type of Agricultural Products Unit Price of

Agricultural Products

30
8

520
A 10
B 12

50
15

860
A 10
B 12

70

20

1210

A 10
B 12
C 15
D 20

100

25

1810

A 10
B 12
C 15
D 20
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Figure 6. Pareto-optimal front comparison of different customer sizes.

Figure 7. Comparison of convergence of algorithms.

Table 3. Experimental results of algorithm comparison.

Number of
Customers

Total
Demand

VNS-NSGA-II NSGA-II MOGE Compared with NSGA-II Compared with MOGE

TTC Satisfaction TTC Satisfaction TTC Satisfaction TTC
Reduction %

Satisfaction
Increases

TTC
Reduction %

Satisfaction
Increases

30 520 2212.50 96.64 2301.80 90.36 2260.71 91.86 3.88% 6.28 2.13% 4.79
50 860 3608.27 93.44 3844.34 87.57 3681.60 88.77 6.14% 5.87 1.99% 4.66
70 1210 4246.75 88.44 4865.36 79.52 4687.99 80.96 12.71% 8.92 9.41% 7.49

100 1810 4689.05 84.51 5674.60 70.48 5642.77 75.51 17.37% 14.03 16.90% 8.99
Mean 1100 3689.14 90.76 4171.52 81.98 4068.27 84.27 10.03% 8.77 7.61% 6.48
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(1) Comparison of Pareto-optimal fronts

Figure 6 shows the Pareto-optimal front results obtained by three algorithms under
four different data sizes. Each chart’s horizontal coordinate shows the total cost, while the
vertical coordinate measures customer satisfaction. Each point in the graph corresponds to
a solution in the Pareto-optimum front determined by the corresponding algorithm. As
illustrated in Figure 6, the solutions provided by the VNS-NSGA-II algorithm described in
this paper dominate all other algorithms’ solutions at various customer scales. The VNS-
NSGA-II algorithm offers a more uniform solution distribution and fewer concentrated
solutions, which means that the Pareto-optimal solution set obtained by VNS-NSGA-II is
of better quality.

Table 3 shows the results of algorithm comparison experiments under four different
data scales. The optimal value of a single optimization objective is found from the Pareto-
optimal front obtained by each algorithm for comparison. Note that the total cost and
satisfaction in the same algorithm with the same data size may belong to two different solu-
tions. As shown in Table 3, the VNS-NSGA-II algorithm developed in this paper achieved
the optimal results for both optimization objectives across all scales of datasets. The total
cost is lowered by 10.03% when compared to the NSGA-II algorithm, and satisfaction
is increased by 8.77 points. The total cost is decreased by 7.61% when compared to the
MOGE algorithm, and satisfaction is increased by 6.48 points. In terms of the total cost, the
VNS-NSGA-II algorithm outperforms the other two algorithms significantly. The greater
the scale of the data, the more saved cost would be. When the customer size is 100, the
VNS-NSGA-II algorithm can achieve an improvement of double digits in result values of
total cost and satisfaction compared with the other two algorithms. The level of satisfaction
optimization is also proportional to the customer scale. The above-mentioned results reflect
that VNS-NSGA-II is superior and more appropriate for solving large-scale problems. The
VNS-NSGA-II algorithm can produce better solutions compared with the NSGA-II algo-
rithm and the MOGE algorithm The excellent performance of the VNS-NSGA-II algorithm
can be mainly attributed to the two following reasons:

1. The VNS-NSGA-II algorithm is adaptive to the probability of crossover and mutation,
which means that it can adjust the probability of crossover and mutation dynamically
based on fitness, evolutionary algebra and the number of unchanged individuals
during the evolution process, thereby minimizing the destruction of good solutions
and ensuring population diversity. The adaptive function enhances the algorithm’s
search capability and prevents premature convergence.

