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Abstract: Mixed models are a useful tool for the analysis of sugarcane field trials in which sugarcane
varieties are allocated in different locations and phenotypic traits are evaluated in the same experi-
mental unit (plot) over time. One challenge to analyze these data is how to build a good mixed model
when no experimental design is planned, because all sugarcane varieties in the area of influence of a
sugar mill are planted in different years due to the age of the crop and there is no spatial information
on all plots. The aim of this research was to examine and to determine the most appropriate mixed
model for estimating cane stalk yield of sugarcane varieties when previously there was no planned
experimental design. Cane stalk yields of 26 sugarcane genotypes harvested in 24 different locations
and in different crop cycles (age) were analyzed. The randomized block nested design (plot within
block) with ratoon crop as a class variable in the mixed model was the best for the mean comparisons
in sugarcane genotype trials (Model 3), allowing a gain in information. The randomized block design
approach helps to fit more general random effects, and the covariance structures helps to improve
the performance of mixed model repeated measures. This study emphasizes the need to improve
the process of finding a good enough mixed model, that is, how to define the mean structure and
the best covariance structure for model sugarcane trials that enables more powerful and efficient
parameter estimations. The results showed how a more appropriate mixed model might help avoid
errors of judgment in sugarcane genotype recommendations for enhancing the productivity of the
cane industry.

Keywords: mixed model; fit statistics; covariance structure; mean square error

1. Introduction

Sugarcane is a very important crop cultivated in tropic regions. In the crop year
2018–2019 [1], sugarcane was cultivated on 805,500 ha in 22 states of Mexico; in particular, it
was cultivated on 302,062 ha in the state of Veracruz (37.5% of total area). Due to the social
and economic impact of this crop for Veracruz, the government and sugar agro-industries
need good estimates, such as stalk cane yield of sugarcane varieties, to make important
economic decisions that benefit the local agro-industry.

A large number of sugarcane varieties are planted and harvested every year from
fields and then sent to a nearby sugar mill. Yields of these genotypes are affected by several
factors such as variety, location, and number of ratoons. Ratooning refers to harvesting for
several years from the same plant, and it plays an important role in sugarcane production.
Sugarcane crops are harvested sequentially from the initial plant, first ratoon, second
ratoon, and so on, in successive years. High-yield cane, high ratooning ability, and wide
adaptability are important factors for the assessment of good profitability in sugarcane
production [2,3]. Planting a new sugarcane crop is expensive, and it requires transporting
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large quantities of vegetative planting material from the source field to the new fields. Thus,
maintaining ratoon crops is better than replacing all plants or planting a new variety each
year. Moreover, land preparation, planting, and irrigation systems, if available, increase the
cost of establishing this crop. Hence, ratooning ability in a sugarcane crop is an important
factor that leads to harvesting more or less stalks of cane per plant.

Data on multiple traits measured over time are correlated; for example, if ratooning
is used, the cane crop yields in year 1 and year 2 are highly correlated [4]. When this
correlation is ignored, the experimental error may be underestimated or overestimated.
Thus, the analysis of yield data needs to consider the plot correlation and the correlation
of the variables measured across crop-years. Repeated measures analysis may consider
multiple correlations. Repeated measures experiments are very common in the agricultural
and animal sciences [4,5]. The usual way is to apply treatments to experimental units in a
completely randomized design or randomized complete block design, and measurements
are performed sequentially over time. When several measurements are taken from the same
experimental unit, pairs of measurements tend to be highly correlated between themselves.
Such measurements are taken on plots that have been randomly allocated treatments
as fixed effects such as crop variety with different locations and replications as random
effects [5].

