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Abstract: As a daily staple food of more than one third of the world’s population, wheat is one of the
main food crops in the world. The increase in wheat production will help meet the current global
food security needs. In the process of wheat growth, diseases and insect pests have great influence
on the yield, which leads to a significant decline. Wheat spider mites are the most harmful to wheat
because they are too small to be found. Therefore, how to use deep learning to identify small pests is a
hot spot in modern intelligent agriculture research. In this paper, we propose an improved RetinaNet
model and train it on our own dataset of wheat spider mites. Firstly, the wheat spider mites dataset
is expanded from 1959 to 9215 by using two different angles and image segmentation methods.
Secondly, the wheat spider mite feature detection head is added to improve the identification of small
targets. Thirdly, the feature pyramid in FPN is further optimized, and the high-resolution feature
maps are fully utilized to fuse the regression information of shallow feature maps and the semantic
information of deep feature maps. Finally, the anchor generation strategy is optimized according to
the amount of mites. Experimental results on the newly established wheat mite dataset validated our
proposed model, yielding 81.7% mAP, which is superior to other advanced object detection methods
in detecting wheat spider mites.

Keywords: wheat spider mites; improved RetinaNet; object detection; image processing

1. Introduction

Wheat is one of the major food crops in China, and the guarantee of wheat yield
and harvest is crucial to food security and food consumption. During the growth and
development of wheat, the frequent occurrence of diseases and insect pests will seri-
ously affect the production of wheat [1]. For example, aphids, suckers, mole crickets,
larvae and needle worms attack different parts of wheat at different times, causing serious
damage [2,3]. Among them, wheat spider mites have the most serious effect on wheat yield.
In addition, wheat spider mites are harmful to crops such as barley, peas and rape, as well
as wheat. According to the survey, in 2020, the occurrence area of wheat spider mites in
China reached 20.15 million acres, and it is increasing year by year. Although the average
insect population ranges from 3 to 25 insects per foot of market length in low-growing
areas, if left unchecked, insect populations can proliferate and cause irreparable damage to
wheat [4]. Therefore, timely and accurate identification is very important for the control of
wheat spider mites.

On the one hand, however, mite outbreaks tend to be severe, sporadic and often
blindsided, making scientific application and precise control very difficult. Wheat spider
mites, on the other hand, tend to be very small and difficult to see with the naked eye,
making accurate detection of very small objects like wheat spider mites a challenging
problem. At present, manual identification is the most commonly used method to detect
wheat spider mites infestation [5]. However, due to the small size and density of wheat
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spider mites, manual identification efficiency is low. Therefore, timely, scientific, accurate
and effective detection and control measures are of great significance to reduce wheat
production loss and increase farmers’ income. With the extensive research of a large
number of scholars on computer vision and image processing technology, image based
pest recognition has become a feasible solution. Although the technique saves a great deal
of time and effort compared to manual work, accurate identification remains challenging.
First, it is very difficult to distinguish wheat spider mites from the background because
the camera takes pictures with complex background. In addition, the camera usually takes
pictures with a high resolution, which is a difficult problem for quick detection. Moreover,
the Angle and illumination of the shot can also affect the quality of the image, increasing
the difficulty of recognition. Therefore, developing an effective and accurate method to
identify wheat mites is difficult and challenging.

Recently, with the research and development of deep learning in the field of object
detection, many agricultural scholars also try to extend the method of object detection to
crop disease recognition [6–8], weed detection [9–11], fruit detection and counting [12–14]
and other practical applications. Certainly, traditional machine learning has also done
excellent work on crop disease recognition. Nazari et al. proposed ANFIS classifier to
identify Alternaria disease and leafminer based on color and texture features. Finally,
the segmentation and classification accuracy of PlantVillage dataset are 90% and 98%,
respectively [15]. However, compared with the pretreatment and other operations of
machine learning, convolutional neural network, as a representative of deep learning, can
complete end-to-end learning and achieve more excellent results.