2. The variable neighborhood search operators in VNS-NSGA-II reduce the possibility of
the algorithm falling into the local optimum. Three mature neighborhood structures
in variable neighborhood search operators increase the diversity of neighborhood
space. The neighborhood space diversity is proportional to the offspring diversity.
Greater neighborhood space diversity also represents the easier identification of the
global optimal solution [47].

(2) Comparison of convergence

The comparison of algorithm convergence results is depicted in Figure 7. This ex-
periment was conducted using a dataset of 100 customers. The horizontal coordinate of
Figure 7 represents the number of iterations of the algorithm, the left vertical coordinate
represents total cost, and the right vertical coordinate represents customer satisfaction. The
solid line represents the optimal values of the total cost obtained by different algorithms,
while the dotted line represents the optimal values of customer satisfaction obtained by
different algorithms. Figure 7 shows the differences in convergence among the three algo-
rithms. The total cost and satisfaction of the VNS-NSGA-II algorithm converge rapidly,
the total cost converges after 142 iterations, and the satisfaction converges after 49 itera-
tions. The MOGE and NSGA-II algorithms did not converge within 200 iterations. The
VNS-NSGA-II algorithm has a faster convergence speed and can generate better values for
objective functions.
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3.2. Analysis of Optimal Solution Selection

The primary purpose of the method suggested in this paper is to develop a clear and
effective distribution scheme for fresh agricultural products. Thus, after generating the
Pareto-optimal solution set using the VNS-NSGA-II algorithm, it is important to select a
solution and decode it as a distribution plan using the TOPSIS method. In this experiment,
the dataset of 100 customers is used as an example, and the TOPSIS method is used to
select the most suitable solution from the Pareto-optimal front. Figure 8 illustrates the
Pareto-optimal front of 100 customers. The horizontal coordinate of Figure 8 represents
the total cost, and the vertical coordinate represents customer satisfaction. Each point in
the graph represents a solution in the Pareto-optimal front. Table 4 shows the process of
evaluating each solution in Figure 8 using the TOPSIS method. As indicated in Table 4,
the TOPSIS method is utilized to determine the S+

i , S−i and Ci values for each solution.
The filtered solution is compared to the solution with the ideal index values, as shown in
Table 5. Note, however, that CC in Table 5 is the cost of carbon emissions and RC is the cost
of refrigeration. The data in Tables 4 and 5 will be analyzed in detail next.

Figure 8. Distribution of 100 customers’ Pareto-optimal front.

Table 4. Evaluation of results using the TOPSIS approach.

No. TTC Satisfaction S+
i S−i Closeness Ci

1 7159.35 85.33 0.15324 0.07745 0.33572
2 6669.93 84.23 0.14917 0.06207 0.29384
3 6339.67 83.36 0.14683 0.05212 0.26196
4 6132.93 82.36 0.14382 0.04670 0.24512
5 5916.87 81.31 0.14107 0.04191 0.22905
6 5720.60 79.56 0.13560 0.04074 0.23101
7 5470.51 76.94 0.12784 0.04415 0.25670
8 5413.11 75.86 0.12433 0.04738 0.27591
9 5304.79 73.74 0.11767 0.05464 0.31709
10 5176.35 71.30 0.11072 0.06388 0.36585
11 5083.69 69.12 0.10476 0.07280 0.41003
12 5029.63 67.43 0.10022 0.07997 0.44381
13 4990.14 65.90 0.09622 0.08657 0.47360
14 4924.46 63.60 0.09103 0.09657 0.51477
15 4877.52 61.75 0.08737 0.10469 0.54507
16 4813.10 59.75 0.08457 0.11347 0.57296
17 4787.05 57.70 0.08147 0.12251 0.60062
18 4770.79 55.69 0.07903 0.13145 0.62454
19 4755.34 53.77 0.07760 0.13995 0.64331
20 4724.00 50.77 0.07745 0.15324 0.66428
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Table 5. Comparison of selected solution and optimal value.