Applications of the mixed model methodology have been carried out in sugarcane
trials to model the genotype–environment interaction to study the behavior of the varieties
and their suitability in each environment. For the selection of sugarcane genotypes for local
adaptations with the aim of improving the average productivity and profitability of the
entire cane industry, the linear mixed models (LMMs) play an important role. Menezes
et al. [6] used the harmonic mean through the mixed model framework for selecting clones
with the best genotypic stability and adaptability for each location, and Ostengo et al. [7]
showed that use of an appropriate mixed model to analyze tons of cane per hectare and
sucrose content when there is a spatial variation would help avoid judgment errors in sugar-
cane recommendations. Thus, there is great practical interest in simultaneously identifying
the important predictors that correspond to both the fixed and random effects components
in a linear mixed-effects model. Most approaches often perform selection separately on
each of the fixed and random effect components. However, changing the structure of the
systematic and random structure in the model can lead to different results. Therefore,
sugarcane variety, locations, ratooning, time, and, even more, the lack of experimental
design, are key factors to be taken into account for estimating and predicting sugarcane
yield. The aim of this work was to evaluate different linear mixed models that enable
the analysis of cane yield and to show how the mean structure in the model may give
different results.

2. Materials and Methods
2.1. Plant Material and Data Collection

An on-farm experiment was conducted. An agreement was drawn up with farmers to
allow data collection from their farming plots; the experimental units were crop plots of
different sizes. A sugar mill received all mill-able cane stalks, which were burned in order
to remove dry leaves and weighed per plot (Mg ha−1). The numbers of units (plots) for
each location are shown in Table 1.

Crop cycles 2012–2013, 2013–2014, 2014–2015, and 2015–2016 were evaluated, and
one harvest per crop cycle was obtained; because in some plot units, information was
not collected during the four evaluation periods, data were unbalanced. The sugarcane
stalk yields from 26 varieties (ATEMEX 96-40, B 43-62, BCO. DE VARS, CP 44-101, CP
70-1133, CP 72-1210, CP 72-2086, CO 997, ITV 92-1424, ITV 92-373, L 77-50, LGMEX 92-156,
M.Y. 5514, MEX 56-18, MEX 56-476 (P-01), MEX 57-473, MEX 68-P-23, MEX 69-290, MEX
73-523, MEX 79-431, MEZCLA PREC, MEZCLA MEDIA, P.O.J 2878, PR 1013, RD 75-11, SP
70-1284) were harvested in 24 different zones (locations) from the central region of the state
of Veracruz: 18◦53′05” N and 96◦47′15” W, and 503 masl. These locations represent the



Agriculture 2022, 12, 416 3 of 12

whole area in which sugar cane varieties were planted with different numbers of replicates,
different plot sizes and different ratoon crops in each production cycle. The information on
16,836 plot units in 812 large fields in 24 locations was collected in four crop cycles with a
total of 44,589 records. Table 2 shows the plots planted using plant-cane at the beginning of
each production cycle and the number of plots with ratoon number (Ri) at harvest.

Table 1. Number of fields and plots by location and average surface plots.

Location Code Fields Plots Average Surface of Plots (ha)

11 59 840 1.91
12 51 726 1.60
13 74 1379 1.69
14 47 992 1.46
21 34 925 1.38
22 27 1145 1.29
23 36 828 1.53
24 26 275 1.87
31 31 824 1.52
32 35 798 1.99
33 41 1139 1.49
34 31 769 1.92
35 27 893 1.43
36 13 238 4.35
37 11 49 5.88
41 37 966 1.89
42 33 644 2.42
43 28 745 2.31
44 30 653 2.36
45 24 553 2.51
46 23 279 2.28
47 34 342 2.86
48 36 485 2.20
51 24 349 2.39

Table 2. Number of plots having the Ri ratoon in each production cycle.

