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Abstract: Increasing the maize production capacity to ensure food security is still the primary goal
of global maize planting. The purpose of this study was to evaluate genotypes with high yield
and stability in summer maize hybrids grown in the Huanghuaihai region of China using additive
main effects and multiplicative interaction (AMMI) analysis and best linear unbiased prediction
(BLUP) technique. A total of 18 summer maize hybrids with one check hybrid were used for this
study using a randomized complete block design (RCBD) with three replicates at 74 locations during
two consecutive years (2018–2019). A three-way analysis of variance (ANOVA) and an AMMI
analysis showed that genotype (G), environment (E), year (Y) and their interactions were highly
significant (p < 0.001) except G × E × Y for all evaluated traits viz., grain yield (GY), ear length (EL),
hundred seed weight (HSW) and E× Y for hundred seed weight. The first seven interaction principal
components (IPCs) were highly significant and explained 81.74% of the genotype by environment
interaction (GEI). By comparing different models, the best linear unbiased prediction (BLUP) was
considered the best model for data analysis in this study. The combination of AMMI model and
BLUP technology to use the WAASB (weighted average of absolute scores from the singular value
decomposition of the matrix of BLUP for GEI effects generated by linear mixed model) index was
considered promising for similar research in the future. Genotypes H321 and Y23 had high yield and
good stability, and could be used as new potential genetic resources for improving and stabilizing
grain yield in maize breeding practices in the Huanghuaihai region of China. Genotypes H9, H168,
Q218, Y303 and L5 had narrow adaptability and only apply to specific areas. The check genotype
Z958 had good adaptability in most environments due to its good stability, but it also needs the
potential to increase grain yield. Significant positive correlations were also found between the tested
agronomic traits.

Keywords: Zea mays L.; AMMI model; BLUP; GEI; WAASB

1. Introduction

Maize (Zea mays L.) (2n = 20) is one of the most important crops on the earth, and the
large-scale cultivation of maize plays a vital role in the continuous growth of the world’s
population [1–3]. Although a large number of crops have been planted and harvested all
over the world, only four crops accounted for half of the global primary crop production in
2018, of which maize accounted for 13% of the total production with 1.1 billion tons, larger
than rice (9%, 0.8 billion tons) and wheat (8%, 0.7 billion tons), while China produced about
25 percent of the world output of maize [4].
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Field crops such as maize are often affected by environmental conditions. Therefore,
some genotype responses are different depending on the genotype by environment interac-
tion (GEI) effects formed by the joint actions of genotypes and environments [5–7]. The
phenotype of different genotypes may be constant in various environments, while others
show significant differences in different environments [8]. The key to improving agricul-
tural production is to increase agricultural efficiency in the use of resources (increasing
productivity per hectare and per dollar), which includes a better understanding of GEI
and how it is used [6,9]. If there is no GEI, a single genotype of maize yields the highest
worldwide, and the variety trials only need to be conducted in one location to provide
universal results. It is necessary for plant breeders to examine the relationship between
yield traits in order to determine appropriate selection criteria for breeding programs. The
multi-environment trials (METs) are conducted annually on all major crops around the
world, which are expensive but necessary to lead to the release and recommendation of new
genotypes. METs are essential because genotype evaluation is complicated by differential
responses of genotypes in different environments due to the presence of GEI [10–12].

In order to achieve the purpose of understanding and interpreting GEI, researchers
have developed different statistical methods and have used these methods to study the
grain yield and stability of maize genotypes [13–16]. Among the many analysis methods,
the additive main effects and multiplicative interaction (AMMI) model is one of the most
widely used methods in the analysis of METs [17]. The AMMI model uses analysis of
variance (ANOVA) for additive or main effects followed by principal component analysis
(PCA) for multiplicative or interactive effects. The graphical tools of this approach have
special features in the simultaneous evaluation of trait performance and stability, as well
as in the delineation of mega-environments and the selection of narrow adaptations. In
addition, the AMMI model also has an extensive stability evaluation system [18,19]. The
AMMI model has been widely used to analyze METs for two purposes, namely under-
standing the complex GEI and increasing accuracy [20]. Regarding the AMMI model,
Gauch [21] reported a new program called AMMISOFT, which facilitates AMMI analysis
to help accelerate crop improvement. This procedure has been widely used by researchers
from various countries [22–24]. Apart from the advantages, the AMMI model also has
shortcomings. For example, a sensitivity to the presence of individual outliers [25], and a
lack of successful cases of linear mixed-effects model (LMM) analysis [26]. Olivoto et al. [26]
merged the features of the AMMI model and the best linear unbiased prediction (BLUP)
technique. One novel statistical parameter, WAASB (weighted average of absolute scores
from the singular value decomposition of the matrix of best linear unbiased predictions for
the genotype × environment interaction effects generated by linear mixed effect model),
was brought for the selection of genotypes based on mean performance and stability. The
combination of the AMMI graphical tool and the predictive accuracy of BLUP has been
widely used in GEI studies [27–29].

The objectives of this study were to evaluate 19 representative summer maize hybrids
in seven provinces, at 37 locations, and planted for 2 consecutive years (combination of
year and location generated 74 environments), in order to study how yield components
of summer maize hybrids were affected by the GEI and to identify genotypes with high
yielding and stable performance, and the relationship between various yield components
has also been studied.

