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Abstract: It is an urgent task to improve the applicability of the cucumber disease classification
model in greenhouse edge-intelligent devices. The energy consumption of disease diagnosis models
designed based on deep learning methods is a key factor affecting its applicability. Based on this
motivation, two methods of reducing the model’s calculation amount and changing the calculation
method of feature extraction were used in this study to reduce the model’s calculation energy
consumption, thereby prolonging the working time of greenhouse edge devices deployed with
disease models. First, a cucumber disease dataset with complex backgrounds is constructed in this
study. Second, the random data enhancement method is used to enhance data during model training.
Third, the conventional feature extraction module, depthwise separable feature extraction module,
and the squeeze-and-excitation module are the main modules for constructing the classification
model. In addition, the strategies of channel expansion and = shortcut connection are used to further
improve the model’s classification accuracy. Finally, the additive feature extraction method is used
to reconstruct the proposed model. The experimental results show that the computational energy
consumption of the adder cucumber disease classification model is reduced by 96.1% compared
with the convolutional neural network of the same structure. In addition, the model size is only
0.479 MB, the calculation amount is 0.03 GFLOPs, and the classification accuracy of cucumber disease
images with complex backgrounds is 89.1%. All results prove that our model has high applicability
in cucumber greenhouse intelligent equipment.

Keywords: cucumber disease diagnosis; image classification; low calculation energy consumption;
additive feature extraction method; lightweight convolution model

1. Introduction

As one of the important greenhouse economic crops, cucumber plays an important
role in the adjustment of agricultural structure and the increase in farmers’ income [1].
Cucumber downy mildew and bacterial angular spot are commonly occurring diseases in
greenhouses. The two diseases have a short disease period and are highly contagious, which
can easily cause great economic loss for farmers. Currently, the development of greenhouse
intelligent monitoring equipment has made more plant disease classification models that are
applied to actual production, which is of great significance to ensure the economic benefits
of farmers. However, the limited battery capacity, computation, and storage resources have
become key factors that limit the use of deep learning models on edge devices. Many studies
chose to deploy diagnosis models to the server-side and transmitted plant disease images
taken by edge devices to servers for disease classification [2–4]. However, a large amount
of data traffic and transportation latency make the model inefficient, unreliable, and time
consuming [5]. Therefore, the question of how to design a disease diagnosis model with
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low computational energy consumption, small model size, and low computation amount
attracts many researchers’ attention.

Traditional disease classification models are mainly built based on machine learning
technology. With the rapid development of deep learning, convolutional neural networks
(CNNs) have become the basic structure for researchers to build plant disease classification
models [6–8]. The energy consumed by the convolutional neural network for forwarding
propagation is mainly composed of computational energy consumption and memory access
energy consumption. Among these, the memory energy of the model is affected by many
factors, such as the model structure, the development framework, the hardware status,
and so on. Some researchers proposed efficient memory management strategies for CPU
(Central Processing Unit) or GPU (Graphic Processing Unit) to reduce memory access
energy consumption, and these methods perform better in many tasks [9,10]. However,
there are fewer studies that put focus on reducing the calculation energy consumption of
disease diagnosis models.

In this study, reducing computation amount and changing feature extraction are ex-
plored to reduce the model’s computational energy consumption. Concretely, CNNs extract
disease spot features by sliding the convolutional kernel on images, and the parameters of
convolutional kernels constantly adjust and update in the process of backpropagation to ob-
tain stronger feature extraction capabilities. This learning method makes models designed
based on CNNs attain some promising results on disease diagnosis tasks, but feature
extraction methods also cause the model to have high computational energy consumption.
From the perspective of reducing the computation amount of convolution models, tradi-
tional methods manually select specific disease features to build simple diagnostic models.
Zhou et al. [11] proposed using a single-feature two-dimensional XY-color histogram to
select features as the input of the classifier. Many researchers [12–15] designed algorithms
to obtain plant disease spots features. They firstly extracted multiple features such as
color, texture, spot area, and the number of lesion regions and then send these features to
simple classification models. The above methods greatly reduce the calculation amount of
the model, but fewer input features will reduce the classification accuracy of the model.
Convolution models can not only extract detailed features such as color and texture of
diseased spots but also extract high-level semantical features of diseased spots. This is the
main reason that convolutional neural networks have higher diagnostic accuracy compared
with traditional machine learning methods. To obtain better diagnosis performance, some
researchers built models with complex structures, but this induces a larger amount of pa-
rameters in models and makes these models require more storage resources [16]. Recently,
the depthwise separable convolution module has provided a new solution on model com-
pression. Kamal et al. [17] and De Ocampo and Dadios [18] used the depthwise separable
convolution module to construct models, which greatly reduced the size and computation
of the model and improved the applicability of the model on mobile devices. However,
the module will reduce the diagnosis accuracy of models. To improve the diagnosis effect,
some researchers used an optimization method to ensure classification accuracies, such as
the squeeze-and-excitation module [19–21]. These studies gave us a lot of inspiration.