Based on Faster-RCNN, He et al. [16] designed a two-layer detection network algo-
rithm to detect brown rice planthoppers(BRPH). The first layer is responsible for detecting
the original image and saving the image of the detection target area. The second layer
performs object detection on the saved image. The accuracy and recall rate of the algo-
rithm are 94.5% and 88.0% on more than 200 test images, respectively. For large-scale
multi-species pest data, Wang et al. [17] proposed a two-stage cascading pest detection
method (STOMACH) based on mobile vision. Firstly, the multi-scale context information of
images is extracted and a context-aware attention network is established to perform initial
classification of crop categories. Then, a multi-projection pest detection model (MDM)
was proposed, and crop related pest images were used for training. Finally, attention
mechanism and data enhancement techniques were used to improve the effectiveness of
pest detection in the field. Tassis et al. [18] first performed instance segmentation with
Mask-RCNN, then did semantic segmentation using UNet and PSPNet, and finally did
classification and severity estimation using Resnet, which achieved high accuracy in the
dataset of coffee trees. Although the above methods have improved the ability of pest
identification to a certain extent, they all divide the detection process into multiple stages
and do not directly improve the model itself, so there are some limitations [19,20].

For small agricultural pests, Dong et al. [21] proposed an end-to-end model CRA-Net,
which contains a channel recalibration feature pyramid network (CRFPN) to improve
channel-level feature fusion and an adaptive anchor (AA) module to predict arbitrary
shaped anchors. Outperforming other state-of-the-art models, the novel CRA-Net achieved
a average precision (AP) of 67.9%. In [22], Lin et al. introduced an adaptive feature
fusion into the feature pyramid network to extract more features of the pest. Then, they
developed an adaptive enhancement module to reduce the information loss of the feature
maps. Finally, they constructed a two-stage region-based convolutional neural network
and achieved 77.0% accuracy on the AgriPest21 dataset. In order to improve the accuracy of
small object detection, Lim et al. [23] proposed a object detection method based on context.
The approach used additional features from different layers as contexts by connecting multi-
scale features. And they also proposed an object detection with attentional mechanism,
which can focus on the target in the image and can contain contextual information from
the target layer. For the 300 × 300 input, the mean average precision (mAP) of 78.1% was
achieved on the PASCAL VOC2007. Zou et al. [24] integrated a channel attention network
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to selectively boost the useful features and restrain the useless ones, proposed a dense
feature fusion network to improve the sensitivity for small objects, and designed a rotation
anchor strategy for reducing the redundant detection regions. Liu et al. [25] proposed
a high-resolution detection network (HRDNet), a multi-depth image pyramid network
(MD-IPN) and a multi-scale feature pyramid network (MS-FPN) to maintain multiple
position information and reduce the information imbalance. Through the optimization of
the model, the above methods have achieved certain results and have high reference value.

In addition, as shown in Figure 1, in the actual detection process, there may be many
factors affecting the detection results, such as complex or simple background, large or small
pest objects, dense or sparse pest distribution, front or side shooting angle, etc. Different
environments often lead to wide variations in test results. Mohanty et al. [26] used the
same model to conduct experiments on datasets with simple background and complex
background respectively. The former has a high accuracy, while the latter has a relatively
low accuracy. It is proved that the detection accuracy is greatly limited by illumination
condition, background condition and shooting effect. Therefore, real pest dataset are better
than laboratory ones for simulating the growing environment of crops and verifying the
robustness and identification of models [27–29].

Figure 1. Images of wheat spider mites taken under different shooting conditions: (a) different
backgrounds; (b) different sizes; (c) different distributions; (d) different angles.

In this paper, the RetinaNet model is improved to detect and locate wheat spider
mites accurately. Firstly, the feature maps with large resolution can be utilized more fully
based on retaining the existing the feature information. Then, the high resolution and
low resolution feature maps are fused to extract multi-scale information. Finally, the
optimization improves the anchor generation strategy to better match the tag information.
Experimental results show that our method performs more effective and outperforms other
state-of-the-art methods. The contributions of our method can be summarized as follows:

• A dataset of nearly 2000 wheat spider mite images is constructed through field pho-
tography and labeling, and the dataset is extended to 9215 images through data
enhancement and image segmentation.