2. Materials and Methods
2.1. Plant Materials, Locations and Experimental Design

In this study, 18 advanced maize genotypes and one check hybrid were studied for
two years (2018 and 2019) at 37 locations across seven provinces based on a randomized
complete block design (RCBD) with three replications. A characteristics and distribution
map of the participating genotypes and individual locations are shown in Tables S1 and S2
and Figure S1. The plot at each location was composed of five rows with 0.6 m spacing
between rows, and the area of each plot had 20.1 m2 in size. Plant density was set at
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75,000 plants per hectare for all evaluated hybrids in each location. The experimental data
used in this study was a mixed yield data from the two years, 2018 and 2019. During the
study period, the field managements for each location site were suited to local management
measures without any obvious nutrient or water limitation.

2.2. Measurements

The agronomic traits measured in this study were as follows:
Grain yield (t/ha): When physiologically mature, an area of 12.1 m2 was harvested

manually (three rows in the center of each plot, 6.7 m long), and the grain weight was
measured. The grain moisture content was measured with a portable moisture meter
(PM8188, Kett Electric Laboratory, Tokyo, Japan). Grain yield was adjusting the moisture to
14% and converting the unit to tons per hectare.

Ear length (cm): At physiological maturity of the evaluated hybrids, 10 maize ears
were manually harvested in the first row or the last row of each plot, and the ear length
was measured from the bottom to the highest point, and the average number was obtained.

Hundred seed weight (g): A total of 100 maize seeds were randomly selected and weighed.

2.3. Statistical Analysis
2.3.1. Linear Mixed Model

The yield components data were analyzed using the linear mixed model, represented
by the following equation.

Yger = µ + αg + βe + (αβ)ge + wer + εger (1)

where Yger is the observations of the yield components of genotype g in the environment e
and block r, µ is the mean effect, αg is the fixed effect of genotype g, βe is the random effect
of environment e, (αβ)ge is the random effect interaction of genotype g in environment e,
wer is the random effect of block r in environment e, and εger is the experimental error effect
associated with the gth genotype, the rth block and the ith environment, which is assumed
to be a normal independent distribution, with a mean of 0 and a variance of σ2 [30]. The
linear mixed model analysis was performed using the metan 1.14.0 packages [31].

2.3.2. AMMI Model Analysis

The AMMI model integrates standard ANOVA and principal component analysis
(PCA) to determine the interaction principal component (IPC) to calculate stability parame-
ters. The AMMI model can be summarized by the following equation.

Yger = µ + αg + βe + ∑
n
λnγgnδen + ρge + εger (2)

where Yger represents the yield of genotype g in environment e for replicate r; µ represents
the grand mean, αg and βe represent the genotypes and environments deviation from µ,
respectively; λn represent the nth singular value of interaction principal component (IPC);
γgn and δen are the eigenvector values of genotype g and environment e of component
n, respectively; ρge represents the residual of AMMI model; εger represents the error [32].
The GEI sum of squares (SS) related to “Noise” (GEIN) is calculated by multiplying the
mean square of the error and the degrees of freedom related to GEI, and then the GEI SS
related to “Signal” (GEIS) is calculated as the difference between the total GEI SS and GEIN.
A three-way ANOVA and AMMI analysis were conducted with the package qdata by R
software version 4.0.1 (R Core Team, 2020, R Foundation for Statistical Computing, Vienna,
Austria) and AMMISOFT version 1.0 (Soil and Crop Sciences, Cornell University, Ithaca,
NY, USA), respectively. For statistical significance, we used the most reliable FR test, which
can better optimize the prediction accuracy [33].
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2.3.3. BLUP Technique

In the BLUP method, the effects of genotype and genotype by environment interaction
(GEI) are considered to be random. Contrary to the AMMI model, a linear mixed model is
used, and the formula is as follows:

Y = Xβ + Zu + ε (3)

where β is the data vector of the fixed unknown effect (the average value of the block in
each environment), u is the GEI + genotype effect, X and Z represent the matrix involving
β, u and Y, and ε is the random errors’ vector. In order to better predict the AMMI family
model and the BLUP model, root mean square prediction difference (RMSPD) estimates
were used to compare [34]. The variance components of agronomic traits were estimated
by restricted maximum likelihood (REML) using the metan 1.14.0 package [31].

2.3.4. Combining of AMMI Analysis and BLUP Techniques

We used the method introduced by Olivoto et al. [26] in this study, combining the
AMMI analysis and BLUP techniques. The stability index of each genotype in METs called
WAASB (the weighted average of absolute scores from the singular value decomposition
of the matrix of best linear unbiased predictions for the GEI effects generated by a linear
mixed-effect model) index was calculated by the following formula:

WAASBi =
∑

p
k=1|IPCAik × EPk|

∑
p
k=1 EPk

(4)

where WAASBi is the weighted average of absolute scores of the ith genotype; IPCAik is
the score of the ith genotype in the kth interaction principal component axis (IPCA). In
the usage of the traditional AMMI model, singular value decomposition (SVD) is used to
decompose the matrix with additive model residuals into k IPCAs, and scores are obtained
by the SVD of the GEI effects obtained in the linear mixed effects model, and EPk is the
amount of the variance explained by the kth IPCA. Genotypes with a lower WAASB value
are considered to be more stable genotypes, on the contrary, a genotype with a higher
WAASB value is generally considered to be unstable.

