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Abstract: Genomic selection (GS) has revolutionized breeding strategies by predicting the rank
performance of post-harvest traits via implementing genomic prediction (GP) models. However,
predicting pre-harvest traits in unobserved environments might produce serious biases. In soybean,
days to maturity (DTM) represents a crucial stage with a significant impact on yield potential;
thus, genotypes must be carefully selected to ensure latitudinal adaptation in this photoperiod-
sensitive crop species. This research assessed the use of daylength for predicting DTM in unobserved
environments (CV00). A soybean dataset comprising 367 genotypes spanning nine families of the
Soybean Nested Association Mapping Panel (SoyNAM) and tested in 11 environments (year-by-
location combinations) was considered in this study. The proposed method (CB) returned a root-mean-
square error (RMSE) of 5.2 days, a Pearson correlation (PC) of 0.66, and the predicted vs. observed
difference in the environmental means (PODEM) ranged from −3.3 to 4.5 days; however, in the
absence of daylength data, the conventional GP implementation produced an RMSE of 9 days, a PC of
0.66, and a PODEM range from−14.7 to 7.9 days. These results highlight the importance of dissecting
phenotypic variability (G × E) based on photoperiod data and non-predictable environmental stimuli
for improving the predictive ability and accuracy of DTM in soybeans.

Keywords: genomic selection; days to maturity; genomic prediction; predictive ability; daylength

1. Introduction

Full attention to the increasing worldwide demand for food due to a growing human
population [1] is critical for securing current and future needs; these issues will be solved
by increasing crop yield as a high priority, where the two key targets to focus on are genetic-
and agronomic-based improvements. Traditional breeding methods are based on pedigree
and phenotypic information for selecting superior cultivars to achieve increased genetic
gains [2,3]. However, field phenotyping all of the genotypes derivable from all potential
crosses is unfeasible. The use of DNA (deoxyribonucleic acid) sequence information
offers a practical means for predicting the performance of candidate genotypes using the
commonly called GP (Genomic Prediction) models, which then can be implemented in
genomic selection (GS) schemes. GS is an emergent methodology that has the potential
to significantly increase genetic gains by shortening breeding cycles and improving the
accuracy of selection.

Genomic selection is an excellent tool for selecting genotypes during the early phases
of the breeding pipeline [4]. For example, Meuwissen et al. [5] proposed a set of GP models
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for animal breeding that would cope with the burden of fitting models with relatively high-
dimensional genomic covariates. GP requires both phenotypic and genotypic information
to enable the calibration of the prediction models to predict the performance of non-
phenotyped genotypes using only their DNA marker profiles. Hence, GP leverages the
genomic relationships between phenotyped and non-phenotyped individuals by using
genome-wide markers for computing genomic estimated breeding values (GEBVs) of
unobserved genotypes [6,7]. Then, the GEBVs are used as phenotypic surrogates that
breeders can consider when assessing performance relative to the selection of superior
genotypes.

The application of GP plays an important role in plant and animal breeding programs
when considering complex traits (i.e., traits affected by many genes with small effect) [8,9].
For most post-harvest traits of interest (i.e., yield, seed number and size, seed oil and
protein, etc.), the focus of selection is typically on the favored right or left tail of the distri-
bution of the predicted GEBVs. However, when the traits of interest have an intermediate
distributional optimum, the fractional tail-specific selection is not applicable [10]. These
situations are often found when one considers pre-harvest crop phenotypes of interest, such
as the dates of flowering and/or maturity (in soybeans the occurrence of DTM (days to
maturity) is denoted as R8), which are typically measured as days after the date of planting
(or emergence).

For these time-related traits, the per se GEBVs are more important than their relative
ranking, primarily because crop phenology is a major element in the adaptation of a crop
species within the current targeted production environments, as well as any potential
expansion of the crop to non-contiguous (but suggestive) environments located elsewhere.
Thus, the implementation of GP models for predicting time-related traits must be carefully
considered or it could lead to a misadjustment of the crop developmental sequence, a
misclassification of genotypes for local adaptation, or an admixture of these two problems.

Soybean plant physiology and its relationship with crop phenology were recently
reviewed [11]. Soybean plant development consists of vegetative (V) and reproductive (R)
phases that overlap in the indeterminate cultivars grown in the northern USA, but these
phases are more distinctly separated in the determinate cultivars grown in Southern USA.
Most soybean researchers use the soybean vegetative (Vn) and reproductive (Rn) staging
system developed by [12]. In that system, main stem nodes are assigned a cumulative
number n, beginning with zero (V0) for the opposing two cotyledonary nodes, one (V1)
for the opposing two unifoliolate leaf nodes, and two (V2) and up for each subsequent
alternating trifoliolate leaf node (for Vn details and photos, see pp. 43–52 in [13]).

