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Abstract: Due to the commitment to the target of green mechanized production and precision
agriculture, the operating parameters of the main functional components of a combine harvester need
to be adjusted according to the feeding quantity. Therefore, feeding quantity monitoring is one of
the key technologies of intelligent control for a combine harvester. In order to obtain the accurate
information of feeding quantity in the harvesting operation process in real time, a monitoring system
was set up to obtain the accurate information of feeding quantity in real time. The torque signal
corresponding to different feeding quantity was obtained through bench calibration experiments.
The signal was decomposed, noise reduced, and reconstructed through the analysis of the frequency
range of the noise based on the wavelet transform. A fitting relationship between the torque and
the feeding quantity was obtained. Field validation experiment results showed good consistency
of the measured data and the actual quantity. This paper provides a theoretical basis and technical
reference for subsequent research on intelligent control of combine harvesters.

Keywords: green mechanized production; crop harvest; signal acquisition; wavelet analysis; support
vector machine

1. Introduction

The combine harvester is an important piece of agricultural equipment for green
mechanized production and efficient harvesting of crops. The feeding quantity is one of the
core indicators of the operating capacity of a combine harvester and is an important basis
for designing, optimizing, and controlling the operating parameters of the main functional
components of the harvester [1–3]. To achieve efficient and high-quality harvesting, the
operating parameters of the combine harvester must be in line with the feed quantity.
However, due to variations in crop density, moisture content, maturity, header height, and
forward speed of the harvester, the feed quantity of the harvester always fluctuates [4],
and the parameters of the main functional components must be adjusted according to
the instantaneous feeding quantity [5–8]. Nevertheless, due to the late start of intelligent
monitoring technology for domestic agricultural machinery in China, research for feeding
quantity monitoring is still in the exploratory stage. Thus, it is not yet possible to accurately
control the operating parameters of main components of the harvester by monitoring the
feeding quantity. The parameters of the header and the threshing and cleaning system
cannot be adjusted or optimized appropriately; this reduces the operating efficiency and
increases harvesting loss. This has become a key bottleneck for intelligent and high-
efficiency harvesting. Therefore, it is necessary and significant to establish a feeding-
quantity-monitoring system and realize automatic feeding-quantity control for a combine
harvester [9–12].
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Scholars in China have focused on determining the feeding quantity of a combine
harvester. Through a bench test, Chen et al. [13] obtained a regression equation between the
feeding quantity and the corresponding torque by measuring the torque of the threshing
drum feeding the active shaft. Tang et al. [14] analyzed the threshing power consump-
tion of the longitudinal flow threshing and separating device by recording the threshing
power consumption of the cutting flow drum, feeding wheel, and longitudinal flow drum,
and deduced the relationship between the feeding quantity and the net threshing power
consumption of the longitudinal flow drum. Liang et al. [15] determined the relationship
between the feeding quantity and grain flow rate, longitudinal flow drum torque, and
rotational speed through monitoring and analysis. Lu et al. [16] obtained the relationship
between the feeding quantity and the oil pressure of the hydraulic drive system of the
threshing drum through a bench test. You et al. [17] used an oil pressure sensor to detect the
feeding quantity and established a feed quantity model based on the relationship between
the drum torque and travel speed. Zhao et al. [18] used a thin-film sensor to measure the
change in the force on the side of the drum top cover due to feed-quantity variations, by
conducting a bench test; a relationship was also established.

In all the aforementioned studies, the threshing drum of the combine harvester was
considered as the research object. The feeding-quantity variations were monitored based
on the changes in the drum torque during threshing. However, the grain requires a certain
time to enter the threshing device after passing through the auger and conveyor trough
after the cutting process. Hence, a considerable time lag exists in the monitoring of the
torque variation of the threshing device for regulating the feeding amount. Thus, intelligent
regulation of the combine harvester cannot be achieved. Some studies adopted special
torque sensors that require broken shafts, which are inconvenient to install during actual
machine measurement. In addition, significant measurement errors result from the high
noise interference during signal acquisition in actual production operations, and from the
limitations of the fitting model for the data under the selected function category.