In terms of feature extraction methods, the multiplicative calculation method of the
convolutional neural network makes the model consume more energy on devices [22].
To solve this problem, Courbariaux et al. [23] constructed BinaryConnect, a neural network
with a mixture of binary and single precision, and converted the network weight into
binary, achieving a very high accuracy at that time. Hubara et al. [24] proposed to convert
the activation function into binary at runtime, which increased the speed by seven times
on the GPU. Although the above methods achieved good energy-saving effects, the low
classification accuracy of the binary neural network is still a main factor restricting its
application. Chen et al. [22] proposed using addition to extract features from images, which
can greatly reduce the calculation energy consumption of the model. This study proves
that addition as a feature extraction method is feasible.
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Motivated by the above studies, we propose an energy-saving plant disease diag-
nosis model with less computation energy consumption. The core contributions can be
summarized as follows:

1. Considering that models constructed by depthwise separable convolution modules
have a small calculation amount, the cucumber disease dataset is constructed based
on it. To improve the model’s classification accuracy on the cucumber disease dataset
with complex backgrounds, the squeeze-and-excitation module, the shortcut connec-
tion, and the channel expansion strategy are used to construct a model called CNN-
Light.

2. To further reduce the computation energy consumption of the model, an additive
feature extraction method is used to construct the depthwise separable additive
feature extraction module and the additive squeeze-and-excitation module.

3. Modules constructed by additive feature extraction methods are used to construct
ADDLight, which has the same structure as CNNLight. The experimental results
show that ADDLight has low calculation energy consumption and relatively high
classification accuracy for the cucumber disease task.

2. Materials and Methods
2.1. Self-Built Datasets
2.1.1. Cucumber Leaf Disease Dataset

The cucumber dataset used in this paper was collected by mobile phones from October
to November 2020 in Xiaotangshan National Precision Agriculture Research Demonstra-
tion Base in Beijing, with a total of 2542. Considering that the greenhouse smart device
will inevitably capture the complex field background when collecting images, the images
captured in this study all contain a field background. Due to the characteristics of bacterial
angular leaf spot and downy mildew on the abaxial cucumber leaves only occurring in
high humidity morning environments, images were collected between 7 am and 9 am.
The images in the cucumber disease dataset can be divided into 6 categories (e.g., the back-
side of the downy mildew leaf (DM Back), the front side of the downy mildew leaf (DM),
the backside of the bacterial angular spot leaf (BA Back), the front side of the bacterial
angular spot leaf (BA), the backside of the healthy leaf (Health Back), and the front side of
the healthy leaf (Health)), as shown in Figure 1. Because of the large differences between
the symptoms on the adaxial and abaxial of cucumber leaves, the front side and backside
of cucumber leaves are divided into two classes. The amount of data for each category is
shown in Table 1. In this study, the dataset is randomly divided into the training set, test
set, and validation set according to a ratio of 6:3:1.

Table 1. Data quantities and categories of various classes in the cucumber disease dataset.

Category Number of Images Category Number of Images

DM 488 DM Back 382
BA 512 BA Back 432

Health 540 Health Back 188
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(a) DM

(d) DM Back

(b) BA

(e) BA Back

(c) Health

(f) Health Back

Figure 1. Sample images of the cucumber disease dataset (original image size:1024 × 1024): (a) The
front side of the downy mildew leaf (DM). (b) The front side of the bacterial angular spot leaf (BA).
(c) The front side of the healthy leaf (Health). (d) The backside of the downy mildew leaf (DM Back).
(e) The backside of the bacterial angular spot leaf (BA Back). (f) The backside of the healthy leaf
(Health Back).

2.1.2. Random Data Enhancement

To improve the model’s training effect, random data enhancement is used to expand
the data. Existing data enhancement usually augments the dataset to a fixed amount
before training, but the over-fitting phenomenon can still occur when the number of
training rounds increases. In this study, different data enhancement methods are randomly
combined to enhance data in each iteration during training. Moreover, the parameters in
these data enhancement methods are also randomly chosen in each epoch. In this manner,
the data samples used in each training epoch are different, which avoids the over-fitting
problem caused by the small amount of data and a large number of iterations. In addition,
it can improve the model’s generalization ability and final classification accuracy.