The reproductive phase begins with stage R1, which is when the first open flower
appears on the main stem. However, floral induction begins earlier (R0) when the unifoliate
leaflets appear at stage V0 [14]. These initial leaflets (plus all subsequent ones) sense
and measure the dusk-to-dawn night length. If long enough (the duration of which is
genotype-dependent), those leaflets will produce florigen, which is then transported via
the phloem to the apical meristem located at the main stem tip (and branch tips), as well
as to the lateral meristems located in each stem (and branch) leaf axil [15]. Upon arrival,
the florigen immediately induces the conversion of vegetative meristems (those not yet
committed to becoming branches) to an inflorescence meristem that produces flowers.

Floral induction is essentially driven by the photoperiod, but the subsequent floral
evocation (leading to visible floral buds and open flowers) is essentially temperature-
driven. For Midwestern USA cultivars spanning maturity groups (MGs) 3.0 to 3.9, ref. [16]
documented a 28–32-day timeframe from V1 to R1, irrespective of planting dates that
had been staggered at two-week intervals. This suggested that the calendar date of R1
(first flower) was quite predictable based on cultivar MG, production site latitude (i.e.,
photoperiod), and the date of V0 or V1. In the absence of seasonal water stress, the Vn and
Rn stages are also potentially predictable with soybean crop models [17].

The SoySim model was developed for Vn and Rn prediction in indeterminate cultivars
of MG I, II, III, and IV that are grown in the Northern USA [18] when the model is supplied
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with virtual day-by-day photoperiod and temperature data. After flowering begins at
R1 and proceeds to full bloom (R2), stage R3 begins when pods emerge from pollinated
flowers and elongate to a full length (R4), after which stage, R5 begins when seeds form in
the pods and seed-filling commences until the seeds fill their pod cavities (R6). Stage R7 (at
least one mature pod per plant) is defined as physiological maturity, which is coincident with
the cessation of plant photosynthetic activity (i.e., abscission of most, if not all, of the main
stem nodal leaves). A key final soybean development stage is R8, which is when 95% of the
pods borne on plants of a given genotype have attained a final mature color of brown or
grey, after which, combine-ready harvest can occur when the in-field seed moisture falls to
13% (for Rn photos and details, see pp. 53–64 in [13]).

Soybean crop V and R phasic progress towards maturity is dependent on genetic and
environmental factors that are essential for crop adaptation, and thus, is critical regarding
the breeder-mediated selection of advanced breeding lines that need to be evaluated in
properly chosen latitudinal production environments. Soybean breeders are interested
in the measurement of the number of days from planting to R8, termed days to maturity
(DTM), because it characterizes what photoperiodic latitude is likely to have an adaptive
fit. In the northern hemisphere, there are 13 MGs, numbered from 000 (very early) to X
(very late), with extreme MGs typically grown in high and low latitudes, respectively [19],
though a 14th MG of 0000 was recently proposed. A similar 13th MG numbering scenario
from low to high latitudes is used in the southern hemisphere [20].

Soybean breeders maintain tight control over maturity during selection by evaluating
breeding lines whose harvest maturity (R8) must be aligned with a given standardized
MG latitudinal zone. The latter is defined empirically by using well-tested early and late
cultivar checks to bracket the 8- to 10-day period of R8 dates in high latitude temperate
zones but a wider period (15–20 days) in lower latitude tropical regions of each given
MG zone [20,21]. Breeding lines undergo many within-state performance trials involving
comparisons with existing cultivars of known MG so that the R8 data for those lines can be
used to assign an MG decimal number (X.X) to the most advanced breeding lines that are
worthy of cultivar release, thus denoting their latitudinal area of adaptation.

It would be useful to predict an R8 date (or more specifically, the number of days
from planting to R8, which is DTM) for any given existing breeding line for one or more
production sites in which that line was never tested, assuming that the given line or its
relatives had been tested at other sites. Given that production sites of a similar latitude
would experience a similar (predictable) photoperiod, DTM prediction is possible if that
photoperiod can be used in GP schemes. This was documented to be successful when used
to predict the heading date in rice (Oryza sativa) [10], but it has not yet been demonstrated
in soybean (Glycine max).

The advancements in sequencing technologies offer the opportunity of studying these
traits from a different approach that considers causal relationships between genes and
growth stages. It is well-known that molecular mechanisms play an important role in
flowering time and maturity, with these two stages being the result of complex traits
composed of multiple genes. Flowering and maturity time in soybean are controlled by the
major E genes (they explain most of the variation in the number of days for soybean crops
to achieve maturity) and these major E genes possess various functions regarding maturity
and photoperiod sensitivity [22]. Furthermore, their allelic variation and combinations can
define the diversification of the soybean maturity groups and the adjustments to diverse
latitudes [23].

Currently, 11 major E loci (E1–E10 and J) were identified and classified through
QTL mapping studies [22,24]. In addition, Wang et al. [25] identified the gene E11 as a
promoter of the flowering time and maturity. Recently, Zhang et al. [26] found that soybean
cultivars carrying the e1-as/e2-ns/E3-ha/E4 haplotype flowered earlier (7.6 days) than the
flowering haplotype E1/e2-ns/E3-ha/E4. The major E genes (E1–E4) were deeply analyzed
to understand the process of flowering time and maturity [27]. For instance, the major
genes E1 and E2 were described by Bernard [28], and these were linked to controlling the
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flowering time and maturity. Kilen and Hartwig [29] found that the E3 gene is related to
late flowering, and Buzzell and Voldeng [30] concluded that the gene E4 presented late
flowering and sensitivity to prolonged daylength. Miranda et al. [31] studied soybean
lines in different environments for characterizing days to flowering, days to maturity, and
plant height based on allelic combinations. Their results showed that the mutant gene
J and the E1 gene influenced days to maturity and days to flowering. However, further
studies are necessary for effectively connecting these parameters with markers or genes in
prediction models.