Ratoon Number

Production Cycle R0 R1 R2 R3 R4 R5 R6 R7 R8

2012–2013 555 476 456 1330 259 6352 0 0 0
2013–2014 1055 473 507 612 234 295 6301 0 0
2014–2015 1401 1885 731 600 309 339 425 7105 0
2015–2016 782 1048 1805 724 585 334 404 439 6767

2.2. Statistical Methodology

Linear Mixed Model. The mixed model methodology has advantages over fixed linear
models [4] because it can incorporate fixed effects and random effects; the mixed model
effects are given by:

Y = Xβ + Zb + ε (1)

with b ∼ N(0, D) and ε ∼ N(0, R).

where Y: vector of observations; X: matrix of fixed effects; β: vector of coefficients of fixed
effects; Z: matrix of random effects; b: vector of coefficients of random effects; ε: vector of
errors; D is the matrix of covariance of random effects, and R is the matrix of covariance
of errors. The expectation and variance of Y are E(Y) = Xβ and V(Y) = ZDZT + R = V;
therefore, Y ∼ N

(
Xβ, ZDZT + R

)
. The estimation parameters are presented in [8].

b̂ = D̂Z′V̂−1
(

y−Xβ̂
)

(2)
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ε̂ = y−Xβ̂− Zb̂ (3)

where β̂ =
(

X′V̂−1X
)−

X′V̂−1y and D̂ and V̂ are residual maximum likelihood (REML) [9]

estimates, β̂ contains the best linear unbiased estimators, b̂ contains the best linear unbiased
predictors (BLUPs), and can be used to select D. The residual ε̂ is used to select the R
matrix, and to check normality assumptions.

Mixed models allow one to select different variance-covariance structures for repeated
measures experiments with or without missing data to see which covariance structure best
fits the model [8]. The covariance structures used in this study are described below.

Compound symmetry (CS). The CS structure assumes that observations of the same
subject have homogeneous variance and covariance. With four observations, the matrix
takes the form:

CS =


σ2

1 + σ2 σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2 σ2
1 σ2

1
σ2

1 σ2
1 σ2

1 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 σ2

1 + σ2

 (4)

First order-auto regressive AR (1). The AR (1) model assumes that measurements close to
one another in time will show high correlations. The variances between measurements are
equal, but the covariance between observations of the same subject decreases exponentially
as lag increases. The correlation ρ is for observations of the interval one and two, ρ2 is
for observations one and three, ρ3 is for observations one and four, and so on. Hence, the
AR (1) structure follows an exponential function; i.e., corrAR(1)(lag) = ρ

lag
AR(1).

AR(1) = σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 (5)

Toeplitz. Toeplitz structure, sometimes called “banded”, specifies that covariance
depends on lag. The correlation function is corr(lag) = σToep,|lag|/σ2

Toep. The elements of
the main diagonal of R are σ2

Toep. All elements in sub-diagonal |k− 1| = lag are σToep,|lag|,
where k is the row and l is the column number

Toep =


σ2 σ1 σ2 σ3
σ1 σ2 σ1 σ2
σ2 σ1 σ2 σ1
σ3 σ2 σ1 σ2

 (6)

Unstructured (UN). In the UN model, all variances and covariances are different; that
is, unstructured specifies no pattern in the covariance matrix, and it is completely general.
The use of this structure requires estimation of many parameters, k(k + 1)/2, where k is
the number of repeated measures.

UN =


σ2

1 σ12 σ13 σ14
σ12 σ2

2 σ23 σ24
σ13 σ23 σ2

3 σ34
σ14 σ24 σ34 σ2

4

 (7)

2.3. Model Development Stages

Three stages are involved when developing a suitable foundation for model selection.
The first stage involves the selection of the fixed effects (structure mean) such that we have
models with the maximum information. Over-fitted models are preferred over under-fitted
ones to avoid the introduction of spurious correlations [10]. The second stage consists
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of selecting the covariance structure for D and R matrices. The third stage uses formal
techniques to compare various covariance structures.

2.4. Evaluated Models

Univariate and multivariate analysis approaches are used for estimating and analyzing
repeated measurements data. In order to estimate and predict sugarcane yield, we used
five mixed model approaches that may account for most of the variation in this study, as
described below.