No. TTC CC RC Number of
Vehicles Used

Average
Loading Rate Satisfaction

1 7159.35 11.65% 34.13% 22 43.67% 85.33
5 5916.87 7.79% 26.46% 15 59.72% 81.31

20 4724.00 5.83% 16.51% 12 74.92% 50.77

We need to choose an appropriate solution based on the data in Table 4. Given that the
objective function in this paper is to reduce the total cost and TOPSIS minimizes satisfaction,
the smallest value should be chosen from the final closeness degree Ci. As a result, solution
No. 5 should be chosen as the final delivery strategy. Figure 8 illustrates the location of
solution No. 5 in the distribution of 100 customers’ Pareto-optimal front. Solution No. 1
has the highest satisfaction value, while solution No. 20 has the lowest total cost value.
While solution No. 5 provides 4.02 points less satisfaction than solution No. 1, the total cost
is lowered by 17.4%. Although the total cost of solution No. 5 is 20.2% greater than that of
solution No. 20, the satisfaction value of solution No. 5 is 30.54 points greater than that of
solution No. 20. Taken together, solution No. 5 is an equilibrium solution in the middle of
the weight setting’s extreme values.

In Table 5, the total cost of solution No. 5 is compared with the total cost of solution
No. 1 and solution No. 20, which include the proportion of carbon emission cost to the total
cost, the proportion of refrigeration cost to the total cost, the number of vehicles used, and
the average load rate and satisfaction. Solution No. 1 has the highest customer satisfaction
but also the highest total cost, and solution No. 20 has the lowest total cost but the worst
customer satisfaction. The total cost and customer satisfaction of solution No. 5 are between
solutions No. 1 and No. 20. It can be determined that the number of vehicles used must
grow, while the average loading rate must drop in order to boost customer satisfaction.
Additionally, more vehicles will lead to increased carbon emissions and cooling costs, and
refrigeration costs will increase as well; on the other hand, to reduce total costs, the number
of vehicles will be reduced, the average loading rate will be increased, and consequently,
fewer delivery vehicles will delay the delivery of produce from the distribution center,
lowering carbon emissions and cooling costs.

From the foregoing study, it is clear that the TOPSIS method can well screen out the
suitable solutions from the Pareto-optimal solution set.

3.3. Optimisation of the Fresh Agricultural Products Distribution Routes for the e-Commerce
Business in the Sample

In order to verify the effectiveness of the TDSDGVRPMTW model in reality, this study
uses a case in Shanghai to compare and analyze the differences between the three delivery
strategies. The current common distribution strategy for fresh agricultural products is to
distribute all types of products in one vehicle at one temperature without split delivery
or to use multi-compartment vehicles for multi-temperature distribution. According to
the two delivery strategies and the mathematical model proposed in this paper, the two
delivery strategies can be modeled as a time-dependent green vehicle routing problem
with a time windows model (TDGVRPTW) and a time-dependent multi-compartment
green vehicle routing problem with a time windows model (TDMCGVRPTW). Among
them, the TDMCGVRPTW model adopts the method from Reed et al. [3]. Therefore,
the three strategies involved in the comparison are TDGVRPTW, TDMCGVRPTW and
TDSDGVRPMTW.