Usually, multi-environment trials are established to study the local adaptation of plant
cultivars to different locations. In many cases, the local adaptation depends on time-related
traits, such as days to flowering or days to maturity. However, due to resource (land,
water, phenotyping costs, etc.) constraints, it is not feasible to observe all genotypes in all
environments, nor sample all the environments of interest. In general, the definition of
environment is understood as the year × location combination; however, different sowing
dates may also determine different environments, switching the definition of environment
to the year× location× sowing date combination. The objective of this research consisted of
developing and testing similar methods to those proposed by [10] to accurately predict time-
related traits in soybeans, such as days to maturity (DTM), in unobserved environments. For
this, we considered the phenotypic and genomic information available from the SoyNAM
experiments.

2. Materials and Methods
2.1. Phenotypic and Genotypic Data

For this study, we used genotypic and phenotypic data generated in the SoyNAM
project, which were available from the SoyBase website (https://www.soybase.org/SoyNAM
accessed on 29 March 2022). More explicit details about the SoyNAM project were provided
by [32,33]. Briefly, the SoyNAM project consisted of the development of 140 F5-derived
recombinant inbred lines (RILs) from each mating of 40 soybean cultivars belonging to
high-yielding lines (17, group 1), lines with diverse ancestry (15, group 2), and plant
introductions with high yields in drought (8, group 3) to a common high-yielding hub
parent (IA3023).

The 5600 NAM RILs were performance tested in 2011 (NE and IL locations only),
then in 2012 and 2013 at nine locations in the US North-Central Region (for a total of 18
environment location × year combinations). Aside from the agronomic data, R8 dates
were recorded at all sites. The NAM parents and RIL genotypes were sequenced with a 6k
array, delivering a total of 5300 maker SNPs. After applying conventional quality control
(discarding those molecular markers with more than 50% of missing values and a minor
allele frequency smaller than 3%), 4300 SNPs were available for the analysis.

In this study, extra care was taken to have enough information for model calibration;
thus, only those genotypes observed in at least 9 out of 11 preselected environments (those
with the larger number of tested genotypes) were considered. Then out of the initial
40 families, 13 were randomly selected, with 7 belonging to group 1, 2 to group 2, and
4 to group 3, for a total of 367 RILs tested in 11 environments (NE_2011 [367], IL_2012
[367], NE_2012 [367], KS_2012 [337], OHmain_2012 [270], OHmc_2012 [127], IA_2013 [367],
IL_2013 [367], IN_2013 [367], OHmain_2013 [206], OHmc_2013 [161]). The trait of interest
for our study was DTM, which was derived for each location from the days between the
site planting date and the RIL R8 date. Table S1 in the Supplementary Materials provides
the list of all genotypes in environments observed and their corresponding DTM. Moreover,
the SNPs data corresponding to the 367 genotypes can be found in the supplemental section
(“SNPs.csv”). In addition, the population structure of the selected genotypes using the first
two principal components was computed and is depicted in Figure S1.

https://www.soybase.org/SoyNAM
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2.2. Daylength Data

Daylength was defined as the duration (time) of solar radiation from dawn to dusk.
The daylength information of any site at any time of the year can be determined in advance
by knowing the latitude of the location. Still, for the daily daylength during a soybean
growing season, one must know the planting date (or date of V0/V1, when the photoperi-
odic floral induction begins). The daylength information used in this study was calculated
with the model proposed by [34], which is included in the geosphere (v1.5–5) R package.
This package computes the theoretical daylength values based on the latitude, longitude,
and planting date at each location.

2.3. Cross-Validation Schemes

We considered two relevant scenarios that would likely be of interest to soybean breed-
ers: cross-validation (CV0) for predicting tested genotypes in unobserved environments
and CV00 for predicting untested genotypes in unobserved environments. In both cases, the
testing set size varied between 127 and 367, depending on the environment to be predicted;
furthermore, the training set size varied accordingly. In CV0, the cross-validation was
realized by deleting the phenotypic data from all genotypes at the target environment; then,
the genotypes observed in the remaining environments were used for model training in a
leave-one-environment-out scheme. Thus, no randomization was involved when selecting
the training and testing sets. For CV00, not only the phenotypic information of the testing
environment was deleted as in the previous case but also the phenotypic information of
the genotype of interest was deleted from all the environments in the training set. In this
case, a validation scheme similar to the leave-one-observation-out scheme was adopted
without considering any randomization process for composing testing and training sets.