This study was conducted to construct a feeding quantity monitoring system based
on the force variation of the power-input shaft of the screw conveyor. The purpose was
to obtain the feeding quantity in real time through information technology and guide the
driver to complete the operation more effectively. This enables the combine harvester to
achieve the best working performance and the best harvesting condition, and also lays the
foundation for the subsequent improvement of the intelligent control of combine harvesters.

2. Materials and Methods
2.1. Feeding Quantity Measurement Principle

During the operation of the combine harvester, the material entering the header
moves backward to the conveyor and the threshing and cleaning components under the
squeezing and pushing from the screw conveyor. The force on the screw conveyor is
predominantly due to the frictional resistance of the material to the conveying blades; this
frictional resistance is proportional to the positive squeezing pressure between the material
and the blades. Referring to the research of other scholars [19], the squeezing pressure is
expressed as

Fr = K(
B
s
)

n
, (1)

B =
q

ρvL
(2)

where Fr is the squeezing pressure, K and n are the constant coefficients, B is the natural
spreading thickness of a certain volume of crop, s is the gap between the conveyor blade
and the worm shell bottom plate, q is the feeding volume, ρ is the crop density, v is the
material moving speed, L is the width of the header.
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The integrated friction coefficient between the material and the conveyor blade is
denoted as f. Combining Equations (1) and (2), the moment of the frictional resistance to
the conveyor from the material is

Tr = K(
1

ρvLs
)

n
qn f R (3)

where Tr is the resistance moment, R is the radius of rotation of the spiral blade, f is the
integrated friction coefficient.

During harvesting, when the crop and screw conveyor are in constant motion, the
power transmitted from the engine to the screw conveyor is mainly consumed by the
frictional resistance moment from the crop.

Based on the foregoing analysis and the findings of other studies [19–21], the change
in feeding quantity can be determined by measuring the changes in the force on the power
input shaft of the screw conveyor during normal operation of the combine harvester.

2.2. Signal Acquisition Method

According to the mechanics of materials, when the shaft is twisted, the shaft surface is
in a state of pure shear stress, and the maximum shear stress τ is

γ =
τ

G
(4)

where γ is the shear strain; τ is the shear stress; G is the measured axis transverse elasticity
coefficient.

The surface shear strain of the shaft is proportional to the torque of the shaft load, and
the shear stress is balanced by the torque being carried; it is calculated as

T = τ ·ωt (5)

where ωt is the torsional section factor
The section modulus of the solid shaft under torsion is

ωt =
πd3

16
(6)

where d is the diameter of the measured axis.
The maximum tensile and compressive stresses σ are equal along the two directions

inclined at 45◦ to the shaft. The maximum value is equal to the maximum shear stress on
the surface of the shaft, and the relationship between the strain ε and σ in this direction is

σ =
εE

1 + ν
(7)

where ε is the measured strain; E is the longitudinal elasticity coefficient of the measured
axis; ν is the Poisson’s ratio.

After substitution,

T =
εEπd3

16(1 + ν)
(8)

A bonded strain gauge was used to measure the strain along the line inclined 45◦ to
the torsion shaft. A special torsion strain gauge was attached to the power-input shaft to
create a strain bridge. A regulated power supply was provided to the strain bridge as the
excitation source. When the shaft was twisted, the resistance of the strain bridge changed,
resulting in a change in the voltage at the experiment end. Then, the data-acquisition
circuit transmitted the changes in the electrical signal to the processing circuit, where
the signal-processing section extracted and amplified the analog signal of the sensor and
performed analog-digital conversion.
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Because the bridge power input and the detected strain signal output of the strain
bridge on the rotating body must be transferred between the rotating shaft and the sta-
tionary frame, the usual practice is to use conductive slip rings. Nevertheless, these rings
provide friction contact, unavoidably leading to wear and heat generation. Hence, the
rotational speed of the rotating shaft and the service life of the conductive slip ring are
limited. Moreover, unreliable contact can easily cause signal fluctuations, resulting in large
measurement errors or even unsuccessful measurements.