• For the detection of wheat spider mites, we add a detection head specifically for small
object in FPN and improve the pyramid structure to obtain more information.

• The anchor generation strategy is optimized and enhanced to improve the detection
effect of tiny wheat spider mites.

• Extensive experiments have verified the effectiveness of the improved model and
image split, and the mAP has been improved from 63.6% to 81.7%.
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2. Materials and Methods
2.1. Image Acquisition

In order to obtain the real scenes of in-field wheat spider mites, we took nearly
2000 high-resolution images from wheat fields in northern China using cameras or mo-
bile phones. Most image sizes are (5184 × 3888). In addition, to make the dataset more
heterogeneous, we took pictures under different conditions. As shown in Figure 1a, the
backgrounds of the wheat spider pictures are different, some are more complicated, while
some are more simple. Also, the size of wheat spider mites is greatly different. Specif-
ically, larger wheat spider mites have around 100 × 100 pixels and smaller ones have
20 × 20 pixels or less, as can be seen in Figure 1b. As shown in Figure 1c, the distribution
of wheat spider mites varies greatly, with some dense distribution and some sparse distri-
bution. To avoid homogeneity, we take photos wheat spider mites from different angles, as
can be seen in Figure 1d.

In addition, due to the complex environmental background of wheat spider mites in the
field, the image of leaves blocking the object appears in the image collection. However, we
did not delete the occluded images, because these occlusions would increase the difficulty
of detection, but also train the robustness of the model. Finally, to verify the effectiveness
of the proposed method, 70% of the samples are randomly selected as the training set, 20%
as the validation set, and 10% as the test set. The number of partitioned data sets can be
shown in the first row of Table 1.

Table 1. The specific numbers of the original dataset and enhancement dataset.

Type Train Set Val Set Test Set Total Numbers

Initial 1371 391 196 1959
Aug 2675 391 196 3262
Aug + split 6533 1843 839 9215

2.2. Dataset Labeling and Enhance

For the expanded dataset, we used Labellimg (https://github.com/tzutalin/labelImg,
accessed on 1 November 2022) to mark the images in PASCALVOC format. In addition,
sufficient results show that using data enhancement to extend the training set can improve
the robustness of the model and prevent overfitting [30,31]. As shown in Figure 2, image
enhancement is performed using two different angle schemes. One is to use general opera-
tions such as cropping, rotation, color transformation, etc., and the other is to randomly
copy the wheat spider mites in the image to other locations in the image to increase the
number of objects.

Figure 2. The examples of different data enhancement methods: (a) rotation; (b) crop; (c) color;
(d) copying wheat spider mites.

https://github.com/tzutalin/labelImg
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In Figure 2a–c are the effects of rotation, crop, and hue reversal operations, respectively,
while Figure 2d is the effects of wheat spider mites copying operations [32]. The second
row of Table 1 shows the number of dataset with both enhancement strategies applied.
However, due to the large pixel size of the image and the small pixels of the wheat
spider mites, the proportion of the wheat spider mites in the image as a whole is very
small. In addition, it is also necessary to take into account the information loss caused
by the further compression of image size during the network training. This makes the
pixel size of the wheat spider mites so small that it is unrecognizable to the naked eye,
which is a major difficulty in the detection of wheat spider mites. Therefore, as shown in
Figure 3, we segment each large image (5184 × 3888) into six small images (1999 × 1999)
with overlapping edges [33].

Figure 3. The example of image segmentation: (a) original image; (b–g) segmented ones.

On the one hand, the method can alleviate the severe information loss during the
image compression to a large extent. On the other hand, the proportion of wheat spider
mites in the whole image can be increased, which is conducive to the detection and training
of the network. It’s worth noting that not every small image contains a wheat mite, so we
eliminate these images without objects. However, the problem is that the dataset isn’t as
big as it was when it first started. Therefore, we need to rebalance the dataset. Specifically,
we re-segmented the dataset on the premise that both the original and enhanced images
were in the training set. The number of final dataset is shown in the third row of Table 1.