3. Results
3.1. The Prediction Accuracy of BLUP and AMMI Model

Root mean square prediction difference (RMSPD) is used to predict the accuracy of
BLUP and AMMI models of the yield components, and the display results are based on the
average of 200 predictions of RMSPD for each test model (Tables S3–S5). The model with
the smallest RMSPD value is defined as the most accurate prediction, and vice versa. For
grain yield, BLUP was the most accurate prediction model among all evaluated models.
The highest genotypic mean based on BLUP prediction was L808 (11.2 t/ha), followed by
L206 (11.1 t/ha), H9 (11.0 t/ha), Q218 (11.0 t/ha) and Y303 (10.9 t/ha) (Table S6). In addition
to the above genotypes, the mean values of H110, H168, H321, Y23 and L5 were greater
than the grand mean, and the mean values of the remaining nine genotypes were below
the grand mean (Figure 1a). BLUP was found to be the most accurate model for predicting
in terms of ear length (Table S4) and hundred seed weight (Table S5). Genotypes H9, H110,
W702, D9, X20, Y23, L206 and N101 were the top eight hybrids in BLUP prediction. The
mean performance for ear length of these eight genotypes were above the grand mean,
and the predicted values of the remaining eleven genotypes were below the grand mean
(Table S7 and Figure 1b). Similarly, BLUP was considered to be the most accurate model for
the hundred seed weight prediction, and the predicted values of BLUP were presented in
Table S8 and Figure 1c.
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Figure 1. The predicted agronomic performance of 19 maize genotypes based on BLUP (best linear
unbiased prediction). The blue and red circles represent higher and lower than the BLUP means,
respectively. The horizontal error bars indicate the 95% confidence interval when considering the
two-tailed t-test. (a) represent grain yield (GY); (b) represent ear length (EL); (c) represent hundred
seed weight (HSW).

3.2. Variance Components of Yield Components

The likelihood ratio test results showed that the effects of genotype, environment
and genotype by environment interactions in yield components were highly significant
(p < 0.001) (Table 1). The proportions of the variance components in the phenotypic variance
of the evaluated yield components were the same; that is, the variance of GEI effect (σ2

ge) had
the highest proportion, followed by the genotypic variance (σ2

g ), and the residual variance
(σ2

ε ) had the lowest proportion. For grain yield, ear length and hundred seed weight, the
observed estimates of broad-sense heritability (H2) showed a lower level, which were 0.209,
0.230 and 0.261, respectively. In contrast, the genotypic accuracy of selection (As) in the
above three traits were 0.976, 0.979 and 0.983, respectively. In addition, the high ratios of
genotypic and residual coefficient of variation (CV ratio) for grain yield, ear length and
hundred seed weight of 2.92, 2.72 and 1.63, respectively, made the genotype–environment
correlation (rge) highly correlated (0.969, 0.960 and 0.867, respectively). The high proportion
of the GEI effect in the yield components indicated that the GEI effect plays an important
role in the expression of maize traits.
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Table 1. Estimated variance components for three agronomic traits evaluated for 18 maize genotypes
over 74 environments.

Statistics

Likelihood Ratio Test

Grain Yield (t/ha) Ear Length (cm) Hundred Seed Weight (g)

G E GE G E GE G E GE

χ2 262 129 7808 300 136 7116 375 19.8 4025

p value 4.09 × 10−19 5.31 × 10−30 0 4.12 × 10−27 1.71 × 10−31 0 1.68 × 10−18 8.64 × 10−6 0

REML Estimated variance components

σ2
g 0.1764 (20.9%) 0.4486 (23.0%) 2.839 (26.1%)

σ2
ge 0.6484 (76.7%) 1.442 (73.9%) 6.977 (64.1%)

σ2
ε 0.0207 (2.4%) 0.0605 (3.1%) 1.068 (9.8%)

σ2
p 0.846 1.951 10.880

H2 0.209 0.230 0.261

R2
gei 0.767 0.739 0.641

h2
mg 0.952 0.958 0.966

As 0.976 0.979 0.983

rge 0.969 0.960 0.867

CVg% 3.98 3.692 4.792

CVr% 1.36 1.355 2.940

CVratio 2.92 2.724 1.630

SD 1.95 1.72 5.70

SE 0.03 0.03 0.09

Note: G, genotype; E, environment; GE, genotype by environment interaction; REML, restricted maximum
likelihood; σ2

g , genotypic variance; σ2
ge, genotype by environment interaction variance; σ2

ε , residual variance;
σ2

p , phenotypic variance; H2, broad-sense heritability; R2
gei , coefficient of determination of the interaction ef-

fects; h2
mg, heritability of the genotypic mean; As, accuracy of selection; rge, genotype–environment correlation;

CVg%, genotypic coefficient of variation; CVr%, residual coefficient of variation; CV ratio, ratio between genotypic
and residual coefficient of variation; SD, standard deviation; SE, standard error.