Model 1. The first simple model considered is the completely randomized design
(CRD), and it is described as follows:

yim = µ + τi + eim (8)

where yim is the yield measured with the ith variety at the mth replication
(i = 1, 2, · · · , 26; m = 1, 2, · · · , vi), µ is the overall mean of all observations, τi is the ith
fixed effect level due to variety, and eim is the random error assuming eim ∼ I IDN

(
0, σ2).

Model 2. Randomized block design. Assuming that there is variation in plots within
location (random factors), the statistical model is written as

yilk = µ + τi + plot(loc)k(l) + eilk (9)

where yilk is the yield observed in the ith variety at kth plot within the lth location,
µ, τi and eilk are as described above (i = 1, 2, · · · , 26; l = 1, 2, · · · , 24; k = 1, 2, · · · , vil),
and plot(loc)k(l) is the random effect due to plot within location, with

plot(loc)k(l) ∼ I IDN
(

0, σ2
plot(loc)

)
. In matrix notation, model (9) can be written as

Y = Xβ + Zb + ε. In this approach, the total variance-covariance matrix V can be parti-
tioned into the variance-covariance matrix for the random effects due to plot within location
b [Var(b) = D], and the variance-covariance matrix for the random errors e [Var(e) = R],
and so V = ZDZ′ + R.

Model 3. Since the ratoon number in sugarcane variety trials is a key factor that affects
stalk cane yield, it must be taken into account in the analysis. In this case, the ratoon
number is taken as a class variable:

yijkl = µ + τi + plot(loc)k(l) + β j + (τ ∗ β)ij + eijkl (10)

where yijkl is the yield observed in the ith variety, jth ratoon number, and kth plot in the lth location
(i = 1, 2, · · · , 26; j = 0, 1, 2, · · · , 8; l = 1, · · · , 24; k = 1, 2, · · · , vi), µ, τi, plot(loc)k(l)
and eijkl are as above, and β j is the fixed effect due to j ratoon number, (τ ∗ β)ij is
the interaction fixed effect between variety and ratoon number. Both random errors
plot(loc)k(l) and eijkl are independent and not correlated.

Model 4. Analysis of covariance model in a randomized block design with the ratoon
number as continuous covariable as described below:

5yijkl = µ + τi + plot(loc)k(l) + (β + δi)Xij + eijkl (11)

where yijkl is the yield observed in the ith variety, kth plot at lth location with the jth
ratoon number (i = 1, 2, · · · , 26; l = 1, 2, · · · , 24; k = 1, 2, · · · , vi; j = 0, 1, · · · , 8), β
is the intercept of the covariable for the variety i having the j ratoon number

(
Xij
)
, δi is

the slope for the variety i, and µ, τi, plot(loc)k(l) and eijkl as defined above. Both random
errors plot(loc)k(l) and eijkl are no correlated.

Model 5. Mixed model repeated measures can be seen as split plots in time [4]. Split
plots in time are commonly used in agricultural studies and are often known as factorial
designs. The model for this split plot in time is as follows:

yijklm = µ + τi + plot(loc)k(l) + τ ∗ plot(loc)imk(l) + λm + (τ ∗ λ)im + βixij + eijklm (12)
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where yijklm is the cane yield observed in the ith variety having jth ratoon number, mth crop
year at kth plot within the lth location (i = 1, 2, · · · , 26; m = 1, 2, 3, 4; l = 1, 2, · · · , 24;
k = 1, 2, · · · , vi; j = 1, 2, · · · , 8), µ, τi are defined as before, λm is the fixed effect of crop
year, (τ ∗ λ)im is the interaction fixed effect between variety and year, βi is a fixed slope coef-
ficient of the covariable ratoon number

(
xij
)

on each variety, plot(loc)l(k) is the random error

due to plot within location with plot(loc)k(l) ∼ I ID
(

0, σ2
plot(loc)

)
, τ ∗ plot(loc)ijk(l) is the

whole plot error assuming τ ∗ plot(loc)ijk(l) ∼ I IDN
(

0, σ2
τ∗plot(loc)

)
, and eijklm is the exper-

imental random normal error with mean zero and variance σ2; that is, eijklm ∼ I ID
(
0, σ2).