3. Network Model
3.1. Overview of RetinaNet

Our model is modified based on RetinaNet [34]. RetinaNet is a simple and practical
one-stage detection model that can reach or exceed the accuracy of two-stage detector. The
structure of it is shown in Figure 4a, which is mainly composed of Bcakbone, FPN and
Detector Head.

Backbone: RetinaNet uses ResNet, the most popular classification model, as the
backbone network [35]. ResNet consists of four stages, each consisting of a number of
cascading residual structures. The residual module consists of three convolutions, a 1× 1
down-sampling convolution for dimensional compression, a 3× 3 spatial convolution
for feature extraction, a 1× 1 up-projection convolution for dimensional recovery, and
an additional jump connection between inputs and outputs. In addition, the feature
map resolution of the four stages is from large to small, and the channel dimension is
correspondingly from small to large. Thus, ResNet can generate four feature maps in the
form of pyramids.

FPN: The FPN module receives the last three feature maps from the backbone and
outputs the last five feature maps by up-sampling and lateral concatenation. Specifically,
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the classification information is added by sampling the last three layers and adding them to
the previous layer. The last feature image is then continuously compressed and convolved
to obtain two feature images with a smaller resolution.

Detector Head: The head module receives five feature maps from the FPN. For each
feature map, the head module performs two tasks: category identification and position
detection, but the parameters are not shared between the two branches of the head module.
Each pixel of the texture map generates a category prediction and four anchor regression
results. While the weights of classification and regression branches are not shared, the
weights of the head module are shared across the five output feature maps.

Figure 4. Original model and improved model structure: (a) FPN structure of RetinaNet; (b) our
improved RetinaNet.

3.2. Small Object Head

Although we have segmented the image to some extent to alleviate the problem that
the wheat spider mites in the image is too small, there are still many wheat spider mites of
small size, which account for only a small percentage in the image and have very few pixels.
Since the detection head of RetinaNet works well for large objects, the detection of small
objects such as wheat spider mites is often ignored. Therefore, we have made some
improvements to the original detection head. Specifically, we add a tiny wheat spider mite
detection predictive head to the original five wheat spider mite detection heads to detect
wheat spider mites with a width and height of less than 30 pixels. The new detector utilizes
the first-layer feature map of the backbone, which has clearer regression information.
This means it is more sensitive to tiny objects, which can help detect polar wheat spider
mites. Combined with the other five detection heads, six detection heads are obtained
at the FPN stage. Despite the increased compute volume and memory consumption, the
increase in the detection heads results in higher detection performance.

3.3. Context Fusion

Generally speaking, the shallow feature maps are used to detect small objects because
the shallower feature maps have a greater resolution but a smaller field of perception;
Conversely, the deeper feature maps have lower resolution but a higher field of perception,
so the deeper feature maps are used to detect large objects. This means that shallow feature
maps have weak semantic information, but contain stronger feature information, such as
shape, texture, edge, etc., while deep feature maps contain strong semantic information.
The original FPN structure adds semantic information to the upper feature map by up-
interpolation sampling, facilitating category recognition. Shallow feature mapping feeds
information back to deep feature mapping by down-sampling to compensate for positional
information, which is conducive to the localization of the objects. In addition, shallow and
deep feature maps are fused using multi-scale convolutional modules. Specifically, in the
shallow layer of the feature map, the convolutional kernels of 3× 3, 5× 5, and 7× 7 are
applied to extract the features of different scales, and then stitch the features of different
scales together, effectively increasing the perceptual field of the model. More intuitively,
as shown in Figure 4b, the original FPN structure is on the left and our improved one on
the right.
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3.4. Improve Anchor Scales

For the original detection head, the detection range is in the range of [8× 8–128× 128]
relative to the pixel scale of the input image, which is friendly for detecting larger objects,
but still large for wheat spiders. To get more accurate information of the wheat mite pixels,
we calculated the Ground Truth (GT) size of all images. As shown in Figure 5, most of the
width and height are within 50, of which 30–40 is the most, and the proportion within 30 is
also very large.