3.3. Three-Way Analysis of Variance

The three-way analysis of variance (ANOVA) detected that the differences between
the evaluated genotypes (G) were highly significant (p < 0.001), which proved that the
hybrids used in this study had great differences in grain yield (Table 2). High significance
(p < 0.001) was also observed between the environments (E) and years (Y). The three-way
ANOVA showed that genotype effect, year effect, environment effect and their interactions
had a highly significant impact on grain yield except for GEY, for which GEY had no
significant effect. The highest proportion of variance was mainly affected by environment
effect (61.74%), followed by genotype by environment interaction effect (14.40%), genotype
effect (4.63%) and environment by year interaction effect (3.37%). The three-way analysis
of variance also showed that except for the insignificant effects of GEY in ear length and
EY and GEY in hundred seed weight, the other sources of variation reached significance
at p < 0.001.
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Table 2. The three-way analysis of variance for 19 maize genotypes for yield components during
2018 and 2019.

Traits Source of
Variance DF SS MS F Value Pr (>F) Percent of

Total SS (%)

Genotype (G) 18 740.50 41.14 51.684 *** <0.001 4.63
Environment (E) 36 9872 274.20 344.50 *** <0.001 61.74

Grain yield Year (Y) 1 22 22.45 28.21 *** <0.001 0.14
G × E 648 2303 3.56 3.56 *** <0.001 14.40
G × Y 18 130.9 7.27 9.14 *** <0.001 0.82
E × Y 36 538.3 14.95 18.79 *** <0.001 3.37
G × E × Y 648 148.1 0.228 0.29 ns 1.00 0.93
Residuals 2810 102.2 0.8
Total 4217 15,994.13
Genotype (G) 18 1873.63 103.98 357.76 *** <0.001 14.96
Environment (E) 36 4037.21 112.14 385.97 *** <0.001 32.23

Ear length Year (Y) 1 19 19.07 66.16 *** <0.001 0.15
G × 648 5264.26 8.13 27.97 *** <0.001 42.02
G × Y 18 378.87 21.06 72.47 *** <0.001 3.02
E × Y 36 21.51 0.60 2.05 *** <0.001 0.17
G × E × Y 648 115.06 0.18 1.03 ns 0.295 0.92
Residuals 2810 483.11 0.17
Total 4217 12,527.07
Genotype (G) 18 11,740.46 652.25 50.7 *** <0.001 8.57
Environment (E) 36 45,929.19 1275.81 99.18 *** <0.001 33.52

Hundred
seed weight Year (Y) 1 5728.02 5728.02 445.29 *** <0.001 4.18

G × E 648 24,969.04 38.53 2.43 *** <0.001 18.22
G × Y 18 3861.11 214.51 16.68 *** <0.001 2.82
E × Y 36 45.18 1.25 0.1 ns 1 0.03
G × E × Y 648 84.13 0.13 0.01 ns 1 0.06
Residuals 2810 36,146.67 12.86
Total 4217 137,015.75

*** Significant at the 0.001 probability levels; ns, not significant at p = 0.05; DF, Degrees of freedom; SS, Sum of
squares; MS, Mean square. The same as below.

3.4. AMMI Analysis of Variance

In the AMMI analysis, each year and location were combined into one environment,
and it could be found that the environment (E) effect and the genotype by environment
interaction (GEI) effect were 14.09 times and 3.49 times than the genotype effect, respectively,
and the GEI effect was further partitioned into seven interaction principal components
(IPCs), and all IPCs were highly significant (p < 0.001) (Table 3). The IPC1 explained 28.72%
of the sum of squares of the GEI effect, while IPC2, IPC3, IPC4, IPC5, IPC6 and IPC7
explained 20.27, 9.73, 6.76, 6.25, 5.90 and 4.11%, respectively. Since AMMISOFT was limited
to seven IPCs, the FR test showed that seven AMMI model families were determined. The
estimated sums of squares for GEIS and GEIN accounted for 98.95% and 1.05% of the SS of
GEI effect, respectively. The sum of squares for GEIS was 3.45 times that for G main effects;
hence, narrow adaptations are important for this dataset. It can also be clearly seen from
Table 3 that IPC1, IPC2 and IPC3 represent the AMMI model families AMMI1, AMMI2 and
AMMI3, respectively, which have filled a total of 58.72% of GEI variation and 59.35% of
GEIS variation.
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Table 3. AMMI analysis for grain yield in evaluated maize genotypes during 2018 and 2019.