We used wireless telemetry to transmit the collected signals to a computer. The
reception and processing of the signal were completed through this process. Figure 1 shows
the signal-acquisition process.
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2.3. Overall Structure of the Monitoring System

As demonstrated in Figure 2, the system consists mainly of a sensor unit, a wireless-
transmission unit, a data-processing unit, and a display terminal.
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The sensor unit includes a strain-gauge-type sensor and a Hall-effect rotation speed
sensor. To eliminate the effect of the bending moment on the shaft, a Wheatstone full-bridge
circuit was adopted to convert the variation in the strain-gauge resistance to a voltage
change for measurement, as shown in Figure 3.
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A special 45◦ single half-bridge strain gauge, 350-3HA (11), with a strain resistance of
350 Ω was employed. It is usually used in pairs to form a strain gauge group, as shown in
Figure 4. Thus, a Wheatstone full-bridge circuit can be built with two strain gauge group,
with one set fixed on the measured shaft and the other fixed on the symmetric side of the
shaft (radial 180◦), as shown in Figure 5.
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The data processing unit includes a data-acquisition circuit, an amplifier circuit, and
an A/D conversion circuit.

The wireless-transmission unit consisted of a wireless transmitter module and remote
terminal hardware, as shown in Figure 6. Based on the IEEE 802.15.4 protocol, the collected
signals were sent to the data-test system of the computer and were output to the display
terminal.
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In this system, the strain bridge was powered by a 6F22 battery. The battery, along
with the data-acquisition and wireless-transmitter modules, was fixed to the shaft under
test and rotated with it. The final arrangement of the system is shown in Figure 7.
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2.4. Bench Calibration Experiment

To establish the relationship between the torque measured by the system and the
actual feeding quantity, the telemetry system was calibrated by manually spreading the
material and feeding it into the header through a conveyor belt. The experiment was
conducted on 7 November 2021, at Hongqi Farm, Taizhou city (Jiangsu province, China).
The experiment material was japonica rice “Nangeng 9108”, with an average plant height
of 85 cm, average seed yield of 1.88 kg/m−2, and moisture content of 18%.

The total length of the conveyor belt was 6 m, and the conveying line speed was set as
1 m·s−1. The material was weighed in groups according to the trial scheme. A length of 1 m
was left free near the end of the header when the material was laid manually to accelerate
the conveyor belt to the set line speed; the remaining 5 m was evenly laid with the material.
Each group of feeding experiments was repeated three times, and the experiment data are
shown in Table 1.

Table 1. Bench calibration experiment data.

No. Total Material Mass
(kg)

Feeding Quantity
(kg·s−1)

1 9.8 1.96
2 12.8 2.56
3 15.1 3.02
4 17.5 3.5
5 20.45 4.09
6 22.9 4.58
7 25.1 5.02
8 26.5 5.3
9 27.4 5.48
10 29.7 5.94
11 30.2 6.04
12 32 6.4
13 34.5 6.9
14 35.9 7.18
15 38 7.6

3. Results of Signal Analysis
3.1. System Characterization

To experimentally examine the stability of the signal-acquisition process, the signal
acquisition was conducted in the stationary state of the harvester. The sampling frequency
was set to 500 Hz, and the torque variation was recorded, as shown in Figure 8. No obvious
zero-point drift was observed in the signal acquired by the system, and the standard
deviation (σ) for different groups of torque signal data was calculated to be 0.058; this
indicates that the system performed effective static acquisition.
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3.2. Noise Analysis of No-Load Signal

Considerable vibration is generated during the operation of the combine harvester.
Hence, the signals collected through the system usually contain noise, the main sources of
which include torsional vibrations and bending moments of the driveshaft and vibrations
of the engine and other components [18]. The signals collected during the operation of the
combine harvester must be analyzed to determine the distribution of the main noise.