Figure 5. Size distribution map of wheat spider wites in our dataset.

This means that existing strategies for generating anchors do not apply to them.
In addition, the resulting visualization of the anchors is on the far left of Figure 6.

Figure 6. Original Anchor vs. optimally designed Anchor: the above are the original three Anchor
modules with the smallest scale; the below are the three Anchor modules with the smallest scale
after improved.

The lines in the image above represent the separation of the three smallest scales of
anchors. As we can see, even the smallest anchor is too large for the smaller mites to
successfully match to the GT, so we improve the generation strategy of anchors. Anchor
generation can be expressed by the following formula:

Si = α ∗ B ∗ R ∗ S ∗ [2
1
i , 2

2
i . . . 2

i
i ], (1)
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where α is a hyperparameter, B represents the compression scale of the feature maps, R is
the aspect ratio generated by the anchor, S represents the cardinal multiplier of the anchor,
and i is the scale number. After modifying the scales, the three smallest scale anchors
generated are shown in Figure 6. It is not difficult to see that the wheat spider mites that
were not matched before can now be matched.

4. Experiment
4.1. Experiment Setting

In our experiments, we use PyTorch framework and MM-Detection framework to
train the proposed model. The experimental environment is Ununtu 18.04 operating
system running on a server with an Intel(R) Core i7-12700K CPU 3.60 GHz and two
NVIDIA RTX3080Ti (12G) GPUs. In addition, the software we used is JetBrains PyCharm
Community Edition 2019.2.6 (64). Our experimental parameters are set according to the
convention. Specifically, on Epoch 8 and 11, using pre-trained ResNet as the backbone and
SGD as the optimizer, the momentum is set to 0.9, and the learning rate is reduced to one
tenth of the original. In particular, our 12G GPU memory makes the Batchsize set to 4 at
most, so the initial learning rate is set to 0.0025 accordingly.

4.2. Model Evaluation Metrics

To evaluate the performance of the model, we use the inference time, parameters, R
(recall rate) and mAP (mean Average Precision) as evaluation metrics. The inference time
and number of parameters can measure efficiency and computation. Recall and mapping
formulas are the following Equations (2) and (4):

Recall =
TP

TP + FN
, (2)

AP =
∫ 1

0
P(r)dr, (3)

mAP =
1
n ∑n

i=1 APi

n
, (4)

where TP represents the number of positive cases correctly classified as positive cases, FN
represents the number of positive cases incorrectly classified as negative cases, n is the
number of classes, and n = 1 in this case. In the field, it is best to miss the correct targets
as little as possible. Therefore, according to the formula, a higher recall rate means that
we miss fewer targets. mAP is the most commonly used index in target detection and
evaluation, which can measure the effect of positioning and classification at the same time.

4.3. Comparison with Other Models

On the wheat mite dataset, the improved RetinaNet was compared with other classical
models, and the experimental results are shown in Table 2.

Table 2. The results of different models on our dataset.

Model Backbone Inference Time (s/iter) Params (M) Recall (%) mAP (%)

SSD-300 VGG16 0.098 23.75 87.0 62.1
Yolo-v3 DarkNet53 0.192 61.52 80.9 75.9

Faster-RCNN ResNet50 0.183 66.67 88.3 77.3
RetinaNet ResNet50 0.168 41.02 88.9 77.4

Cascade-Rcnn ResNet50 0.241 75.48 83.9 78.4
RetinaNet-improved (ours) ResNet50 0.269 63.31 90.2 81.7

The values in bold indicate the best results. The improved model has the highest recall
rate and mAP compared to other models, while also comparing their inference times and



Agriculture 2022, 12, 2160 9 of 14

number of parameters. For example, our model increased the recall rate by 1.9% and mAP
by 4.4% with fewer parameters compared to Faster-RCNN [36]. Of course our Inference
time is a bit long due to the adding of high-resolution detection feature maps for small
targets in our model. Obviously, higher resolution means more parameters. At the same
time, more Anchor will be generated, which is usually more time consuming This means
that part of the reasoning time is sacrificed in exchange for a significant improvement in
the detection results As far as the result is concerned, it is worthwhile.