Source of Variance df SS MS

Proportion of Variation

% of GE
Signal and
Noise

% of
Variability
Explained

% of GEI
SS

% of GEIs
Variation

Treatment 1405 13,755.78 9.79 *** 86.01
Genotype 18 740.50 41.14 ***
Environment (E) 73 10,432.84 142.92 ***
GE interaction (GEI) 1314 2582.42 1.97 ***
IPC1 90 741.6 8.24 *** 28.72 29.02
IPC2 88 523.49 5.95 *** 20.27 20.49
IPC3 86 251.37 2.92 *** 9.73 9.84
IPC4 84 174.54 2.08 *** 6.76 6.83
IPC5 82 161.41 1.97 *** 6.25 6.32
IPC6 80 152.44 1.91 *** 5.90 5.97
IPC7 78 106.02 1.36 *** 4.11 4.15
Residual 726 471.55 0.65 *** 18.26 18.45
Error 2812 2238.34 0.80 13.99
Blocks/environment 148 2183.21 14.75 ***
Pure Error 2664 55.13 0.02
GEIN 27.19 1.05
GEIS 2555.23 98.95
Total 4217 15,994.13 3.79 100 100 100 100

*** Significant at the 0.001 probability levels; GEIS, estimated sums of squares for G × E signal; GEIN, estimated
sums of squares for G × E noise; IPC, interaction principal component.

3.5. WAASB Scores of Evaluated Genotypes

In this study, the stability of the yield components of the tested genotypes were evalu-
ated based on the WAASB scores. Genotype Y23 (0.25) was considered to be the most stable
followed by Z958 (0.3), H321 (0.341), L5 (0.383) and Y303 (0.409), while genotype D9 (1.08)
was found to be the most unstable, followed by W702 (0.811), D618 (0.720) and L808 (0.686)
for grain yield (Table 4). Genotypes with the lowest WAASB scores were H168 (0.365),
followed by N988 (0.439), H321 (0.465), H110 (0.556) and Y303 (0.585). Thus, H168, N988,
H321, H110 and Y303 were found to be stable genotypes in terms of ear length (Table 5).
For hundred seed weight, a lower value of WAASB measure was observed for X20 (0.562),
X335 (0.737), Q218 (0.764), D618 (0.774) and N988 (0.814); it was also found that H168 (1.47),
D9 (1.29), W702 (1.15) and N101 (1.13) were genotypes with poor stability (Table 6).

Table 4. The mean grain yield and WAASB scores of evaluated genotypes.

Genotype
Code

Grain Yield
(t/ha) PC1 PC2 PC3 PC4 PC5 PC6 PC7 WAASB rWAASB

D605 9.98 (17) −0.459 −1.58 0.135 −0.181 0.33 −0.451 0.147 0.594 12
D618 9.77 (19) 1.440 −0.109 −0.49 −1.88 −0.692 −0.030 −0.355 0.72 17
D9 9.93 (18) 2.6 0.658 0.196 0.932 0.326 −0.741 0.011 1.08 19
H110 10.8 (6) 0.696 −0.572 0.266 0.976 −1.89 0.296 −0.111 0.595 13
H168 10.8 (7) −0.993 0.384 0.124 0.351 0.542 0.044 −0.462 0.538 9
H321 10.8 (8) −0.312 −0.558 −0.093 0.402 0.018 0.623 0.15 0.341 3
H9 11 (3) −0.923 0.48 0.472 −0.162 −0.433 0.318 0.54 0.575 11
L206 11.2 (2) −0.790 0.738 −0.053 −0.083 −0.774 −1.300 1.06 0.615 14
L5 10.6 (10) 0.0793 −0.524 −0.297 0.381 0.998 −0.943 0.112 0.383 4
L808 11.3 (1) −0.591 0.976 1.700 −0.864 0.223 −0.129 −0.183 0.686 16
N101 10.5 (11) −0.258 −1.34 0.439 0.206 0.216 0.483 −0.2 0.546 10
N988 10.4 (14) 0.557 −1.66 0.215 −0.314 0.398 −0.064 0.417 0.666 15
Q218 11 (4) −0.052 1.031 0.582 0.456 0.142 −0.353 −0.923 0.451 6
W702 9.98 (16) 1.220 1.072 −0.264 −0.199 0.786 1.38 0.717 0.811 18
X20 10.2 (15) −0.667 0.493 −1.27 0.063 0.053 0.0875 0.92 0.529 8
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Table 4. Cont.

Genotype
Code

Grain Yield
(t/ha) PC1 PC2 PC3 PC4 PC5 PC6 PC7 WAASB rWAASB

X335 10.5 (3) −0.507 0.284 −1.700 −0.257 −0.026 −0.372 −1.12 0.52 7
Y23 10.6 (9) −0.0229 −0.283 0.433 −0.479 −0.047 0.0571 −0.318 0.25 1
Y303 10.9 (5) −0.616 0.128 −0.366 0.489 −0.161 0.78 −0.491 0.409 5
Z958 10.5 (12) −0.404 0.391 −0.024 0.162 −0.014 0.317 0.083 0.3 2

PC, interaction principal component; WAASB, weighted average of absolute scores from the singular value
decomposition of the matrix of best linear unbiased predictions for the genotype× environment interaction effects
generated by linear mixed effect model; rWAASB, genotype ranking based on WAASB scores. The same below.

Table 5. The mean ear length and WAASB scores of evaluated genotypes.