We used the distribution data from an e-commerce business of fresh agricultural
products in Shanghai. The data of one distribution center and 24 customers are shown in
Table 6, including the locations of the distribution center, individual customers, demand,
types of demand and time windows. Note, however, that the latitude and longitude of the
customer’s location are converted to X/Y coordinates for convenience. Types represent the
types of fresh agricultural products that customers need. All types of fresh agricultural
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products in a refrigerated vehicle are loaded, and a certain temperature for delivery is set.
The storage temperature of the vehicle is determined by the lowest temperature required
among all types of fresh products. This is the company’s current distribution strategy.
The corresponding cost is calculated based on the company’s actual distribution schemes
and the constraints of the mathematical model established in this paper. According to
the real vehicle data from the company, the total number of available vehicles is adjusted
to QL = 15 and the maximum capacity is adjusted to QK = 1500. Other than that, all
other parameters remain the same as in Section 2.6. Table 7 shows the relevant data for
each model. Note that TC in Table 7 is the travel cost, FC is the fixed cost, and SC is the
service cost. The relevant data of the TDGVRPTW model in Table 7 is the calculation
result. The data corresponding to the TDMCGVRPTW model and the TDSDGVRPMTW
model in Table 7 are obtained by using the VNS-NSGA-II algorithm and TOPSIS method
proposed in this paper. Note, however, that Gap_mc in Table 7 refers to the difference
between the related data of TDMCGVRPTW and TDGVRPTW, and Gap_sd refers to the
difference between the related data of TDSDGVRPMTW and TDGVRPTW. Figure 9 is
a comparison of all data of the three models. Each column in the figure represents the
total cost of a model, where different colors represent different itemized costs. Broken
lines represent customer satisfaction for different models. The scale on the left of the
vertical coordinate corresponds to the value of total cost, while the scale on the right of
the vertical coordinate corresponds to the value of satisfaction. The data presented in
Table 8 can be used to analyze the different choices made by companies on the basis of
different strategies when they have to give up part of the customer orders or the number of
vehicles is limited. Table 8 shows the quantity and on-time rate of delivery of each type
of agricultural product under three different strategies. On-time delivery means that the
vehicle completes the delivery service for the customer within the customer’s time window,
under the circumstance of which the customer satisfaction is greater than 0. Note, that PD
refers to the number of items delivered punctually. Proportion means the percentage of
the quantity of products delivered punctually in the total demand for that type of product.
Refrigeration cost per minute represents the refrigeration cost per minute for preserving the
corresponding type of product. Total demand refers to the total demand of all customers
ordering the corresponding type of product.

Table 6. Relevant data of distribution center and 24 customers.

No. X Y Demand (kg) Ready Time Due Time Types

0 31 47 0 5:00 17:30
1 37 61 500 6:30 8:30 A, B
2 31 29 350 5:30 8:30 A
3 51 57 600 6:00 9:00 A
4 51 32 900 12:00 15:00 B, C
5 11 42 1200 8:00 12:00 A, D
6 21 42 100 15:00 16:00 B
7 16 62 250 6:00 11:00 A, C
8 6 55 400 7:30 10:00 A, B
9 51 72 800 9:00 10:30 C

10 26 72 750 11:00 11:30 B
11 16 77 600 7:30 9:30 D
12 46 47 800 6:00 8:00 A, C
13 26 37 1150 10:00 11:30 B, D
14 11 22 1000 5:00 7:00 A, C
15 26 17 400 14:30 16:30 A, D
16 6 32 900 5:30 7:00 C
17 1 42 150 6:00 8:00 A
18 16 52 500 7:00 8:30 D
19 11 72 800 6:30 8:00 B, C
20 41 77 450 8:30 9:30 A
21 41 32 500 7:30 10:30 B, C
22 41 22 850 13:00 14:30 A
23 51 17 1450 7:00 12:00 A, D
24 61 47 150 9:00 11:30 B
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Table 7. Comparison of three delivery strategies.

TTC TC FC SC RC CC Satisfaction

TDGVRPTW 2680.95 1194.32 260.00 72.00 861.88 292.75 76.36
TDMCGVRPTW 2587.27 1317.44 260.00 117.00 594.55 298.28 68.15

TDSDGVRPMTW 2525.17 1246.67 220.00 174.00 603.89 280.60 87.04
Gap_mc −93.68 123.12 0.00 45.00 −267.33 5.53 −8.21
Gap_sd −155.78 52.35 −40.00 102.00 −257.98 −12.15 10.68

Figure 9. Total cost and satisfaction comparison of different models.