2.4. Predicting Genotypic Phenotypes in Unobserved Environments

As mentioned before, GP can be a precise tool for generating rankings of the per-
formance of genotypes in untested environments; however, in these cases, a large bias
between predicted and observed values is expected. Figure 1A exemplifies the case where
a high correlation between predicted and observed values is obtained; however, it also
shows a relatively large bias of the predicted values. A potential solution is to correct these
predicted values using a constant, as depicted in Figure 1B.
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2.5. Statistical Models

The genomic best linear unbiased prediction model (GBLUP) is one of the most
common prediction models used for estimating the genetic value of untested individuals.
It uses dense molecular marker information to leverage the genomic relationships (kinship
matrix) amongst related individuals. The principal objective of the kinship matrix is to
describe genomic similarities between pairs of individuals via covariance structures [35].
In addition, the GBLUP model is one of the most convenient implementations to manage
large numbers of genomic covariates [7,36].

Consider that Yij represents the DTM of the ith soybean genotype (i = 1, 2, 3, . . . , 367)
observed in the jth environment (j = 1, 2, 3, . . . , 11, corresponding to NE_2011, IL_2012,
NE_2012, KS_2012, OHmain_2012, OHmc_2012, IA_2013, IL_2013, IN_2013, OHmain_2013,
and OHmc_2013). Further, assume that Yij can be described as the sum of a constant effect
plus environmental and genomic deviations and an error term, as follows:

Yij = µ + Ej + gi + eij (1)

The term µ is defined as a constant effect (the overall mean) common to all soybean
genotypes across the 11 environments; the Ej are independent and identically distributed
(IID) outcomes from a normal distribution N

(
0, σ2

E
)

that represents the effect of the jth
environment; g = {gi} ∼ N

(
0, Gσ2

g
)

is the vector of genomic effects with G = XX′
p

defined as the genomic relationship matrix, with X representing the standardized matrix
(by columns) of p molecular markers (analogous to method 1 in [36]); and εij are IID
outcomes from an N

(
0, σ2

e
)

distribution representing the error term. The terms σ2
E, σ2

g,
and, σ2

e correspond to the associated variance components of the random effects.

2.6. Daylength + Marker Data

Since the GP method is expected to deliver a large bias when predicting the DTM in
unobserved environments (Figure 1), some of the features of the methodology proposed
in [10] were adopted in our study. These authors proposed a novel method for predicting
the rice phenological stage of days to heading in multiple populations. Their method allows
for the use of daylength information in the prediction process by considering the daily
progression of the daylight duration during the growing season. Because each genotype
was already observed in several environments (11), numerical tendencies between the DTM
and daylength can be detected by examining one genotype at a time. In this analysis, a
clear trend relating to daylength at the R8 occurrence (Figure 2) across environments was
observed. As discussed in [10], this gradient does not appear to be highly influenced by the
initial daylength values at various planting dates across environments. However, it seems
to be associated with the changing rate of the daylength starting at the planting date.
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Figure 2. Graphical representation of the C-method for estimating DTM for genotype 1 (Geno_1) in
the 2013 Illinois environment (IL_2013). The green line represents the candidate (targeted) unobserved
environment, and the orange line shows the response gradient of genotype Geno_1 across all observed
environments. The blue dots represent the daylength value at the R8 occurrence in each environment.
The observed DTM was 129 days compared to the estimated value of 131 days. Geno_1 was observed
in 10 environments total; thus, 9 of these were used for model fitting (orange line) to estimate the
DTM in IL_2013.

2.7. Concept in a Nutshell

To predict untested genotypes in unobserved environments, the first step was to
estimate the potential DTM mean of the target environment. For this, the prediction
of already tested genotypes (one at a time) in the unobserved environment (CV0) was
performed. After predicting DTM for those genotypes in the training set, the next step
was to obtain the expected DTM environmental mean by averaging the predicted values.
Finally, for predicting DTM for the untested genotypes in the unobserved environment, the
BLUPs derived from the traditional GP method were added to the estimated environmental
mean. Further details of these methods are provided below.

2.8. C-Method

The C-method allows for the prediction of the DTM of tested genotypes in unobserved
environments (CV0). For this, the daily daylength progression from the planting day to
the DTM is needed. The first step was to characterize the daylength at the DTM (R8) time
across environments. A third-degree polynomial equation was used to model the daylength
as a function of the DTM:

dlij = b0 + b1t + b2t2 + b3t3 + εij (2)
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where dlij represents the daylength at the DTM for the ith genotype in the jth environment
as a function of time t; b0, b1, b2, and b3 are the model coefficients; and εij is the error term
and is assumed to be IID N

(
0, σ2

ε

)
in shape. In addition, the daylength for any environment

can be obtained in advance just by knowing the location and planting date. The daily
daylength progression of the unobserved environment was modeled with a third-degree
polynomial equation as well:

Ej = bE0 + bE1t + bE2t2 + bE3t3 + ξij, (3)

where Ej represents the daylength of the target environment at the time t; bE0, bE1, bE2.
and bE3 are the model coefficients; and ξij is the error term, which was assumed to be IID
N
(
0, σ2

ξ

)
in shape. The intersection point of these two curves provides an estimation of the

DTM of the already tested genotype in the unobserved environment. To find the solution
to these two equations, numerical evaluation was employed.