This proves that our improved model can more accurately identify wheat spider mites
while maintaining a lower fault tolerance rate. In more detail, we visualize the loss of our
model during training, as shown in Figure 7, where the loss has converged when the iter
reaches around 60,000.

Figure 7. Loss curve of RetinaNet.

Meanwhile, as shown in Figure 8, we also visualize the accuracy curves of each epoch
of different models, where the x-coordinate represents the epoch, while the y-coordinate
does the mAP. In the figure, the accuracy curve of our improved-RetinaNet is the brown
one, which achieves the best accuracy on each epoch compared to other models. This shows
that our model can not only successfully match more wheat spider mites, but also have
higher accuracy, thus demonstrating the advantages of our model in wheat mite detection.

Figure 8. Diagram of mAP of different models. The brown is our model.
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4.4. Different IOU

The Intersection of Union (IOU) is an important index to measure the degree of
overlap between the anchor point and the bounding box, and its range is between [0,
1]. The higher the value of IOU, the more overlapping areas and the more accurate the
positioning. Different IOU thresholds will affect the effect of Anchor matching. For example,
if the IOU threshold is set low, it is difficult to guarantee the quality of the sample. On
the contrary, if the IOU threshold is set too high, the number of samples will decrease,
resulting in an imbalance between positive samples and negative samples. Therefore, in
order to study the influence of different IOU thresholds on the detection results, we also
conducted experiments with different IOU thresholds. As shown in Table 3, Recall rate
and mAP are still the highest when the IOU threshold is 0.5. Moreover, the more extreme
the IOU threshold, the worse the performance of the model. This result indicates that for
datasets containing a large number of small objects, a lower IOU threshold does not lead to
performance gains.

Table 3. The mAP of different IOU.

IOU Recall (%) mAP (%)

0.3 87.6 77.5
0.4 89.5 79.9
0.5 90.2 81.7
0.6 90.0 80.1
0.7 86.5 78.7

4.5. Ablation Experiments

To further verify the effectiveness of the improved method, ablation experiments are
also carried out here. The baseline is the RetinaNet using the ResNet50 backbone. During
the experiments, the improved methods are added to the baseline separately. The detection
results are shown in Table 4. First, we compare the influence of image segmentation
of datasets, as shown in the second line of Table 4. It can be clearly seen that image
segmentation is very effective in terms of improving accuracy, with a significant increase of
14.4 %. This shows that image segmentation can not only increase the number of datasets
and reduce model over-fitting, but also greatly reduce the serious interference in the image
compression process and reduce the loss of image information. As can be seen from the
third row of Table 4, a small wheat spider mite detection head can improve the detection
performance from 78.0 to 79.8%.

Table 4. Ablation experiments on our dataset.

Model Image
Segmentation Small Object Head Context Anchor-Improved mAP (%)

RetinaNet-improved

× × × × 63.6√
× × × 78.0√ √

× × 79.8√ √ √
× 80.2√ √ √ √

81.7

The results show that the model has higher robustness and can better detect the small
wheat spider mites. Next, FPN contextual information fusion and multi-scale fusion are
added, and the results in the fourth row of Table 4 show that this fusion can improve
the feature extraction ability of the model. Finally, as shown in the last row of Table 4,
the accuracy of the redesigned Anchor generation scheme is improved by 1.5%, which
indicates that the generated Anchor matches the GT better and is more conducive to the
model optimization and accuracy improvement.