Table 8. The quantity of each type of product delivered punctually under three strategies.

A B C D

PD Proportion PD Proportion PD Proportion PD Proportion

TDGVRPTW 4450 78.21% 3060 71.66% 2795 75.95% 1245 65.18%
TDMCGVRPTW 3525 61.95% 2730 63.93% 2645 71.88% 1435 75.13%

TDSDGVRPMTW 5290 92.97% 3770 88.29% 3020 82.07% 1375 71.99%
Refrigeration cost per minute 0.65 0.68 1.02 1.13

Total Demand 5690 4270 3680 1910

As shown in Table 7 and Figure 9, the proportion of each cost in the total cost is
roughly the same despite the different strategies taken, which shows that the delivery
schemes produced by the method with two different models in this study are feasible.
TDGVRPTW and TDMCGVRPTW have the same fixed cost, which means that the two
strategies use the same number of vehicles. Compared with the RC of TDGVRPTW, the
RC of TDMCGVRPTW and TDSDGVRPMTW has been greatly reduced, which shows
that both the multi-compartment distribution strategy and the split delivery with a single
compartment distribution strategy can greatly reduce the refrigeration cost.

However, it can be found that there are many differences between the three dis-
tribution strategies. As shown in Table 7 and Figure 9, the total cost and satisfaction
of TDSDGVRPMTW are optimal among the three delivery strategies. The total cost of
TDSDGVRPMTW is 5.81% lower than that in TDGVRPTW, and the satisfaction of TDS-
DGVRPMTW is 10.68 points higher than that in TDGVRPTW. In other words, the dis-
tribution strategy of split delivery with a single compartment proposed in this paper
can reduce the total cost and improve satisfaction. For the total cost, FC, RC and CC of
TDSDGVRPMTW are all lower than those in TDGVRPTW. Although TDSDGVRPMTW
is higher than TDGVRPTW in terms of TC and SC, the small difference will not trigger
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a large increase in TTC. Comparing TDMCGVRPTW with TDGVRPTW, it can be found
that although the TTC of TDMCGVRPTW is 3.49% lower than that of TDGVRPTW, the
customer satisfaction of TDMCGVRPTW is 8.21 points lower than that of TDGVRPTW.
This means that the strategy reduced total costs at the expense of satisfaction. The RC of
TDMCGVRPTW is lower than those of TDGVRPTW, but the TC, SC and CC are higher than
those of TDGVRPTW. A high CC means that more carbon emissions are generated, which
is not conducive to environmental protection.

As shown in Table 8, customers have the largest demand for A and the smallest
demand for D. A has the lowest refrigeration cost, while D has the highest refrigeration
cost. Three different delivery strategies show three different ways of allocating shipping
capacity. The on-time rates of delivery of TDGVRPTW to A, B, and C are similar, which
shows that the strategy will choose not to deliver the products with the lowest demand and
the highest refrigeration cost when the number of vehicles is limited and some customer
orders must be abandoned. TDMCGVRPTW has lower on-time rates of delivery for A
and B than it does for C and D. This suggests that the strategy will choose to not deliver
products that are in greater demand and have lower refrigeration costs when the number of
vehicles is limited. This result is consistent with the findings of Hsu and Chen [2]. However,
this strategy produces very low satisfaction. TDSDGVRPMTW has lower on-time rates of
delivery for C and D than for A and B, which suggests that the strategy will not deliver
products with lower demand and higher refrigeration costs when the number of vehicles
is limited. The on-time rate of delivery of this strategy for each product is much higher
than that of TDGVRPTW, which is why the satisfaction of this strategy is higher than that
of TDGVRPTW.