Figure 2 shows a graphical representation of the estimation of R8 using genotype
Geno_1 in the Illinois environment IL_2013 as an example. In this case, the daylength
progression (y-axis) from planting until R8 (blue dots) is indicated with pink curves. The
green line represents the daily daylength progression in the unobserved environment. The
orange line is the fitted curve of the blue dots using the described third-degree polynomial
equation. An estimation of the DTM was obtained by the crossing point of the green
line with the orange line. In this example, the estimated DTM was 131 days, whereas
the observed value was 129 days, which was indicative of a reasonable estimate. This
procedure was repeated for each genotype in the training set, one at a time.

2.9. CB-Method

The main objective of our study consisted of predicting the DTM of untested genotypes
in heretofore unobserved environments. Thus, compared with the previous method, an
extra step was necessary. The potential environmental mean for the DTM in the unobserved
target environment was estimated by computing the average of the predicted values that
were obtained using the previously described C-method. Then, the next step consisted
of obtaining the genomic BLUPs (ĝi) for the untested genotypes using the conventional
GP model. Finally, the prediction of DTM for the untested genotype in the unobserved
environment was found by adding the genomic BLUP (ĝi) of the ith untested genotype to
the estimated environmental mean.

2.10. Demonstrative Example

For an easier understanding of how to implement the previous methods (C and CB)
for predicting DTM of untested genotypes in unobserved environments, an example is
provided. Let us assume there is phenotypic (DTM), genomic, and daylength information
available for 100 genotypes observed in 10 environments conforming to the training set.
Moreover, consider that we are interested in predicting the DTM for 5 untested genotypes
(testing set) in an unobserved target environment from which we know the location and
projected planting date.

The first step consists of estimating the environmental mean (DTM) in the target
environment. For this, the C-method is implemented on each one of the 100 genotypes (one
at a time) observed in other environments. Then, the environmental mean is calculated as
the average of the 100 estimated DTM values. Once the environmental mean is estimated,
the conventional GP model is implemented to compute the genomic BLUPs of those
5 genotypes in the testing set. The final step consists of adding to the BLUPs (5) the
estimated environmental mean. In this case, the predicted DTM of the untested genotypes
in the unobserved environment is a deviation (derived from the GP model) centered on the
environmental mean.
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2.11. Software

The statistical analyses were computed using R [37]. The conventional GP model
was fitted using the BGLR (Bayesian Generalized Linear Regression) R-package [38], and
the daylength information was obtained with the model proposed by [34] included in the
geosphere (v1.5–5) R package.

3. Results
3.1. Phenotypic Variability

An important assumption when applying conventional GP models is the homogeneity
of variances of the environments. Figure 3 depicts boxplots of the DTM and planting dates
for each of the 11 environments (the same 367 RILs were observed in all environments).
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North-Central Region. The planting dates at each site appear at the top.

Bartlett’s test for assessing homogeneity of variances produced a p-value < 2.2 × 10−16,
enforcing the graphical evidence in Figure 3 of heterogeneity of variances between envi-
ronments (note differences in the dispersion DTM values). As pointed out by [10], the
use of cumulative daylength holds the potential to predict phenological stages of untested
genotypes. Figure 4 shows the linear regression of the DTM as a function of cumulative
daylength. In this case, cumulative daylength clearly explained the DTM for any genotype
in any environment (R-squared of 0.96).

Although the DTM of unobserved genotypes can be easily predicted using cumulative
daylength, this method is not useful because it requires knowing the total daylength that
plants receive from planting until the occurrence of R8, which also implies knowing the
DTM. It is evident that the daylength information holds the potential to help with the
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prediction of the DTM; however, it was not very clear how to employ this information
until [10] proposed the C-method.
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3.2. Predicting Tested Genotypes in Unobserved Environments (CV0)

The CV0 scheme consists of predicting already tested genotypes in unobserved envi-
ronments. Under this prediction scenario, the C-method and the conventional GP model
were implemented to predict the DTM. Table 1 contains the predicted and observed envi-
ronmental means under the CV0 scheme for the GP and C-method. Across environments,
the conventional GP method returned an RMSE of 9.4 days, the difference between pre-
dicted and observed environmental means (PODEM) ranged from −19.2 to 11.9 days, and
the average correlation (AC) across environments was 0.805. In contrast, the C-method
returned an RMSE of 4.7 days, the PODEM values ranged from −3.4 to 4.5 days, and the
AC was 0.768.

Figure 5 depicts the two scatter plots between the observed and predicted DTMs
across environments for the C-method (5-A), and the conventional GP model (5-B), along
with their respective environmental means (5-C). The blue and black lines in the left two
panels represent the respective fitted line, and the 1:1 line represents the null hypothesis of
no differences between the predicted and observed values. The best fit was obtained with
the C-method. In panel 5-C, the environmental means of the C-method are depicted using
the orange data symbols and the GP model is depicted using the blue data symbols.
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Table 1. Observed and predicted environmental means of days to maturity (DTM) under the CV0
scheme (predicting tested genotypes in unobserved environments) using the conventional GP model
and the C-method, along with their corresponding predicted vs. observed difference in the environ-
mental means (PODEM), root-mean-square error (RMSE), and Pearson correlations for 367 genotypes
observed in 11 environments in the US North-Central Region.