All term errors are noncorrelated random effects.
All data were subjected to analysis of variance using the GLIMMIX procedure of

SAS 9.4. Since sugarcane varieties had different numbers of replicates in locations, the
Kenward–Roger degrees of freedom adjustment [11] was used. Moreover, the effect of
ratooning number on cane yield was analyzed using a polynomial orthogonal contrast.
PROC GLIMMIX allows us to specify separately and jointly covariance structures that
assumes heterogeneity within and/or between subjects. The CS covariance structure in
PROC GLIMMIX can be specified with the RANDOM statement and the options SUBJECT
and TYPE = CS. The AR (1) covariance structure is specified for each subject with the
RANDOM statement and TYPE = AR (1).

The information criteria provided by PROC GLIMMIX as well as PROC MIXED are
used as statistical tools to select and measure the relative fit of two or more competing mod-
els. The -2 residual log likelihood (-2RLL) [12], the Akaike information criterion (AIC) [13],
the corrected Akaike information criterion (AICC) [14], the Bayesian information criterion
(BIC) [15], and the mean square error (MSE) were used to compare the competing models.

The mean square error (MSE) is a measure of the difference between values predicted
by a model (ŷi) and the values observed from the environment that is being modeled (yi).
These individual differences are residuals, and the MSE serves to aggregate them into a
single measure.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

A model with less MSE is preferred when comparing different models.

3. Results
3.1. Descriptive Statistics

The total cane yield that sugar mills received from 2012 to 2016 was 5,469,781 Mg from
24 locations with 82,259.4 ha. Table 3 shows the surface cultivated in sugarcane, which
decreased in 2013–2014 by 31.69% and increased in the production cycles 2014–2015 (30.7%)
and 2015 (32.62%). However, average cane yield per cycle from 2012 to 2016 decreased by
close to 10%.

Table 3. Surface cropping, total, and average cane yield per cycle.

Production Cycle Surface (ha) Yield (Mg) Average Yield (Mg ha−1)

2012–2013 19,057.5 1,388,215.8 73.4
2013–2014 13,016.6 926,264.9 71.2
2014–2015 24,909.8 1,565,579.6 62.8
2015–2016 25,275.3 1,589,721.5 62.9

Total 82,259.4 5,469,781.9 67.4

The individual cane yields of 26 varieties were plotted against production cycle in
Figure 1. There, variation in cane yield at the beginning of this study was large, an indication
that cane yield decreases as variety age increases. This cane yield behavior could be due to
the fact that as the age of sugarcane increases, ratoon number also increases in each cycle of
production, among other factors.
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Figure 1. Average cane yield per production cycle of 26 sugarcane varieties.

3.2. Model Selection

In the definition of a mixed model, it is important that the selection of covariates define
the mean structure of fixed effects and the covariates of random effects. The comparison
model’s fit statistics, -2 Res Log Likelihood, AIC, AICC, BIC, and CAIC, are in Table 4,
for the five fitted models. The values of the fit statistics decreased from models 1, 2, 5, 4
and 3 as more covariates and random effects in the linear predictor were appropriately
added, but in model 5, these fit statistics increased little. We observed that when the plot
within location effect and the covariable ratoon number were included in models 2–5, these
factors had a significant impact on the fit statistics compared to the CRD model. This
comparison is interesting because the dynamics and characteristics of varieties on cane
yield are different from those of the ratoon crop. Therefore, according to all fit statistics, the
best model was model 3. Data suggest that there is significant spatial variability in each plot
location as well as in the ratooning number of sugarcane varieties (Table 4), and, therefore,
when the aforementioned factors were included in the linear predictor, the estimates of
cane yield. improved.

Table 4. Fit statistics (smaller is better) for different model approaches.