In the cucumber disease classification task, the color of the disease spots is one of the
important features of classification; thus, this task only uses the random combination of
geometric transformation methods such as flip, rotation, clipping, deformation, and scaling
to expand the dataset. Since the data generated by each epoch of the model are different,
the amount of data used for model training is proportional to the number of the epoch.
The data amount involved in training can be calculated by Equation (1), where trainorign is
the amount of data in each epoch, trainorign is the total number of the data participated in
the training process, and epoch is the total number of training epochs.

trainaugment = trainorign × epoch. (1)

2.2. Methods
2.2.1. Model Architecture

To obtain a suitable model for the cucumber disease classification task, we firstly built
four models using the convolution feature extraction method. Then, the most suitable
model was reconstructed by the addition feature extraction method. The basic structure of
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these models is shown in Figure 2, which is designed based on conventional convolution
modules BlockA and BlockB. In this study, the structural complexity of the model is
controlled by changing the number of BlockB. The four models’ detailed parameter settings
are shown in Table 2.

The structure of BlockA and BlockB is shown in Figure 3. BlockA and BlockB are
mainly composed of a depthwise separable convolution module, a squeeze-and-excitation
module (SE), and a conventional convolution module. One important difference between
BlockA and BlockB is that BlockB initially uses a conventional convolution block to expand
the number of channels in the feature map. It can help the model in obtaining more
high-semantical features of disease spots. The conventional convolution module in BlockA
and the second conventional convolution module in BlockB only fuse features obtained
from SE, and it does not change the number of channels. At the same, to avoid the
gradient divergence problem, a shortcut connection is used in the model to add feature
maps extracted at different stages. The two blocks not only have lower computation and
parameter amounts but also can guarantee the classification accuracy of the model. Thus,
we used the two blocks to construct the cucumber disease classification model in this study.

Input Image

: Average pooling layer

: Fully connected layer

: Swish activation function

: Sigmoid activation function

: Convolution module

: Batch Normalization

: Depthwise separable feature extraction model
SE SE

BlockA BlockB×N

Average pooling&

Fully Connected Layer

Softmax

Conv2D_1 Conv2D_2

Figure 2. The structure of the cucumber disease classification model.

Table 2. Parameter setting of each block in the model.

Model Name Block Name Input Channel
Number

Output Channel
Number Kernel Size Stride

Model1 Conv2D_1 3 32 3 2
BlockA 32 40 3 1

Conv2D_2 40 1280 1 1
Model2 Conv2D_1 3 32 3 2

BlockA 32 40 3 1
BlockB_1 40 80 3 2

Conv2D_2 80 1280 1 1
Model3 Conv2D_1 3 32 3 2

BlockA 32 40 3 1
BlockB_1 40 80 3 2
BlockB_2 80 112 5 2

Conv2D_2 112 1280 1 1
Model3 Conv2D_1 3 32 3 2

BlockA 32 40 3 1
BlockB_1 40 80 3 2
BlockB_2 80 112 5 2
BlockB_3 112 192 3 2

Conv2D_2 192 1280 1 1
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Depthwise Separable Conv2D

Input Channel=inp

Output Channel=inp

Kernel Size=k

Stride=s

Batch Normalization

SE

Conv2D

Input Channel=inp

Output Channel=oup

Kernel Size=1

Stride=1

Batch Normalization

Swish

Block-A

AveragePooling

Fully Connect Layer

Input Channel=inp

Output Channel=inp/4

Kernel Size=1

Stride=1

Swish

Fully Connected Layer

Input Channel=inp/4

Output Channel=inp

Kernel Size=1

Stride=1

Sigmoid

SE

Depthwise Separable Conv2D

Input Channel=inp*6

Output Channel=inp*6

Kernel Size=k

Stride=s

Batch Normalization

SE

Conv2D

Input Channel=inp*6

Output Channel=oup

Kernel Size=1

Stride=1

Batch Normalization

Swish

Conv2D

Output Channel=inp

Input Channel=inp*6

Kernel Size=1

Stride=1

Batch Normalization

Block-B

Notice:

inp: the number of channels input by this block;

oup: the number of channels output by this block.

k: the size of kernel size in the module;

s: the size of stride in the module.

Figure 3. The structure of blocks in the model.

In addition, batch normalization was used after each convolution module to improve
the model’s training speed. The feature maps extracted from the multi-layers are sequen-
tially sent to the convolution module and the batch normalization layer to speed up the
model’s convergence speed. Then, the feature map is inputted into the average pooling
layer and the fully connected layer and finally inputted into the softmax layer to obtain
the probability of belonging to each category. Based on the final experimental results,
Model2 (CNNLight) was chosen as the model structure for the task. CNNLight has a
relatively small amount of parameters and computation amount. From the perspective of
reducing computation amount, CNNLight reduces computational energy consumption.
To further reduce the computational energy consumption of the model, this study used
the additive feature extraction method to reconstruct CNNLight, and the reconstructed
model ADDLight with lower computational energy consumption was the final model used
in greenhouse edge devices.