After starting the harvester and increasing the throttle to the normal operating level,
signal acquisition was performed once the operation became stable. Subsequently, a fast
Fourier transform was conducted on the acquired signal to obtain the frequency-domain
information, as shown in Figure 9.
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When the combine harvester was running under no load, the torque signal had the
highest amplitude frequency in the frequency domain, i.e., the noise frequency was around
16 Hz.

3.3. Analysis of Load Signal

The signal acquisition under load was performed after the frequency distribution of
the noise had been determined.

The experiment was started after the speed of each operating component of the
combine harvester had been raised to the level for normal harvesting operation. The
conveyor belt started to feed the material while the signal was collected, and the power-
input shaft speed was recorded for two of the experiments, as shown in Figure 10.
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Figure 10 illustrates that before the material was fed, the measured shaft speed reached
487 r/min−1 in both sets of trials, indicating stable operation of the harvester. After ma-
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terial feeding, the measured shaft speed became lower than that under no-load opera-
tion. The reductions were different under different feeding quantity, and the variations
remained consistent.

The frequency domain information shown in Figure 11 was obtained via fast Fourier
transform of the torque signals from these two sets of trials.
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As seen in Figure 11, the signal frequency with the highest amplitude in both sets
of trials was around 16 Hz, but fluctuations were observed in the signal amplitudes
below and above this frequency. Thus, because a fast Fourier transform would completely
discard information about the signal information in the time domain, it was impossible
to determine the signal frequency variation in the time domain, i.e., it was not possible to
determine the change in signal frequency when the material was fed. This led to inaccurate
determination of the desired signal distribution range and an inability to filter the signal
for noise reduction.

3.4. Time-Frequency Analysis, Filtering, and Denoising of Signal

To address the aforementioned problems, WT was used to analyze the signal to ensure
that the variation in the signal frequency could be analyzed in the time domain.

As shown in Figure 12, from the beginning to the end of data acquisition, a set of
steady signals with frequency around 16 Hz was observed. The experiment began after
12 s of data acquisition, and the material was fed into the auger of the header. Initially, a set
of lower-frequency signals appeared, and they disappeared at the end of material feeding.

According to the foregoing analysis, the noise signal frequency was mainly distributed
around 16 Hz, and the signal frequency resulting from the changes in the feeding quantity
was significantly lower than the aforementioned value. Hence, the value of 16 Hz can be
considered as the cutoff frequency for the signal-filtering process.

Noise reduction is necessary because the original signal contains excessive noise. A
db-4 wavelet basis was employed to decompose the original signal at six levels. Figure 13
shows the original signal and the decomposed signal at each level.

The decomposed signal was denoised and reconstructed using fixed-threshold estima-
tion and a hard thresholding function. The comparison of the signals before and after noise
reduction is shown in Figure 14.

The torque value after noise reduction was averaged to 24.46 N·m, which was used
as the final measurement for this group of trials. The same treatment was applied to the
remaining groups of trials to establish the basis for the fitting of the relationship between
the feeding quantity and torque.
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3.5. Fitting of Feed Quantity–Torque Relationship

Based on the results of data processing for each group of trials mentioned in Section 3.4,
the results of fitting the feeding quantity–strain relationship using PLSR and SVM were
compared to identify the optimal method for determining the feeding quantity based on
the measured torque.