From the above analyses of results shown in this experiment, it can be concluded that
the distribution strategy represented by TDSDGVRPMTW is most suitable for the real-
world case presented in this study. There are many differences between the experimental
results of TDSDGVRPMTW and TDMCGVRPTW. Comparing the results of this experiment
with research on multi-compartment vehicle routing problems [2–4], it can be found that
the reasons for these differences are as follows:

1. Split delivery would allow customers ordering multiple agricultural products to be
served by multiple vehicles, meaning that each vehicle would serve more customers
and travel longer routes, which leads to higher travel costs and service costs. However,
split delivery keeps each product at the optimum temperature for transport, which
greatly reduces refrigeration costs and lowers the total cost.

2. Split delivery allows each vehicle to deliver a smaller number of products to customers,
which leads to a shorter service time that makes the vehicle more likely to finish each
delivery and leave the customer within the optimal service time window, resulting
in higher customer satisfaction. Another reason for the high level of satisfaction is
that TDSDGVRPMTW chooses to refuse orders with products of small quantity and
prioritizes serving customers ordering products of large quantity.

3. Divide a vehicle’s compartment into multiple sections. Each of them transports one
type of agricultural product with different optimum temperatures as needed. Al-
though this can reduce refrigeration costs, if a customer’s demand for a certain type of
agricultural product exceeds the capacity of the divided compartment, multiple deliv-
eries are required to meet the customer’s demand for this type of agricultural product
and more vehicles are needed, leading to high travel costs and carbon emissions.

4. Customers have multiple time windows to choose and therefore vehicles have more
opportunities to arrive at locations and complete services during a certain time win-
dow. The advantages of multiple time windows over a single time window will be
leveraged, especially when a customer needs to be served by vehicles multiple times.
One customer in TDMCGVRPTW needs the service of multiple vehicles, however,
each customer has only one time window, and consequently many vehicles arrive
at the location of the customer out of the time window, leading to very low cus-
tomer satisfaction. Another reason for the low satisfaction is that TDMCGVRPTW
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chooses to refuse many orders for items that are in high demand, leaving many
customers unserved.

5. Therefore, the number of vehicle compartments, the capacity of each compartment,
and the number of product types demanded by customers are the factors that deter-
mine why TDMCGVRPTW chooses not to deliver products that are in high demand
and TDSDGVRPMTW chooses the opposite. The compartment of the vehicle in
TDMCGVRPTW is divided into four parts. When a customer’s demand for a certain
product exceeds the compartment capacity, multiple vehicles are required to deliver
the same product to that customer. When the number of vehicles needed to serve the
customer exceeds the number of types of products the customer orders, the service
cost is too high and the order will be refused by TDMCGVRPTW. Therefore, under this
circumstance, the advantages of TDSDGVRPMTW over TDMCGVRPTW can be ob-
served. In terms of product types, TDSDGVRPMTW needs fewer vehicles to complete
the distribution to the customer with lower service costs, thus, this customer order
will not be refused. When the number of such customers is large, TDSDGVRPMTW
would naturally become the best strategy.

4. Conclusions

This paper presents a study on the split delivery vehicle routing problem that arises
in the distribution of fresh agricultural products. A mathematical model considering
travel cost, fixed cost, service cost, refrigeration cost, carbon emission cost and customer
satisfaction was developed to find an optimal solution for the problem. In this paper, time-
varying road network constraints are added to the model and multiple time windows are
set for each customer. To solve this problem, a variable neighborhood search combined with
the non-dominated sorting genetic algorithm II (VNS-NSGA-II) and techniques for order
preference by similarity to an ideal solution (TOPSIS) are proposed and applied. In the stage
of genetic evolution, adaptive functions are used to dynamically adjust the probability of
crossover and mutation. Moreover, the variable neighborhood search operators are added
to enhance the search abilities of the algorithm. After the Pareto-optimal front is obtained,
the TOPSIS method is used to screen out the solutions that meet the needs.