2.2.2. Additive Feature Extraction Method

For the edge devices with limited battery capacity, using the additive feature extraction
method can make these devices work longer [22]. The process of feature extraction can be
regarded as measuring the similarity between the feature map and the feature extraction
kernel. Thus, it is feasible to use addition instead of multiplication to calculate the distance
of feature maps and feature extraction kernels. As shown in Figure 4a, the first normal
form is used to calculate the cross-correlation between feature extraction kernels and
feature maps. In this manner, the additive feature extraction method can be used to extract
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features from images. The forward propagation calculation formula of the additive feature
extraction method is shown in Equation (2):

Y(m, n, t) = −
d

∑
i=0

d

∑
j=0

Cin

∑
k=0
|X(m + i, n + j, k)− F(i, j, k, t)|, (2)

where F ∈ Rd×d×Cin×Cout is the kernel function of the model’s middle layers, d is the
kernel size, Cin is the number of the input channels, Cout is the number of output channels,
X ∈ RH×W×Cin is the input feature map, H and W are the height and width of a feature
map, respectively, and Y represents the extracted feature map.

1

1

1

1

1

1

11

1

out inF = - | F - W |

inFInput Feature Map:

Adder core: W

outFOutput Feature Map:

+1

-2

+3

+1

-2 +3

+3

-2 +1

-15

(a) Additive feature extraction process:

1

1

1

1

1

1

11

1

out inF = F *W

inFInput Feature Map:

Multiply core: W

outFOutput Feature Map:

×1

×3

×1

×(-2) ×3

×3

×1

3

(b) Multiplicative  feature extraction process:

×(-2)

×(-2)

Figure 4. Addition and multiplication feature extraction method: (a) The feature extraction process
uses the addition method. (b) The feature extraction process using the multiplication method.

To solve the problem where the output of the added neural network is all negative,
batch normalization was used to normalize the output. Since the additive feature extraction
method uses an absolute value in the forward propagation function, the partial derivative
of output feature map Y relative to convolution kernel F cannot be directly obtained in
backpropagation. To solve this problem, this study used an L2 norm as the gradient
calculation method. The calculation formula is shown in Equation (3).

∂Y(m, n, t)
∂F(i, j, k, t)

= X(m + i, n + j, k)− F(i, j, k, t). (3)

The L2 norm is also used as the gradient calculation formula when solving the partial
derivative of output feature map Y relative to input feature X. To avoid the gradient
explosion problem caused by the deep network, the HT (HardTanh) function was used to
truncate the derivation result. The calculation formula is shown in Equation (4). The final
calculation formula of the partial derivative between output feature X and input feature Y
is shown in Equation (5).
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HT(X) =


x, −1 < x < 1,
1, x > 1,
−1, x < −1,

(4)

∂Y(m, n, t)
∂X(m + i, n + j, k)

= −HT(F(i, j, k, t)− X(m + i, n + j, k)). (5)

The similar output distribution between layers in the neural network is more con-
ducive to the stability of network training. Hence, this study used a normalization oper-
ation after each layer of the neural network. For a given training batch β = {x1, . . . , xm},
the formulation of batch normalization is stated in Equation (6):

y = γ
x− µβ

θβ
+ β = γx̂ + β, (6)

where γ and β are the learnable parameters, and µ and β are the mean and variance of the
output feature map, respectively.

In summary, the gradient calculation formula of the batch normalization layer in the
adder neural network is shown in Equation (7).

∂l
∂xi

=
m

∑
j=1

∂l
∂m2σβ

{ ∂l
∂yi
− ∂l

∂yi
[1 +

(xi − xj)(xj − µβ)

σβ
]}, (7)

Due to the large variance value σ of each layer in the model, the magnitude of the
calculated partial derivatives will become smaller. To avoid gradient vanishment during
training, the gradient of each layer is readjusted using the adaptive learning rate based on
normalization. The gradient calculation formula of each layer is shown in Equation (8):

M Fl = γ× αl× M L(Fl), (8)

where M Fl is the update parameter amount for the l layer of the network, γ represents the
global learning rate, αl represents the learning rate of the l layer, and M L(Fl) is the gradient
of the l layer. To keep the updated amount of the parameters in each layer consistent, this
study adjusted the learning rate of each layer, and the adjustment’s calculation is shown in
Equation (9):

αl =
η
√

k
|| M L(Fl)||2

, (9)

where k is the number of elements in Fl , and η is a learnable hyperparameter.