Env Size E. Means CV0 PODEM CV0 RMSE CV0 Correlation CV0
Obs GS DL + GS GS DL + GS GS DL + GS GS DL + GS

2013_IA 367 118.7 137.9 118.6 −19.2 0.1 19.8 4.8 0.659 0.642
2012_IL 367 132.0 135.1 133.2 −3.1 −1.2 5.9 5.7 0.793 0.737
2013_IL 367 123.0 135.1 125.4 −12.1 −2.4 12.5 4.3 0.848 0.809
2013_IN 367 127.6 134.6 124.9 −7.0 2.7 7.7 4.6 0.785 0.736
2012_KS 337 131.2 128.2 128.6 3.0 2.6 4.2 4.0 0.833 0.823
2011_NE 367 117.6 132.6 120.9 −15.0 −3.3 15.2 4.2 0.889 0.873
2012_NE 367 131.9 134.2 133.6 −2.3 −1.7 3.9 3.6 0.759 0.705
2012_OHmian 270 129.7 129.7 133.1 0.0 −3.4 3.8 5.3 0.711 0.634
2013_OHmc 161 129.3 134.9 129.4 −5.6 −0.1 6.5 3.4 0.882 0.881
2013_OHmian 206 136.5 124.6 132.0 11.9 4.5 12.4 5.8 0.759 0.678
2012_OHmc 127 132.0 122.0 128.7 10.0 3.3 10.9 6.0 0.939 0.931

Means 300 128.1 131.7 128.0 10.0 0.1 9.4 4.7 0.805 0.768
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Figure 5. Scatterplot between the predicted (under the CV0 scheme with tested genotypes in unob-
served environments) and observed DTMs of 367 soybean genotypes across 11 environments for the
C-method (A) and the conventional GP model (B) and their corresponding environmental means (C).
The blue line indicates the fitted line between the predicted and observed DTM values, the black line
denotes the 1:1 line that represents the null hypothesis of no difference between the observed and
predicted observations, and the environmental means are indicated with orange and blue symbols
denoting paired O and P points of the C-method and the conventional GP model, respectively.

3.3. Predicting Untested Genotypes in Unobserved Environments (CV00)

For predicting untested genotypes in unobserved environments (CV00), the BLUPs
of the untested genotypes obtained with the conventional GP method were added to the
estimated environmental means of the unobserved environments (CB-method: C + BLUPs).
Table 2 presents the corresponding environmental means, PODEM, RMSE, and AC. The
conventional GP model returned an RMSE of 7.8 days, the PODEM varied from −14.7
to 7.9 days, and the AC was 0.665. The CB-method produced an RMSE of 5.2 days, the
PODEM ranged from −3.3 to 4.4 days, and the AC was 0.667. Similarly, as for the CV0
scheme (Figure 5), Figure 6 displays the results of the CB-method (6-A), the conventional
GP model (6-B), and the predicted environmental means (6-C) of both implementations.

Table 2. Observed and predicted environmental means of days to maturity (DTM) under the CV00
scheme (predicting untested genotypes in unobserved environments) using the conventional GP
model and the CB-method, and their corresponding predicted vs. observed difference in the environ-
mental means (PODEM), root-mean-square error (RMSE), and Pearson correlations for 367 genotypes
observed in 11 environments in the US North-Central Region.

Env Size E. means CV00 PODEM CV00 RMSE CV00 Correlation CV00
Obs GS DL + GS GS DL + GS GS DL + GS GS DL + GS

2013_IA 367 118.7 133.4 118.7 −14.7 0.0 15.6 5.2 0.572 0.573
2012_IL 367 132.0 128.9 133.3 3.1 −1.3 6.9 6.3 0.622 0.623
2013_IL 367 123.0 131.2 125.4 −8.2 −2.4 9.2 4.9 0.700 0.701
2013_IN 367 127.6 132.5 124.9 −4.9 2.7 6.4 5.0 0.627 0.629
2012_KS 337 131.2 135.1 128.5 −3.9 2.7 5.3 4.5 0.718 0.720
2011_NE 367 117.6 130.4 120.9 −12.8 −3.3 13.2 4.7 0.781 0.785
2012_NE 367 131.9 133.9 133.6 −2.0 −1.7 4.2 4.1 0.588 0.593
2012_OHmian 270 129.7 127.4 133.0 2.3 −3.3 5.3 5.8 0.499 0.501
2013_OHmc 161 129.3 128.9 129.3 0.4 0.0 4.0 3.9 0.833 0.835
2013_OHmian 206 136.5 128.6 132.1 7.9 4.4 9.0 6.2 0.509 0.514
2012_OHmc 127 132.0 128.7 129.0 3.3 3.0 6.6 6.4 0.864 0.865

Means 300 128.1 130.8 128.1 3.3 0.1 7.8 5.2 0.665 0.667
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Figure 6. Scatterplot between the predicted (under the CV00 scheme, untested genotypes in unob-
served environments) and observed DTMs of 367 soybean genotypes across 11 environments for the
CB-method (A) and the conventional GP model (B) and their corresponding environmental means
(C). The blue line indicates the fitted line between the predicted and observed DTM values, the black
line denotes the 1:1 line that represents the null hypothesis of no difference between the observed and
predicted observations, and the environmental means are indicated with orange and blue symbols
that denote paired O and P points of the CB-method and the conventional GP model, respectively.