In this paper, the VNS-NSGA-II algorithm, MOGE algorithm and NSGA-II algorithm
are compared in terms of the Pareto-optimal front and convergence of the algorithm using
Solomon’s benchmark of different sizes. For benchmark instances with customer sizes of 30,
50, 70, and 100, the VNS-NSGA-II algorithm can obtain a better Pareto-optimal front than
NSGA-II and MOGE. In terms of the average total cost, VNS-NSGA-II is 10.03% lower than
NSGA-II, and 7.61% lower than MOGE. In terms of satisfaction, VNS-NSGA-II is 8.77 points
higher than NSGA-II and 6.48 points higher than MOGE. In terms of convergence, the total
cost of the VNS-NSGA-II algorithm converges after 142 iterations, while the satisfaction
converges after 49 iterations, and the number of iterations is smaller than the other two
algorithms. It is proved that the VNS-NSGA-II algorithm has better search efficiency
and the Pareto-optimal front is appropriate to be applied in the case of this study. The
optimal solution selection experiment also proves that the TOPSIS method can select the
appropriate solution from the Pareto-optimal front. Finally, the results of a real-world case
show that the TDSDGVRPMTW solution proposed in this paper is better than the existing
solutions of TDGVRPTW and TDMCGVRPTW. The total cost of the TDSDGVRPMTW
solution was 5.81% lower than the existing solution and the satisfaction was 10.68 points
higher. Although the TDMCGVRPTW solution is 3.49% lower than the existing solution in
terms of the total cost, satisfaction is 8.21 points lower than the original solution.

The contributions of this paper include the first multi-objective optimization model of
TDSDGVRPMTW for fresh agricultural product distribution and propose the VNS-NSGA-
II algorithm to find the Pareto-optimal front and select the appropriate solution with the
TOPSIS method. The experiment verified the advantages of this method and found that
the model of TDSDGVRPMTW can effectively reduce the cost of fresh agricultural product
distribution and improve customer satisfaction. Enterprises can use the method proposed
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in this paper to model and select from different distribution strategies, so as to find the
optimal one that suits their needs.

Comparing the experimental results in this study with those from Chen et al. [4],
Reed et al. [3] and Hsu and Chen [2] can provide some insights into distribution management.
The customer’s demand, the number of types of products that the customer orders, and the
capacity of each compartment in the multi-compartment delivery system, are the major fac-
tors that determine whether to use delivery by use of a multi-compartment vehicle or split
delivery by a single compartment vehicle. As shown in the experiment of Reed et al. [3], it
is reasonable to use multi-compartment vehicles for delivery when the customer requires
several types of products and the customer’s demand for a certain product does not exceed
the capacity of each compartment. The experiment of a real case in this study shows that it
is reasonable to split delivery with a single compartment vehicle when a customer requires
a few types of products and the customer demand for a certain product exceeds the capacity
of each compartment. The experiments in this paper also found that loading all types of
fresh agricultural products in a vehicle and setting one single temperature for distribution
is worse than the above two strategies.

On the other hand, this study has some limitations. In this paper, the calculation of
carbon emissions does not consider the road slope, and it is not accurate enough since it only
considers the vehicle speed, load weight and travel distance. Although the VNS-NSGA-II
algorithm proposed has a good performance, there is still room for further optimization. For
example, some heuristics are added in the initial population generation stage to improve
the quality of the initial population. In this paper, the TOPSIS method is selected to
screen suitable solutions from the solution set and to represent the effectiveness of this
method. However, there are many multi-attribute decision-making methods, such as
the elimination and choice expressing reality (ELECTRE) method, the preference ranking
organization method for enrichment evaluations (PROMETHEE) method, and the analytical
hierarchal process (AHP) method, and so on. In future, these methods can be applied to
compare with the TOPSIS methods and to find more suitable ones for future research on
TDSDGVRPMTW. In addition, it was found that the number of types of products needed
by customers, the quantity of each ordered product, and the capacity of each compartment
in a multi-compartment vehicle were factors that have an impact on what delivery strategy
should be selected. Furthermore, how each factor affects the selection of delivery strategies
is worth further study.
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