Model Approach

Fit Statistics (1) (2) (3) (4) (5)

-2 Res Log Likelihood 387,416.1 377,760.3 376,031.9 376,484.9 377,713.8
AIC 387,470.1 377,764.3 376,035.9 376,490.9 377,719.8

AICC 387,470.1 377,764.3 376,035.9 376,490.9 377,719.8
BIC 387,705.1 377,773.7 376,052.6 376,505.0 377,733.9

CAIC 387,732.1 377,775.7 376,054.6 376,508.0 377,736.9

3.3. Mean Square Error (MSE) between Models

The MSEs were plotted in order to compare between our different approaches. Parallel
to fit statistics, the MSE decreased as we redefined the linear predictor to obtain valid
inferences for the fixed effect parameters (Figure 2). This result indicates that when fitting
mixed models, an appropriate mean structure and random effects need to be specified, in
order to take into account most of the unexplained variation that is due to either within
locations–varieties or between locations–varieties associated with levels of ratooning, as in
models 4 and 5.
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A key strength of these approaches is the ability to control factors and settings that
minimize the effects of the uncontrollable factors such as plot, location, ratooning number,
and time. For example, we reduced the MSE from model approach 1 to model approach
2 by 23.55% (348.24 to 266.28); approach 2 to 3 was 62.35% (266.28 to 100.25), but when
we included the production cycle (year) in the model, the MSE increased in models 4 to 5
from 110.88 to 238.22. The increase in the MSE may be due to the fact that the analyzed
varieties have different production years (ratooning number) and a different number of
repetitions in locations that could explain why approach 5 gave larger MSE compared with
approaches 3 and 4. Under these approaches, models 3 and 4 are quite similar when we set
the ratoon number as classification or continuous variable in the linear predictor.

The estimates of mean yields (Mg ha−1) and standard errors of means for each variety
and model approach as well as the global average of mean yields and average of standard
errors of means (bold letters), are shown in Table 5. Models 4 and 5 gave the highest average
standard error with values of 3.99 and 4.57, respectively, while model approach 3 gave the
lowest average standard error. According to the fit statistics and MSE, the best model to
estimate cane yield of sugarcane varieties was model 3. Table 5 was descendent ordered
by mean estimation of model 3, and the three varieties with highest mean yield were ITV
92-373, ATEMEX 96-40, and L 77-50, but the variety ITV 92-373 had a large standard error,
which rendered the varieties ATEMEX 96-40 and L 77-50 more preferable.
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Figure 2. Mean square error of model approaches.

3.4. Ratoon Crop

Among different agricultural practices that may affect cane yield, the management of
the ratoon crop in sugarcane is a key factor. Growing ratoon crops cost less than planting
cane and, therefore, achieving high-yield ratoon crop is a valuable objective; this crop is
more economical than seed material, reducing operational costs by 25–30%. In addition,
ratoon productivity may improve cane stalk yield with proper management involving
timely agricultural operations, proper nutrition management, integrated pest management
and maintenance of an adequate plant population. In our study, the quadratic effect of the
ratoon number on the cane yield was estimated (P = 0.0001). Figure 3 shows that stalk
cane yield tends to decrease by around 10% as the number of ratoon crops increases, since
most sugarcane varieties have more than 5 ratoon crops.
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Table 5. Mean sugarcane yield (Mg/ha) and standard error of mean for each model and sugarcane variety.

Model Approach

(1) (2) (3) (4) (5)

Variety Estimate Standard Error Estimate Standard Error Estimate Standard Error Estimate Standard Error Estimate Standard Error