Genotype
Code

Ear Length
(cm) PC1 PC2 PC3 PC4 PC5 PC6 PC7 WAASB rWAASB

D605 17.8 (12) −0.683 0.636 −0.569 0.241 −0.815 0.591 0.477 0.6 6
D618 17.9 (11) −0.054 1.24 0.596 0.057 −0.999 −0.962 1.05 0.607 9
D9 18.8 (4) −0.119 −1.6 1.73 −0.21 0.586 −0.415 −0.577 0.709 15
H110 19.2 (2) −0.792 −0.912 −0.256 0.35 0.019 −0.342 0.0479 0.556 4
H168 17.4 (17) −0.417 −0.027 −0.568 −0.045 −0.253 0.668 −0.372 0.365 1
H321 17.4 (16) 0.254 0.194 −0.581 0.114 −1.26 0.439 −0.232 0.465 3
H9 19.5 (1) −1.27 0.055 −0.478 0.585 −0.9 −1.15 −0.739 0.751 17
L206 18.6 (7) 1.22 −2.25 −1.03 −0.673 −0.007 −0.285 −0.040 0.789 19
L5 17.7 (13) 0.852 0.914 −0.277 0.51 1.48 1.22 0.178 0.703 14
L808 17.6 (14) 0.595 0.123 −1.34 −1.9 −0.415 −0.165 −0.147 0.602 8
N101 18.2 (8) −1.81 −0.227 0.424 0.33 −0.21 0.227 1.17 0.677 10
N988 18.1 (9) 0.717 −0.255 −0.020 0.734 0.007 0.583 0.621 0.439 2
Q218 18.1 (10) 0.731 1.66 0.001 0.253 0.752 −1.17 −1.77 0.757 18
W702 19.0 (3) 0.808 −0.056 2.43 −0.156 −0.653 0.267 −0.263 0.679 11
X20 18.7 (5) −1.21 0.185 −0.053 −1 1.39 −1.3 0.552 0.734 16
X335 17.5 (15) −0.756 0.532 0.22 −1.16 1.39 1.05 0.342 0.682 12
Y23 18.7 (6) −0.028 −0.62 −0.706 2.27 0.847 −0.006 −0.256 0.6 7
Y303 17.2 (19) −0.401 0.094 0.355 −0.48 −0.778 1.37 −1.27 0.585 5
Z958 17.3 (18) 2.36 0.312 0.12 0.177 −0.175 −0.617 1.22 0.699 13

Table 6. The mean hundred seed weight and WAASB scores of evaluated genotypes.

Genotype
Code

Hundred Seed
Weight (g) PC1 PC2 PC3 PC4 PC5 PC6 PC7 WAASB rWAASB

D605 33.8 (15) −0.386 −1.63 −0.697 2.1 0.645 −0.163 0.873 0.974 11
D618 35.1 (12) 0.776 0.139 1.9 −0.789 0.513 −1.19 −0.429 0.774 4
D9 33.4 (17) −3.5 −1.21 0.951 −1.13 −0.325 0.563 0.314 1.29 18
H110 36.3 (4) −1.01 2.81 −0.539 0.846 −0.329 −1.89 0.269 1.12 15
H168 30.9 (19) 2.24 −2.34 1.24 −0.346 −2.42 1.14 1.01 1.47 19
H321 35.7 (9) 1.48 0.784 1.82 −0.202 0.186 −1.22 −0.837 0.934 9
H9 35.9 (8) 1.16 0.398 −1.24 −1.08 −1.18 −0.553 1.78 0.984 12
L206 35.5 (11) 0.941 −0.529 −1.51 0.41 −0.701 −1.55 0.212 0.898 8
L5 32.7 (18) −1.61 −1.5 −0.094 0.945 −0.447 −1.47 −0.333 0.942 10
L808 36.1 (6) 1.04 −1.45 −1.65 0.427 2.31 −0.207 1.04 1.11 13
N101 34.5 (14) −0.143 1.42 0.55 3.09 −2.08 1.7 −0.729 1.13 16
N988 37.6 (1) 0.111 0.168 0.667 1.42 2.93 1.42 −0.112 0.814 5
Q218 35.6 (10) 0.614 −0.203 −1.13 −1.92 0.191 0.378 −0.668 0.764 3
W702 37.1 (3) −0.473 3.12 0.843 −0.791 0.419 0.873 2.52 1.15 17
X20 36.2 (5) 0.356 0.619 −0.045 −0.302 −0.116 −1.09 −1.93 0.562 1
X335 34.9 (13) −0.26 0.256 −2.5 0.0338 −0.59 1.22 −1.08 0.737 2
Y23 33.5 (16) −3.05 −1.14 0.706 −0.96 −0.151 −0.059 −0.037 1.11 14
Y303 37.5 (2) 0.207 0.959 −1.16 −1.73 0.317 1.71 −1.36 0.826 7
Z958 36.0 (7) 1.5 −0.666 1.89 −0.0212 0.833 0.384 −0.51 0.819 6
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3.6. Integrate AMMI Model and BLUP Technology to Understand the GEI