2.2.3. Depthwise Separable Additive Feature Extraction Module

Our proposed model was designed based on depthwise separable convolution mod-
ules. Compared with conventional convolution modules, depthwise separable convolution
modules have low parameters and calculation amounts [25].

As shown in Figure 5, the depthwise separable convolution module divides the
conventional convolution operation into two steps, as shown in Equations (10) and (11).

Y1(m, n, t1) = −
d

∑
i=0

d

∑
j=0
|X(m + i, n + j, t1)− F1(i, j, t1)|, (10)

Y2(m, n, t2) = −
Cin

∑
k=0
|Y1(m, n, k, t2)− F2(k, t2)|. (11)

The first step is depthwise convolution, the number of channels in filters is one,
and the number of filters is the same as the number of channels in the input feature map.
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The second step is pointwise convolution, which uses the convolution kernel with a kernel
size of 1 to fuse feature maps in depth to obtain the final feature map. It is noticeable
that the number of channels in filters is the same as the number of feature maps extracted
from the previous step. It can be observed that the dimensions of feature maps extracted
by the depthwise separable convolution module are consistent with that extracted by
the conventional convolution module. The computation and parameter amounts of the
depthwise separable convolution module and conventional convolution neural network
are shown in Equations (12) and (13), respectively:{

DWConv = K× K× Cṁ × H′ ×W ′ + Cin × Cout × H′ ×W ′,
Conv = K× K× H′ ×W ′ × Cṁ × Cout,

(12)

{
DWConv = K× K× Cin + Cin × Cout ,

Conv = K× K× Cin × Cout ,
(13)

where K is the size of the convolution kernel, H′ and W ′ are the length and width of an
output feature map respectively, Cin is the number of channels of the input feature map,
and Cout is the channel number of the output feature map. It can be observed that compared
with the conventional convolution module, the depthwise separable convolution module
reduces the computation amount and parameter number of the model to a large extent.

Feature Maps 

H’×W’×

Filters-2

1×1×     ×

outC

Depthwise Convolution Pointwise Convolution

outC

inC
inC

inC

Input Channel

H×W×

inC
outC outC

Filters

K×K×      ×

Output

H’×W’×
inC outCinC outC

Input Channel

H×W×
inC

Filters-1

K×K×     
inC

inC

Output

H’×W’×
outC

inC
outC

(a) Depthwise Separable Convolutional Neural Network

(b) Conventional Convolutional Neural Network

Figure 5. Comparison of feature extraction process. (a) is the depthwise separable feature extraction
process, (b) is the conventional convolution feature extraction process.

2.2.4. Additive Squeeze-and-Excitation Module

To improve the expression ability of important features in the feature map, Hu et al. [26]
proposed using the squeeze-and-excitation module (SE) to adjust the feature weights of the
channel. As Figure 3 shows, firstly, the input feature map is input into the average pooling
layer and converted into a one-dimensional vector with the same length as the number of
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channels in the input feature map. Then, the vector is sequentially input into the two fully
connected layers and a sigmoid activation function for weight learning. Finally, the input
feature map multiplies the learning weight to obtain the weighted feature map. Many
studies have shown that the SE module can improve classification accuracy degradation
caused by the depthwise separable module [20,27]. To further reduce computational energy
consumption, the feature extraction process involved in the SE module is reconstructed by
the addition calculation method.

2.3. Evaluation Indicators and Experimental Environment
2.3.1. Evaluation Indicators

The evaluation indicators selected in this study can be divide into two groups. ACC,
Precision, and Recall are used to evaluate the diagnostic performance of the model. FLOPs,
Model Size, and Model Calculation Energy Consumption are used to measure the calcu-
lation amount, parameter number, and calculation energy consumption of the model,
respectively. The calculation formulas of ACC, Precision, and Recall are shown in Equa-
tions (14)–(16):

ACC =
TP + TN

TP + TN + FP + FN
, (14)

Precision =
TP

TP + TN
, (15)

Recall =
TP

TP + FN
, (16)

where TP and TN represent the correct number of positive and negative samples, respec-
tively. TP is the number of samples correctly predicted as positive samples, FP and FN are
the number of negative samples predicted as positive and the number of positive samples
predicted as negative samples, respectively.

FLOPs measures the model’s complexity. It refers to the number of floating-point
operations performed in complete forward propagation. The lower the FLOPs, the lower
the computation and execution time of the model. The Model Size is used to measure the
parameter quantity of the model. The smaller the value, the lower the requirement of the
model for device storage space. Model Calculation Energy Consumption represents the
energy consumed by the model to complete an image diagnosis. The parameters of the
model constructed in this study are all 32-bit floating-point numbers. On a 45 nm 0.9 V
device, the energy consumed by a 32-bit floating-point number addition and multiplication
is 0.9 pJ and 3.7 pJ, respectively [28]. The lower the energy consumed by the model for
disease classification, the longer the device will run after a single charge.