ITV 92-373 105.33 10.78 98.47 9.51 84.99 8.51 96.61 9.33 95.37 9.95
ATEMEX 96-40 86.66 1.51 82.03 1.42 78.41 1.28 79.26 3.05 72.92 3.50
L 77-50 83.1 0.85 82.3 0.87 77.03 0.74 87.30 2.37 89.36 2.60
M.Y. 5514 87.34 2.23 88.03 2.03 76.15 1.86 76.78 4.27 90.96 4.98
BCO. DE VARS. 90.94 2.61 78.28 2.55 75.32 2.66 67.09 3.87 73.17 6.02
ITV 92-1424 75.64 0.52 77.53 0.63 72.71 0.46 71.93 0.82 73.32 1.10
LGMex 92-156 75.5 3.20 77.77 2.97 70.95 2.38 64.38 3.89 60.73 4.40
CP 72-2086 71.65 0.29 71.07 0.49 70.73 0.30 70.82 0.30 69.71 0.53
MEX 73-523 61.6 8.35 56.16 7.59 69.90 6.72 69.77 7.51 56.98 8.03
MEX 79-431 69.94 0.25 69.00 0.47 69.49 0.26 69.18 0.25 68.54 0.50
MEZCLA PREC 67.09 0.24 68.32 0.46 68.34 0.25 67.35 0.29 67.28 0.52
MEX 56-476 (P-01) 69.55 5.63 70.92 5.02 67.99 4.82 65.36 5.00 71.15 5.32
CP 72-1210 66.64 1.25 70.38 1.19 67.98 1.08 68.02 1.09 70.13 1.39
RD 75-11 67.02 0.69 73.60 0.77 67.88 0.62 67.13 0.74 71.87 1.05
Mezcla Media 65.23 0.26 66.52 0.47 66.98 0.27 66.93 0.30 67.08 0.54
PR 1013 66.43 4.99 68.92 4.48 66.71 4.39 64.20 4.53 69.60 4.96
MEX 69-290 65.95 0.09 67.42 0.41 66.64 0.14 66.33 0.13 66.75 0.41
MEX 56-18 57.44 6.22 61.71 5.53 64.87 4.65 62.95 7.28 72.15 8.99
MEX 57-473 61.08 2.95 58.72 2.68 64.20 2.71 66.37 4.95 55.37 4.90
CP 70-1133 68.11 6.22 61.15 5.53 63.51 5.08 58.95 9.17 50.24 9.51
MEX 68-P-23 59.39 0.64 66.89 0.72 63.18 0.58 63.12 0.58 65.52 0.82
CP 44-101 52.94 0.93 64.14 0.96 60.94 0.79 60.27 0.85 63.06 1.23
SP 70-1284 59.5 13.2 59.45 11.98 56.94 9.88 22.15 16.11 43.64 17.8
Co 997 49.84 3.73 60.54 3.54 55.61 3.48 54.68 3.77 58.70 4.11
P.O.J 2878 47.18 1.34 65.41 1.51 50.58 1.27 52.63 2.14 60.86 3.22
B 43-62 38.75 9.33 48.49 8.33 40.22 9.23 39.96 11.21 40.14 12.45

Average 68.07 3.40 69.74 3.16 66.86 2.86 65.37 3.99 67.10 4.57

Estimate: Estimated mean (Mg ha−1). Standard Error: Standard error of the mean.
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Figure 3. Effect of the number of ratoon crops on cane stalk yield.

4. Discussion

Researchers often ask how to build an appropriate mixed effects model. Our study
described a systematic step-by-step strategy including different mixed model approaches
and practical advice for achieving good estimates when estimating stalk cane yield. This is
possible due to statistical programs such as PROC MIXED and PROC GLIMMIX, which
allow one to define different mean structures to be included in the model.

The correct translation from the data to the statistical model requires stating and
discussing the implications of the limitations of the data relative to the aims of the study.
Therefore, the selection of a model with the maximum information depends on statistical
and scientific considerations in the specific field. For example, estimating and predicting
yield in sugarcane variety trials would need to include the following in the model: geno-
types (varieties), number of ratooning, location, plot, and time, among others. From a
statistical point of view, a large-good model could be chosen to avoid omitting a significant
factor (or covariate) and to maximize the estimation and prediction power (avoiding type
II error). However, a simple model could be chosen to avoid including a nonsignificant
factor (or covariate) and hence to maximize the reliability and parsimony of the model.