According to the abscissa representing the yield components and the ordinate repre-
senting the WAASB value, the biplot can be divided into four different quadrants (Figure 2).
Genotypes D9, W702, D618, D605, N101, X335 and X20 and environments GX18, MZ18,
MZ19 and SS19 are located in the first quadrant; these genotypes and environments per-
formed lower than the mean grain yield, and the contribution to the GEI is greater. The
genotypes in the first quadrant are defined as genotypes with low yield and poor stability.
The environments had a strong ability to distinguish genotypes. In the second quadrant,
genotypes L808, L206, H110, H9, H168, Q218, Y303 and L5 and environments QZ18, QZ19,
SX18, SX19, GX19, FP19, JH19, JZ19, XY19, JS19, HX19, FC19 and LY19 were present. The
genotypes in this quadrant can be considered to have a higher grain yield, but similar to the
first quadrant, it plays a larger role in the GEI. The environments contained in this quadrant
deserve attention because, in addition to providing higher grain yield performance, they
also have good discrimination capabilities to the genotypes. Environments MC18, MC19,
XH18, XH19, SZ18, SZ19, HD18, HD19, WY18, WY19, GC18, GC19, BT18, BT19, LZ18, LZ19,
SS18, MJ18, SP18, YL19, QS19, SP19 and MJ18, and only the genotype Z958 were placed in
the third quadrant. The genotypes in this quadrant have a lower grain yield and a higher
stability. Moreover, the environments that belong to this quadrant have the lowest WAASB
value among all environments, which makes these environments have a poor ability to
distinguish genotypes. The corresponding remaining genotypes and environments fall into
the fourth quadrant. The genotypes in this quadrant have more than the mean grain yield
performance and better stability (lower WAASB value). The environments in this quadrant
have a higher grain yield but with a poor ability to distinguish genotypes (Figure 2a).
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Figure 2. The biplot of agronomic traits combined with weighted average of absolute scores for the
best linear unbiased predictions of the genotype vs. environment interaction (WAASB). GY, grain
yield; EL, ear length; HSW, hundred seed weight. The blue and green icons represent the codes of
environment and genotype, respectively. (a) represent grain yield (GY); (b) represent ear length (EL);
(c) represent hundred seed weight (HSW).
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The first quadrant includes highly unstable genotypes and highly discriminating
environments. Genotypes Q218, Z958, L5, X335, Y303, L808, D618, D605, H321 and
N988 being the unstable genotypes with lower than mean ear length in this quadrant,
and environments SY18, SY19, SP18, SP19, MJ19, LZ19, MC19 and QS19 were found to
effectively distinguish the tested genotypes. Unstable but highly productive genotypes
and environments are included in the second quadrant. Genotypes L206, H9, X20, D9,
N101, W702, Y23 and H110 were unstable genotypes, but had a mean greater than grand
mean. Environments in this quadrant such as GX18, SX19, GX19, FC19, FC18, SX18,
XT18, XT19 and XJ18 were discriminative with the environmental means were higher than
the grand mean. Contrary to the second quadrant, the genotypes and environments in
the third quadrant were low-productive, stable and wide-adapted owing to the lower
scores of WAASB. Among the tested genotypes, only H168 and environments viz., SS19,
MZ19, JS19, BT18 and BT19 fall into this quadrant. Finally, in the fourth quadrant, which
contains extensive adaptations and productive genotypes with low WAASB scores. The
environments contained in this quadrant can be considered productive but have low
discrimination abilities (Figure 2b).

The first quadrant contains the most unstable genotypes W702, H110, L808, H9, H321,
L206, Z958, Y303 and N988, and these genotypes were below the grand mean. Similar
to the first quadrant, the genotypes in the second quadrant were also unstable, but their
hundred seed weight values were good. Genotypes H168, D9, N101, Y23, D605, L5, D618
and X335 were present. No genotype falls into the third quadrant, and X20 was divided
into the fourth quadrant (Figure 2c).

3.7. Correlation and Cluster Analyses

It was found that the various traits among the yield components have reached an
extremely significant level (p < 0.001) based on Pearson’s correlation (Figure S2). According
to Figure S2, grain yield was positively associated with ear length (r = 0.14) and hundred
seed weight (0.20). Significantly positive correlation (r = 0.17) was also found between ear
length and hundred seed weight. The 19 tested genotypes in this study were divided into
three clusters based on Euclidean distance for grain yield. The genotypes included in the
first cluster were X20, X335, D9, D618 and W702. The second cluster contained the same
number of genotypes as the first cluster, including D605, N988, L5, N101 and Y23. The third
cluster included nine genotypes, L206, H9, L808, H321, Y303, H168, Z958, H110 and Q218
(Figure S3). Similarly, 74 environments used in this study were divided into four clusters
according to Euclidean distance. The first cluster was made up of twenty environments,
namely MC18, MC19, HX18, HX19, SP18, XY18, SS18, SS19, MZ18, MZ19, HD18, HD19,
YL18, YL19, FP18, FP19, QZ18, QZ19, GX18 and GX19. The second cluster consisted of
HT18, HT19, XT18, XT19, SZ18, SZ19, BT18, BT19, JZ18, WY18, WY19, YY18, YY19, XJ18,
XJ19, QX18, QX19, XZ18, XZ19, YI18 and YI19. The environments NJ18, NJ19, JH19, SY19,
LY18, FC19, LY19, SP19, MJ18, JZ19, MJ19, LZ18, LZ19, GC18, GC19, XY19, JS18, JS19,
NH18 and NH19 were classified as the third cluster, and the rest of the environments were
divided into the fourth cluster (Figure S4).