2.3.2. Experimental Parameters Setting

The adder neural network was constructed based on Pytorch and trained on CUDA
11.0. All experiments involved in this study were carried out in the Ubuntu 18.04.4 envi-
ronment (processor: Intel Core I9 9820X; memory: 64 G; graphics card: GeForce RTX 2080Ti
11G DDR6).

To improve the convergence speed of the network and to reduce the negative influence
of sample noise, the model used a combination of SGD and Momentum to update the weight
during training [29]. We set the learning rate to 0.00001, momentum to 0.9, and weight
decay to 0.0001. Due to the limitation of GPU memory, the batch size is set to 64, and the
experiment is set 500 iterations.

3. Results
3.1. Comparison of Various Classification Models

To verify the effectiveness of the model structure constructed for the cucumber disease
classification task, we compared the classification performance of five mainstream models
(Efficientnet-B0 [30], ResNet18 [31], SqueezeNet [32], MobileNet-V3 [33], and VGG-16 [34])
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with relatively fewer parameters. Their performance on the test dataset is shown in
Table 3. The results clearly show that the five models have no significant difference in
classification accuracy. VGG-16 and EfficientNet have the highest accuracy of 91.8%.
Moreover, SqueezeNet has the lowest accuracy, which is 3.2% lower than VGG-16. While
VGG-16 performed as well as EfficientNet, its model size was nearly 105-times larger
than SqueezeNet, and its FLOPs was approximately 38 times higher than EfficientNet.
The classification accuracy of CNNLight is only 1.6% lower than that of VGG-16, but the
model size is about 1070-times lower than that of VGG-16, and the computation amount
is about 513-times lower than that of VGG-16. In terms of the model performance on
the three indicators ACC, Model Size, and FLOPs, the results prove that CNNLight is
more suitable for constructing a disease classification model. On the premise that the
classification accuracy is only 0.13% lower than that of VGG-16 and the Model Size is only
15.30 MB, the FLOPs of EfficientNet-B0 is 37.88% lower than that of MobileNet-V3.

Table 3. Performance comparison of various classification models.

Model ACC (%) Model Size (MB) FLOPs (G)

EfficientNet-b0 91.8 15.30 0.41
MobileNet V3 89.7 11.30 0.66

ResNet18 90.5 42.66 1.71
SqueezeNet 88.6 4.89 0.80

VGG-16 91.8 512.77 15.40
CNNLight(ours) 90.2 0.479 0.03

3.2. Comparison of Models Designed in This Study

To select the appropriate model complexity for the cucumber disease classification
task, BlockA and BlockB (Figure 4) were used to build four models. The structure of all
models in Table 4 is consistent with Figure 3, with the exception of only changing the
number of BlockB. The network parameters of each model are shown in Table 2. It can
be seen from the accuracy performance of Model1∼4 that the superposition of the BlockB
module has limited improvement on model accuracy, but these models have a significant
computation and model size reduction. These results also prove that different tasks have
different requirements for model complexity. The classification accuracy of Model2 is
0.4% less than that of Model3, but its model size is about two times less than Model3.
Considering the performance of models on three indicators, Model2 was selected as the
disease diagnosis structure in this study.

To further reduce the calculation amount of the model, we make some adjustments to
the size of the input image. Among the models in Table 4, Model2-1 and Model2-2 have the
same structure and parameter settings as Model2, but the input sizes of images is different.
From the experimental results of Model2 and Model2-1, we can see that the two input sizes
make little difference in the model’s classification accuracy. Although the classification
accuracy of Model2-1 is 0.9% lower than that of Model2, the calculation amount of Model2-1
is nearly four-times lower than that of Model2. Based on experimental results, the input
size of images is set as 112 for Model2.
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Table 4. Performance comparison of different model structures.

Model Input Size ACC (%) Model Size
(MB) FLOPs (G)

Model1 224 89.7 0.342 0.15198
Model2 224 91.1 0.479 0.11475
Model3 224 91.5 0.822 0.10671
Model4 224 90.8 1.465 0.13682

Model2-1
(CNNLight) 112 90.2 0.479 0.02873

Model2-2 56 87.6 0.479 0.00725

3.3. Ablation Experiments

To analyze the effectiveness of each component in CNNLight, this paper conducts
ablation experiments. As shown in Table 5, the random data enhancement strategy can
improve the classification accuracy by 1.6%. The SE module has the highest improvement
of classification accuracy on the model, which is 2.9%. This proves that the SE module can
solve the problem of accuracy drops caused by depthwise separable convolution modules.
In addition, using the shortcut connection can improve the classification accuracy of the
model by 0.9%. The above experimental results demonstrate that these strategies promote
the classification effect of the model on the cucumber disease classification task.