Researchers want a simple model to explain most of the variation present in the data.
When assessing the goodness of fit of a model, they usually compare different candidate
models to see whether one of them offers the best fit. Three scenarios in a mixed model
may appear: (1) mean comparison of the models with the same covariance structure—
nested models are the most common; (2) compared covariance models with the same linear
predictor; and (3) compared mixed models with different linear predictors and different
covariance structures.

A likelihood ratio test (LRT) can be used to compare the reduced model against the full
model. However, it can also use the REML method by maximizing the likelihood function
of a set of error contrasts to account for the loss in the degrees of freedom involved in
the estimation of fixed effects, because changing the fixed effects in the REML estimation
leads to a different design matrix X. Thus, the difference in −2 restricted maximum log
likelihood values between nested effect models does not produce a valid LRT [4]. Now,
when comparing nested models with different covariance structures but the same fixed
effects (mean), the REML functions from the two models are comparable since they have
the same mean structure [12]. However, sometimes neither the LRT through maximum
likelihood (ML) method nor REML method can be used [16].

For comparing and selecting the best candidate model, many information criteria
were proposed as alternatives to LRT, specifically when the models are not nested. The
main idea with the information criteria is to compare models with different covariance
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structures and the same fixed effects and with their maximized log likelihood values, but
penalizing the use of too many parameters in the model [4,10,17]. The criteria are ordered
in increasing preference of parsimony, and the model with the smaller information criteria
values provides the better fit. Finally, once the candidate model is chosen, the covariance
structures for models are determined using the Kenward–Roger adjustment degrees of
freedom [11].

The selection of a mean structure that gives better estimates to fit statistics plays an im-
portant role in defining the fixed and random effects in the mixed model. When specifying
random effects, two aspects should be highlighted: the variation between plots, locations,
and plots within locations; and the type of covariance structure between measurements
(cane yield between crop years). In our study, different mean structures and random effects
in the mixed model gave different estimates as well as standard errors of these estimates.
These estimates can vary widely when sources of variation are not appropriately specified
in the model. According to the data from our research and model 3 for the estimations, a
recommendation for farmers would be to remove the plots with varieties that yield less
than 60 Mg ha−1 and use varieties with a yield greater than 75 Mg ha−1. Moreover, Viator
et al. [18] showed that harvest time and ratoon crop affects ratooning ability and conse-
quently cane yield. Likewise, Matsuoka and Stolf [19] said that cane yield declines with
increasing numbers of ratoons and the replacement of a new plantation is necessary, but
with good agronomic practices the cane yield might be maintained; for example, Nuss [20]
and Kingston [21]) reported 20 to 25 successive harvests. Thus, the ratooning crop is an im-
portant factor that affects sugarcane production; thus, paying attention to its management
and engaging in good agricultural practices may bring great economic benefits because of
the high cost for establishing a new sugarcane plantation.

5. Conclusions

The ability of mixed models to account for most of the variation due to sugarcane
varieties, plots, crop years, ratoon number and locations was demonstrated. The estimates
of cane yield when including the covariable “ratoon number” either as class variable
(model 3) or as continuous variable (model 4) produced the lowest standard errors for the
mean cane yield.

The relevance of having estimates with a lower degree of uncertainty will allow
making better decisions regarding which varieties that should continue to be planted
on the field as well as how much sugar will be obtained in a certain crop year to make
marketing decisions.

When estimating cane yield in sugarcane trials, the ratoon number should be included
in the mixed model as a continuous or classification variable to achieve better estimates,
since ratooning is an important cultivation practice in sugarcane production worldwide,
with underground buds on the remaining stem acting as a source for the establishment of a
subsequent ratoon crop. In addition, the use of the appropriate mixed model may facilitate
better judgments when recommending which sugarcane varieties should be on the fields for
production. Moreover, these results confirm the relevance of using an appropriate mixed
model in estimating or predicting cane yield, or even more, when selecting sugarcane
genotypes for local adaptations with the objective of enhancing the mean productivity of
the whole cane industry.
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