4. Discussion

The identification of yield components of maize hybrids, analysis of genotype by
environment interaction (GEI) models and evaluation of yield stability are very important
for the selection of highly productive and broadly adapted genotypes [35]. The GEI
studies about maize genotypes are mainly focused on the AMMI model [36,37] and GGE
biplot [38,39]. There are still few studies on evaluating the GEI interaction effects of maize
yield components using WAASB as a stability parameter. The accurate prediction of the
models is helpful for effective analysis and interpretation of MET research [18]. A BLUP-
based mixed model has proven to be more accurate than the fixed effects AMMI model
in many cases [30,40]. In addition, breeders can use the advantages of mixed models to
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analyze genotypes in single- or multi-environment trials with variance components and
genetic parameter estimation.

The three-way ANOVA and AMMI analysis showed that the evaluated maize hy-
brids had great variability, which indicated that these genotypes had differences in yield
performance; therefore, further adaptability and stability analysis is required for commer-
cial planting. In addition, the large changes in the interpretation of environmental (E)
effects (65.23% of total SS) indicated that the environment was diverse and that the huge
differences between environmental measures had caused most of the changes in grain
yield. A small part of the total sum of squares caused by the treatment was attributed to
the genotype (G) effects, and the magnitude of the genotype by environment interaction
(GEI) sum of squares was higher than the G effect, indicating that there were considerable
differences in genotype responses across different environments. Almost all similar studies
have reported such results [39,41,42].

The importance of using narrow adaptability can be reflected in the high GEIs on
SSG, and the high GEIN on SSG indicates that primary IPCs should be used to improve
accuracy because they selectively capture signals. AMMI is not just a single model, but
constitutes a series of models, from AMMI0 to AMMIF. AMMI0 does not capture GEIN and
GEIs, while AMMIF is a complete model. It has no residuals and captures all GEIN and
GEIS. Therefore, model selection occupies the most important position in AMMI analysis,
and model diagnosis can provide clues for selecting the best model family for the existing
dataset [21,42]. The AMMI analysis of this study shows that the first seven IPC are highly
significant, cumulatively covering 81.74% of GEI variations and 82.62% of GEIS variations.
Therefore, studying the distribution of the evaluated genotypes and environments on the
basis of these seven components can provide helpful information for maize breeders [43].

If the variance explained in the first two interaction principal components (IPCs) is
relatively low, then the interpretation of the traditional additive main effects and multiplica-
tive interaction (AMMI) model will be biased, because most of the GEI explained by the
remaining IPCs is not used. In order to show that AMMI1 information can be used reliably,
we introduced the WAASB index, which is based on BLUP technology and includes all
IPCs [26]. The first two IPCs can explain most of the genotype variation, but for some
genotypes, more IPCs is necessary to explain the variation. For this reason, the WAASB
value that considers all the significant IPCs can be regarded as a quantitative strategy of
stability to interpret these variations. In this study, IPC1 only explained 29.02% of the GEI
variation. In view of the reasons that some abiotic factors were not considered and used in
this study, only seven IPCs were obtained. The WAASB index can be used to explain the
variance explained in the axes other than IPC1. The WAASB stability index has been used
to identify yield traits in different crops, such as wheat [44], soybean [45], lentils [46] and
rice [47]. It was found that the grain yield of genotypes Y23 and H321 were highly stable in
different environments using this model, and they also found that their grain yield was
higher than the grand mean. In the GY ×WAASB biplot, these two genotypes were in the
fourth quadrant, meaning that they had good performances of grain yield and stability. We
should also pay attention to the performance of some genotypes with high yield and not
very poor stability, for example, genotypes H9, H168, Q218, Y303 and L5 can show their
high yield potential in certain regions.

Studies on the evolution of yield components in China have shown that ear length
and hundred seed weight are consistent with the significant increase in grain yield over
time [48,49]. In the current study, there is a significant positive correlation between
grain yield, ear length and hundred seed weight, which is consistent with previous re-
ports [50–52]. The direct positive selection with ear length and hundred seed weight will
simultaneously increase grain yield of maize genotypes. Parents of genotypes classified into
the same group in cluster analysis can play a role in cross utilization, thereby generating
greater genetic variability in segregating populations, and helping to breed inbred maize
with better yield components.
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5. Conclusions

In this study, 19 maize genotypes were evaluated in a two-year (2018–2019) field
experiment, which was conducted at 37 locations in the Huanghuaihai region of China
using the AMMI model and BLUP technique, and the three-way analysis of variance clearly
demonstrated that the yield components of evaluated maize genotypes was highly affected
by genotype (G), environment (E), year (Y) and interaction between these three effects,
except G × E × Y and E × Y for hundred seed weight. The combination of the AMMI
model and BLUP technique made it possible to describe GEI effects more accurately. In the
present study, high-yield and stable genotypes, such as genotypes Y23 and H321, could
be used as new potential genetic resources for improving and stabilizing grain yield in
China. Genotypes H9, H168, Q218, Y303 and L5 only had narrow adaptability to special
environments. The check hybrid Z958 had good stability and little potential for grain
yield. It was also found that there was a highly significant positive correlation between the
evaluated three agronomic traits.
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