Table 5. Ablation experiments for each module in CNNLight.

Model Random Data
Enhancement SE Shortcut

Connection ACC (%)

CNNLight X X 88.6
CNNLight X X 89.3
CNNLight X X 87.3
CNNLight X X X 90.2

3.4. Comparison Experiment of ADDLight and CNNLight

To verify the advantages of the additive feature extraction method in edge devices, we
experimented with CNNLight, the convolutional neural network with the same structure
as ADDLight. The performance of the two models is shown in Table 6. The table shows
that all the operations involved in ADDLight include addition. In CNNLight, the operation
amount of addition and multiplication is equal. Although the calculation speed of different
calculation methods differs depending on the CPU type, in general, the bit calculation
speed is the fastest, followed by addition, multiplication, and division. On a device
with the chip model Chipcon CC1010, the average clock cycle per addition is 1, and the
average clock period per multiplication is 5 [35]. It can be observed that ADDLight
performs a forward propagation twice as fast as CNNLight without any interference from
other factors. The table also shows that ADDLight consumes about 96.1% less calculation
energy for forward propagation than CNNLight. This means that greenhouse edge devices
using ADDLight for the cucumber diseases classification task can work for a longer time.
Although the classification accuracy of ADDLight is 1.1% lower than that of CNNLight,
the accuracy of 89.1% can still meet the basic disease warning function.

Table 6. Performance comparison of CNNLight and ADDLight.

Model #Multiplication #Addition Energy Con-
sumption (pJ) ACC (%)

ADDLight 0.000140 0.027322 0.298G 89.1
CNNLight 0.014365 0.014365 0.661G 90.2



Agriculture 2022, 12, 452 13 of 17

3.5. Analysis of Model Performance on Each Category

Although ADDLight can greatly reduce the computational energy consumption of the
model, classification accuracy is reduced compared to CNNLight. To further analyze the
performance of ADDLight on various cucumber diseases, Precision, Recall, and F1− Score
of each category were calculated in this study. Each categories’ performance on the three
indicators is shown in Table 7. Among the six categories, the values of Precision and Recall
of five categories are up to 90%, which indicate that the model could more accurately
predict the disease category of diseased leaves, but the Precision of the backside of downy
mildew leaf (DM Back) is relatively low, which is 83.78%. In addition, the F1− Score of all
categories is above 85%, and the F1-Score of the backside of bacterial angular spot leaf (BA
Back) is up to 92.49%, which also proves that the model has a good balance effect in the
value of Precision and Recall.

Table 7. Classification performance of each category.

Class Precision (%) Recall (%) F1-Score (%)

DM 83.78 86.71 85.22
BA 88.31 87.18 87.74

Health 90.68 90.68 90.68
DM Back 90.43 89.66 90.04
BA Back 93.60 91.41 92.49

Health Back 87.50 89.10 88.29

This study uses a confusion matrix to display the classification accuracy of each
category to intuitively show the classification performance of ADDLight in each category.
As shown in Figure 6, by comparing the misclassification results of the predicted labels
and the real labels of each category, the reasons that affect the classification accuracy of the
model can be further analyzed.

DM BA Health
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Figure 6. Confusion matrix of ADDLight.

It can be seen from Figure 6 that the category of DM is easily misclassified into the
category of BA and Healthy. The category of BA is easily misclassified into the category
of DM and Health. Moreover, the category of Health is easy in being classified into BA
and DM. This is mainly because the collection cycle of this dataset runs through the entire
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disease development period, and there are a large number of leaves at the disease initial
stage. As shown in Figure 7, in the early stage of the disease, the disease spots of DW and
BA are similar, and both of them have yellow punctuated spots. In addition, these disease
spots of the two categories are small in the early disease stage; thus, it is easy to be confused
with healthy leaves. In the early stage of the onset of downy mildew, the leaves on the back
of the leaves will show water-soaked massive lesions, and bacterial angular spot disease
will show oil-stained irregular round spots; thus, it is not easy to misclassify different types
of leaves on the backside of the leaves. Distinct from the DW and BA, the symptoms of
these disease lesions are very clear on DW Back and BA Back, even in the early disease
stage. In the early stages of downy mildew, the leaves on the backside have water-soaked
lesions, and the backside of the bacterial angular spot leaf shows oil-stained irregular round
spots, which causes the classification accuracy on the two categories to be relatively higher.