Besides, we visualize the thermodynamic feature maps of Backbone and FPN, as
shown in Figure 9b,c, respectively. Blue indicates very low concerns, while red or yellow
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indicates very high concerns. Experimental results show that the model successfully
extracts the characteristics of wheat spider mites, which proves the effectiveness and
feasibility of the model in detecting wheat spider mites. In addition, the detection effects of
our improved model and the original model are compared. The experimental results are
shown in Figure 10. For the same image, Figure 10a is the detection result of the Retinaet,
and Figure 10b is the detection result of our improved model. It can be seen that the results
of our model are better, which can not only can accurately identify the objects ignored by
RetinaNet, but also have a higher confidence rate. This illustrates the effectiveness of our
improvements. Compared with the original RetinaNet, our improved model enables more
wheat spider mites to be recognized successfully which were previously ignored.

Figure 9. The visualization of thermodynamic feature maps of Backbone and FPN: (a) the original
image; (b) thermodynamic map of Backbone (c) thermodynamic map of FPN.

Figure 10. Comparison of detection effects: (a) detection of the RetinaNet; (b) detection of our
improved model.
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5. Conclusions

Wheat spider mites are the main harm in the process of wheat growth, which will
seriously damage the health of wheat and seriously affect the yield of wheat. However,
the small size and complex background of wheat spider mites in real wheat fields greatly
increase the difficulty of detection. In order to solve the problem of wheat spider mite iden-
tification, a new dataset of wheat spider mites in wheat field background was established
in this paper. Furthermore, we use two methods to expand the image dataset. Firstly, the
traditional data enhancement method is used to enhance the image dataset. Secondly, the
high-resolution images are then cropped into a low-resolution images. Finally, we use these
two methods to expand the dataset from 1959 to 9215, which can not only enlarge the data
volume, but also alleviate the target minimization problem caused by high resolution to a
certain extent. Simultaneously, based on RetinaNet, the model in this paper is perfected
to improve its detection efficiency. Specifically, the detection head is added to receive
higher-resolution feature maps as input to improve the recognition ability of wheat spider
mites. The detection header for small targets can strengthen the context fusion information
and significantly reduce the influence of small targets on the model. On this basis, the
fusion module of FPN is designed for the fusion of the context information and multi-scale
features In addition, our study analyzed that the original anchor generation strategy is not
suitable for the detection of wheat spider mites. More importantly, the anchor generation
strategy has been improved to make it more compatible with polar wheat spider mites
Finally, extensive experimental results show that our method is superior to other advanced
methods. However, there are still some limitations. For example, our method increases
the amount of computation and parameters. Moreover, the image dataset still needs to be
further expanded. In the future work, we will further improve the detection efficiency of
the model. At the same time, we will integrate remote sensing data to increase the diversity
and multi-source of data. In addition, it is also worth noting that the label allocation is used
to improve the matching degree between anchor and Ground Truth.

Author Contributions: Conceptualization, D.P. and P.C.; methodology, D.L. and P.C.; validation, D.P.
and H.W.; formal analysis, D.P. and H.W.; investigation, H.W.; resources, D.L.; data curation, P.C.;
writing—original draft preparation, D.P. and H.W.; writing—review and editing, D.P., H.W. and P.C.;
supervision, D.L.; project administration, D.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Natural Science Fundation of Anhui Province grant
number 2008085QA19, National Natural Science Foundation of China grant numbers 62072002,
62273001, 61906118 and Anhui Provincial Major Science and Technology Special Program grant
number 202003a06020016.

Data Availability Statement: The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H. Impact of climate change on biology and

management of wheat pests. Crop Prot. 2020, 137, 105304. [CrossRef]
2. Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability

2021, 13, 1318. [CrossRef]
3. Malschi, D.; Valean, A.-M.; Darab, I.D.; Tarau, A.D.; Sopterean, L.; Chetan, F.; Chetan, C.; Muresanu, F. New data on wheat pests

and their integrated control in the conservative no tillage soil system in Transylvania. ProEnvironment 2019, 12, 221–230.
4. Chen, P.; Li, W.; Yao, S.; Ma, C.; Zhang, J.; Wang, B.; Liang, D. Recognition and counting of wheat mites in wheat fields by a

three-step deep learning method. Neurocomputing 2021, 437, 21–30. [CrossRef]
5. Liu, T.; Chen, W.; Wu, W.; Sun, C.; Guo, W.; Zhu, X. Detection of aphids in wheat fields using a computer vision technique. Biosyst.