In the SVM fitting method, the data sample set was assumed to be {(x1, y1), (x2, y2), . . . ,
(xn, yn)}, where xi ∈ Rn is the n-dimensional input vector, yi ∈ R is the objective value,
and N denotes the number of samples. Then, the objective function is as follows:

f (x) = min
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗) (9)

The constraints are {
yi − [w′Φ(xi) + b] ≤ ε− ξi
[w′Φ(xi) + b]− yi ≤ ε− ξ∗i

(10)

where i = 1, 2, . . . , n; C > 0; ξi, ξ∗i ≥ 0, w is the weight vector of the classification
hyperplane, ξi and ξ∗i are nonnegative relaxation variables, Φ(xi) is a nonlinear function
that maps the input vector to the higher space, b is the penalty factor; and ε is the insensitive
loss function parameter.

Both C and ε are user-determined parameters that have a significant impact on the gen-
eralization ability of SVM. The final decision function is obtained based on duality theory:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, xj) + b, (11)

where αi and α∗i are bound by the penalty factor C, and their corresponding points are called
support vectors. Usually, the number of support vectors is smaller than the number of
training samples. K

(
xi, xj

)
denotes the symmetric kernel function that satisfies the Mercer

condition. We used the Gaussian kernel function in this study:

K
(
xi, xj

)
= exp

(
−‖xi−xj‖2

σ2

)
σ ∈ R

(12)

where σ is the kernel function parameter.
The generalization ability of SVM is influenced by two parameters—the penalty factor

C and the kernel function parameter σ. The larger the value of C, the less tolerant the
model is to errors. In addition, the model is more prone to overfitting with a larger
C. Conversely, the smaller the value of C, the easier it is to underfitting the model. A
larger σ corresponds to a smaller number of support vectors and vice versa. Therefore, a
comprehensive optimization search is necessary for these two influencing factors.
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In this study, we adopted the grid division method and used the minimum mean
square error of cross-validation (MSECV) as the evaluation index to find the optimal
combination of C and σ. The results of the grid-partitioning search are shown in Figure 15.
The optimal C, σ2, and MSECV were 1024, 0.03125, and 0.082732, respectively.
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The fitting result of the torque-feeding quantity relationship based on PLSR is demon-
strated in Figure 16a. The fitting result based on SVM and the parameter optimization is
shown in Figure 16b.
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Figure 16. Fitting results: (a) the fitting result of PLSR method; (b) the fitting result of SVM method.

The determination coefficient (R2), average deviation, and root-mean-square deviation
were used as the evaluation indicators to compare the fitting results of the two methods.

Table 2 indicates that SVM is more suitable for fitting the feeding quantity–torque
relationship.

Table 2. Comparison of fitting results.

Decision Factor Average Error Root Mean Square Error

PLSR 0.853 16.2% 1.877
SVM 0.967 5.21% 0.573

When the feeding quantity was lower than 3.5 kg·s−1, small changes were observed in
the torque measured by the system with an increase in the feeding quantity. The underlying
reason is that the feeding quantity for the harvester used in this study was set to 6 kg·s−1.
Under a low feeding quantity, the material was less squeezed by the screw conveyor and
the volute bottom plate during transportation. Therefore, the resistance moment of the
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power input shaft was small and exhibited minimal variation. The input shaft torque
displayed essentially a linear growth trend with an increase in the feeding quantity. At the
designed feeding quantity, the material feeding in the screw conveyor reached saturation.
Hence, a further increase in feeding quantity caused accumulation of material. Moreover,
the reaction force on the screw conveyor increased, leading to a significant increase in the
power-input-shaft torque.

4. Field Experiment

To verify the correctness and adaptability of the established feeding quantity–torque
fitting relationship for actual harvesting, a field validation experiment was conducted.
The crop species and each characteristic parameter was kept consistent with those in the
bench experiment.

The combine harvester feeding quantity is mainly influenced by the forward speed,
cut width, grain-to-grass ratio, and seed yield. It is calculated as

q = mlvc (13)

where m is crop biomass per unit area, kg·m−2; l is the cutting width; vc is the combine
harvester forward speed.