(a) DM Back (b) DM

Water soaked spots No obvious symptoms

(c) BA Back (d) BA

Oil-stained irregular spots No obvious symptoms

Figure 7. Comparison of symptoms of different diseases: (a) The backside of downy mildew leaf
with more water-soaked spots, (b) the front side of downy mildew leaf with no obvious symptoms in
the early disease stage, (c) the backside of the bacterial angular leaf with more oil-stained irregular
spots, and (d) the bacterial angular leaf with no obvious spots in the early disease stage.

4. Discussion

The question of how to design a model with high applicability on edge devices is an
urgent problem in the agricultural engineering field. In this study, we used a depthwise
separable feature extraction module and the squeeze-and-excitation module (SE) as basic
modules to design a low energy-consumption model. The experimental results show
that SE can make up for the deficiency of the low classification accuracy caused by the
depthwise separable feature extraction module. Chen et al. [20] had the same idea as
this study, but they only used the squeeze-and-excitation module to improve MobileNet’s
classification performance rather than exploring a new combination structure. Their experi-
mental results show that their proposed model with the depthwise separable convolution
module and SE module is 1.15% higher than that of MobileNet-V2 on the rice dataset. In
addition, the shortcut connection and channel expansion strategies are also used to improve
classification accuracy. The ablation experiment shows good improvement for the two
strategies. Both experiments of [36,37] were consistent with our experimental results.

To reduce the computational energy consumption of the model on edge devices,
the proposed model is constructed by using an additive feature extraction method. The ex-
perimental results show that the adder disease classification model can greatly reduce
energy consumption and prolong the working time of greenhouse devices, but the addition
method impairs the classification performance of the model to a certain extent. Distinct
from our method, De et al. [38] used the quantization method to compress the 32-bit param-
eters of the model into 4-bits in order to reduce the energy consumption and calculation
amount of the model. The experimental results show that the quantization method can
reduce the average energy consumption of the model by 6.5 times, and model quantization
also reduces the classification accuracy of the model by about 1%. Although the experimen-
tal results proved that model quantization had little influence on classification accuracy,
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the model only used four categories of coffee-infected leaves for training and testing; thus,
its conclusion was not very convincing in terms of classification accuracy. Similarly, Zhou
et al. [19] quantified MobileNet’s weight tensor and activation function data from 32-bit to
8-bit. In their experiment, the quantization method reduced the model size of MobileNet
V2 from 17.5 MB to 4.5 MB but resulted in a 1.1% loss in model classification accuracy.
In this paper, the model size of the cucumber disease classification model we constructed
in this paper is only 0.479 MB, and energy consumption was reduced to 96% by using the
additive feature extraction method. Although the accuracy of the model is reduced by
1.1% compared with CNNLight, this model still has high applicability in real application
scenarios. In future studies, we will continue to explore the main reasons affecting the
classification accuracy of the adder cucumber disease classification model.

5. Conclusions

To improve the model’s applicability on edge devices and to extend the working time
of the device, this study aims at constructing a low-energy-consumption additive cucumber
disease classification model from the perspective of changing the feature extraction method
and reducing computation amounts. The main achievements can be summarized as follows.

Firstly, we used the depthwise separable feature extraction module, the squeeze-
and-excitation module, the short-cut connection strategy, and channel expansion strategy
to design a lightweight cucumber disease classification model with good classification
accuracy. The computational energy consumption of the model was reduced from the
perspective of reducing the computation amount.

Secondly, the depthwise additive feature extraction and the additive squeeze-and-
excitation modules were constructed to construct the disease classification model. Since
the addition calculation has lower computational consumption than other operations,
the model designed in this study also reduces computational energy consumption from the
perspective of changing the calculation method.

Thirdly, compared with the convolutional neural network with the same structure,
the computational energy consumption of the adder cucumber disease classification model
is reduced by 96.1%. The experimental result shows that the model has high applicability
for greenhouse edge devices. Although the final classification accuracy of the model
is 1.1% lower than that of the convolutional neural network with the same structure,
the classification accuracy of 89.1% can still meet the requirements of the cucumber disease
warning task under complex environments.
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Abbreviations
The following abbreviations are used in this manuscript:

DM The front side of the downy mildew leaf;
BA The front side of the bacterial angular spot leaf;
Health The front side of the healthy leaf;
DM Back The backside of the downy mildew leaf;
BA Back The backside of the bacterial angular spot leaf;
Health Back The backside of the healthy leaf;
SE Squeeze-and-excitation module;
CPU Central Processing Unit;
GPU Graphic Processing Unit.
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