4. Discussion

In this study, genomic prediction was shown to be an efficient tool for predicting the
ranking of complex traits (controlled by many genes of small effect) of untested genotypes
in observed and unobserved environments [7]. For example, using traits such as grain
yield, disease, salinity, and drought tolerance, breeders focus the selection of the best
genotypes occupying the desired tail of the distribution of the predicted GEBVs [39]. When
no information from the main environment is available for model calibration, GP might not
be the most convenient method to implement when predicting a phenological stage, such
as R8 in soybean. Among the potential disadvantages of using conventional GP models in
the CV0 and CV00 scenarios, one may end up with a prediction of a developmental stage
that is different from the one we are interested in due to a large bias between predicted
and observed values. The C- and CB-methods, which are based on daylength information,
helped to significantly reduce the bias without negatively affecting the predictive ability of
the rankings.

The main purpose of this study was to develop and evaluate a method for predicting
a time-related trait (here, the focus was on DTM) for untested soybean genotypes in
unobserved environments. More specifically, we were interested in predicting the DTM;
however, these developments can be extended to other important growing stages, such
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as days to flowering (R1) and R5. For this, a method was implemented that leveraged
daylength information in the modeling process while considering two important prediction
scenarios that are of interest to breeders. The first scenario (CV0) considered the prediction
of already-tested genotypes in unobserved environments where a breeding line might
be grown and have an adaptive fit. Two prediction strategies were implemented (the
C-method and conventional GP). The second scenario (CV00) considered the prediction of
untested genotypes in unobserved environments. In this case, two prediction strategies
also were implemented (the CB-method and conventional GP).

The results obtained using the CV0 scheme were promising when using the C-method
because it returned a smaller RMSE of 4.7 for DTM compared with the GP model (9.4).
Moreover, the PODEM was significantly reduced under the C-method compared with the
GP model from [−19.2, 11.9] days to [−3.4, 4.5] days. However, the average PC was slightly
reduced from 0.805 to 0.768 with the C-method compared with the GP model. In general,
the accuracy of the C-method outperformed the results from the conventional GP model.
For example, RMSE was reduced by 50% (9.4 − 4.7 = 4.7), while the PODEM was reduced
to one-quarter

(
4.5−(−3.4)
11.9−(19.2) =

7.9
31.1

)
with the method that used daylength information.

These results were similar to those presented by Jarquin et al. [10] who predicted
days to heading in rice populations (112 genotypes tested in 51 environments) with the
CV0 scheme. In their case, the C-method returned an RMSE of 3.9 days, with a PODEM
that varied from −4.95 to 4.67 days and a PC of 0.98. In contrast, with the GP model, the
corresponding values were an RMSE of 18.1 days, a PC of 0.41, and a PODEM that varied
from −31.5 to 28.7 days. Chen [40] performed a similar study by comparing the predictive
accuracy of three approaches, namely, a crop growth model, a machine learning model,
and a combination of these two models, for predicting days to heading in rice.

The authors considered genotypic information, environmental variables (daylength
and daily temperature), and planting and headings dates of 112 cultivars/lines tested in
seven locations over 14 years for a total of 64 environments. They obtained an RSME of
6.47 days when deleting one genotype from the rice data set. Our results were in line
with these when using two foregoing rice studies [10,40], but closer to those from [10].
One possible explanation might be that both traits in both crops responded similarly to
daylength, coupled with the fact that we implemented almost the same methodology
without taking into consideration the temperature or any other weather variable. It is
worth noting that [17] proposed a soybean model based on non-linear temperature and
photoperiod data that was tested in a six-year soybean experiment.

These authors accomplished an RMSE of 1.8 days in a cultivar × sowing date ex-
periment when predicting major reproductive stages in soybean (R1—first flower, R3—
beginning pod, R5—beginning seed, and R7—physiological maturity). However, one of
the disadvantages of their method is that the environmental conditions must be provided
in advance or at least virtually (day-by-day). For example, the temperature is not constant
over seasonal time and weather parameter data in any given year can deviate significantly
from historical climatic normals, complicating the prediction process when prediction
involves the use of crop models.