The conditions and some parameters in the field trial are as follows: The crop biomass
per unit area remained the same for each group of trial, and the harvester travelled 15 m
for each group. All crops were harvested at full width, with the stubble height being 0.4 m.
The total fed biomass in each group was 54 kg based on actual manual measurements.

To ensure uniformity of feeding during each trial, the harvester was kept moving at a
uniform speed during each experiment. Furthermore, to assess the stability of the system,
the forward speed for each group of trial was not limited, and the completion time for each
group of trials was recorded. The actual feeding quantity per second was calculated based
on the total amount and time of feeding. The field experiment site is shown in Figure 17.
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Figure 17. Field experiment.

The input-shaft torque signals collected during each experiment were filtered and
denoised using the method described previously. The feeding quantity was predicted
using SVM, and the deviations from the actual feeding quantity were calculated, as shown
in Table 3. Each group of experiments was repeated three times, and the average value
was recorded.
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Table 3. Comparison of fitting results.

No. Measured Feeding Quantity
(kg·s−1)

Actual Feeding Quantity
(kg·s−1) Deviation

1 2.52 2.31 9.1%
2 3.06 3.21 4.5%
3 3.15 3.43 8.1%
4 3.28 3.11 5.3%
5 3.62 3.43 5.5%
6 3.73 3.95 5.5%
7 3.62 3.89 6.9%
8 4.15 3.89 6.8%
9 4.22 3.82 10.4%
10 4.94 4.39 12.6%
11 4.99 4.82 3.5%
12 5.14 4.97 3.5%
13 5.74 5.28 8.7%
14 6.12 5.48 11.7%
15 6.24 5.52 13.0%

The comparison of the measured and the actual feeding quantities is shown in
Figure 18.
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Combining the results of Table 3 and Figure 18, some deviations were observed
between the measured and actual feeding quantities from the telemetry system; the average
and maximum deviations were 7.7% and 13%, respectively.

5. Discussion

From the results of the field trials, the variation in the feeding quantity measured by
the system was consistent with that in the feeding-quantity data collected from the bench
experiments and the actual conditions. Additionally, the deviation in the feeding quantity
measured by the system was lower than that reported in previous studies (30%) [22], which
indicates that the system and data processing method used in this study for monitoring
feeding-quantity variations is relatively accurate and stable.

The reasons for the discrepancy between the results of the feeding quantity measured
by the system and the actual feeding quantity in the field experiment are that the design
of the filtering method in the data processing was determined through bench experiment
trials. When the harvester was running under no load, the signals collected during the
bench experiments were different from those collected during the field operation. The
actual operating conditions were more complex, and thus, the data measured by the system
also has more complicated noise signals; this affected the final filtered torque data. In
addition, the uniformity of crop growth and differences in the consistency of the harvester
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operator in each group of trials may also have impacted the data. The results also reflected
that some improvement needed to be made in the system design and data processing; this
will be the most important part of work in the future research.

6. Conclusions

This paper addresses the practical problem of feeding-quantity monitoring needs of a
combine harvester, and an online monitoring system for measuring the feeding quantity
based on the force variation of the power input shaft was constructed. Wavelet transform
and support vector machine methods were used to improve the accuracy of signal process-
ing and reduce the error of the relationship between the torque and the feeding quantity.
The field validation experiment results showed that the established model can calculate the
feeding quantity accurately and the system has the ability to quickly adapt to changes in
feeding quantity. This indicates that there is certain applicability and stability of the system
for feeding quantity monitoring in the actual operation and it can meet the needs of crop
combine harvesting.

As an important operating indicator of the combine harvester, the feeding quantity
affects the operating performance. A reliable monitoring system to obtain accurate infor-
mation of the feeding quantity provides the driver with an intuitive understanding of the
harvest performance during operation. It improves the efficiency of the combine harvester
and effectively reduces the header and drum blockage caused by excessive feeding quantity.
It also provides the basis for adjusting the operating parameters of other major working
components, and is a key factor in promoting the overall intelligent closed-loop control of
the combine harvester.
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