Regarding the most complex and interesting prediction scenario (CV00), the obtained
results using the CB-method were clearly superior when compared with the GP model.
It returned an RMSE of 5.2 days, whereas the RSME for GP was 7.8 days. The PODEM
values varied from −3.3 to 4.4, but with the GP implementation, the respective values were
−14.7 and 7.9 days, representing a reduction to one-third

(
4.4−(−3.3)
7.9−(14.7) = 7.7

22.6

)
using the CB-

method. Notably, the average PC remained unaffected; it was 0.667, whereas the GP method
returned 0.665. In [10], when predicting days to heading in rice under the CV00 scenario
(CB-method), the RMSE was 7.3 days, the PC was 0.93, and the PODEM varied from −6.4
to 4.1 days; in contrast, the conventional GP model returned an RMSE of 18.1 days, a PC of
0.41, and a PODEM that varied from −31.5 to 28.7 days. In the study performed by Chen
et al. [40] the integrated crop growth models and machine learning techniques, under the
CV00 scheme (i.e., predicting untested genotypes in untested environments), the RMSE
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was 7.69 days. Their results are consistent with those from [10] and the results obtained in
our study.

Although the multiple E/e loci in soybean exert major phenotypic effects on flowering
and maturity time [26,31], we did not consider these in our study. Their various allelic
combinations provide a genetic basis for the adaptation of genotypes to certain latitudes
and weather conditions [22]. For instance, Doubler [41] compared the prediction of using
genome-wide markers and E genes associated with relative maturity (RM) in commercial
soybean varieties. These authors determined allele effects in four prediction models:
two models with traditional MAS (specific E gene and expanded E gene) and two GP
models with different marker densities. The whole-genome marker GP and expanded E
gene models returned the best results with average Pearson correlations of 0.93 and 0.94,
respectively. For the E-gene-specific model, the prediction accuracy was slightly reduced to
0.8. These results provided insights into the potential of these major genes for predicting
time-related traits; however, these authors did not consider predicting in unobserved
environments, which could have led to a large bias.

Messina et al. [42] designed a strategy by combining the ecophysiological model
CROPGRO-Soybean with linear models for predicting growth parameters specific to each
cultivar based on genetic E loci. These authors established an experiment in 2001 in Florida
to collect data for model calibration, then used these values for predicting the days to the
occurrence of various phenological stages of cultivars established in (i) Florida (2002) and
(ii) Illinois for several location–year combinations. The root-mean-square error between the
predicted and observed values of those genotypes grown in Florida were approximately
5 days, while for the Illinois variety trials, they were 7.5 days. Since then, more loci were
detected and, at the same time, genomics has become more advanced. Given the potential
yield-predictive ability of crop models, it is opportune to develop a genomic model for R8.

Recently, McCormick et al. [43] proposed a strategy that leverages human-defined
models of soybean phenology and data-driven machine learning models that accomplish
accurate and interpretable predictions. These authors leveraged the knowledge-based
models using machine learning techniques for predicting days to flowering (R1) and
physiological maturity (R7), among other traits. For R1, the mean absolute error (MAE)
was 4.41 days, while for the knowledge-based model, which was used as the benchmark,
returned an MAE of 6.94 days. Regarding R7, the corresponding MAE was 5.27 days, while
the knowledge-based model returned 15.53 days.

The C- and CB-methods showed that the use of daylength information in both pre-
diction scenarios outperformed the prediction accuracy of conventional methods based
on genome-wide markers, or in sets of major genes controlling this trait. The C-method
takes advantage of phenotypic information of the same genotype observed in many other
environments, whereas the CB-method uses the results of the C-method to predict untested
genotypes in unobserved environments, thereby leveraging both phenotypic and molecular
marker information, plus daylength information. The advantage of using these day-length-
based methods is that theoretical values of daily daylength data can be obtained before
observing cultivars in fields and the environmental conditions. These findings could help
breeders to better plan their experiments when interested in phenology traits that are
critical for the adaptive fit of breeding line selections that are destined to be released as new
cultivars.

5. Conclusions

In this study, we developed a set of models that leveraged daylength information
to effectively predict one time-related trait (e.g., DTM) for tested and untested soybean
genotypes in unobserved environments. The results we obtained had a prediction win-
dow of ±4 days. These results provided insights that allowed us to conclude that an
important portion of the genotype-by-environment interaction can be partially explained
using daylength (photoperiod) data. Thus, the proposed methods showed that daylength
information significantly helped us to improve the predictive ability of DTM in unobserved
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environments. Since this information can be obtained in advance just by identifying the
latitude of the observable (or unobservable) location and the planting date, we concluded
that this approach is more convenient than using in-season weather data because there is
no need to wait to observe the environmental conditions prior to implementing the model.
These findings could help breeders to improve soybean adaptation in future environments,
avoiding field evaluations in the targeted environments (location × year × planting date
combination).

Supplementary Materials: The following supporting information can be downloaded at: https://
uflorida-my.sharepoint.com/:f:/g/personal/jhernandezjarqui_ufl_edu/EnqymoWE6jdKlcb0zSftjTgBLI9
eBUdIRedh5rL6Xa8MNQ?e=B4UcYi (accessed on 29 March 2022), Figure S1: Population Structure;
Table S1: Phenotypic information of days to maturity in 11; Matrix of molecular markers: SNPs.csv.
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