Eng. 2016, 141, 82–93. [CrossRef]
6. Chen, J.W.; Lin, W.J.; Cheng, H.J.; Hung, C.L.; Lin, C.Y.; Chen, S.P. A smartphone-based application for scale pest detection using

multiple-object detection methods. Electronics 2021, 10, 372. [CrossRef]
7. Li, Y.; Yang, J. Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 2020, 169, 105240. [CrossRef]

http://doi.org/10.1016/j.cropro.2020.105304
http://dx.doi.org/10.3390/su13031318
http://dx.doi.org/10.1016/j.neucom.2020.07.140
http://dx.doi.org/10.1016/j.biosystemseng.2015.11.005
http://dx.doi.org/10.3390/electronics10040372
http://dx.doi.org/10.1016/j.compag.2020.105240


Agriculture 2022, 12, 2160 13 of 14

8. Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci.
2020, 11, 898. [CrossRef]

9. Asad, M.H.; Bais, A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural
network. Inf. Process. Agric. 2020, 7, 535–545. [CrossRef]

10. Deng, X.; Qi, L.; Ma, X.; Jiang, Y.; Chen, X.; Liu, H.; Chen, W. Recognition of weeds at seedling stage in paddy fields using
multi-feature fusion and deep belief networks. Trans. Chin. Soc. Agric. Eng. 2018, 34, 165–172.

11. Xu, Y.; Zhai, Y.; Zhao, B.; Jiao, Y.; Kong, S.; Zhou, Y.; Gao, Z. Weed recognition for depthwise separable network based on transfer
learning. Intell. Autom. Soft Comput. 2021, 27, 669–682. [CrossRef]

12. Bresilla, K.; Perulli, G.D.; Boini, A.; Morandi, B.; Corelli Grappadelli, L.; Manfrini, L. Single-shot convolution neural networks for
real-time fruit detection within the tree. Front. Plant Sci. 2019, 10, 611. [CrossRef] [PubMed]

13. Saedi, S.I.; Khosravi, H. A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture.
Expert Syst. Appl. 2020, 159, 113594. [CrossRef]

14. Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of consumer RGB-D cameras for fruit detection and localization
in field: A critical review. Comput. Electron. Agric. 2020, 177, 105687. [CrossRef]

15. Nazari, K.; Ebadi, M.J.; Berahmand, K. Diagnosis of alternaria disease and leafminer pest on tomato leaves using image processing
techniques. J. Sci. Food Agric. 2022, 102, 6907–6920. [CrossRef]

16. He, Y.; Zhou, Z.; Tian, L.; Liu, Y.; Luo, X. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning.
Precis. Agric. 2020, 21, 1385–1402. [CrossRef]

17. Wang, F.; Wang, R.; Xie, C.; Yang, P.; Liu, L. Fusing multi-scale context-aware information representation for automatic in-field
pest detection and recognition. Comput. Electron. Agric. 2020, 169, 105222. [CrossRef]

18. Tassis, L.M.; de Souza, J.E.T.; Krohling, R.A. A deep learning approach combining instance and semantic segmentation to identify
diseases and pests of coffee leaves from in-field images. Comput. Electron. Agric. 2021, 186, 106191. [CrossRef]

19. Takimoto, H.; Sato, Y.; Nagano, A.J.; Shimizu, K.K.; Kanagawa, A. Using a two-stage convolutional neural network to rapidly
identify tiny herbivorous beetles in the field. Ecol. Inform. 2021, 66, 101466. [CrossRef]

20. Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y. A novel object detection model based on faster R-CNN for
spodoptera frugiperda according to feeding trace of corn leaves. Agriculture 2022, 12, 248. [CrossRef]

21. Dong, S.; Wang, R.; Liu, K.; Jiao, L.; Li, R.; Du, J.; Teng, Y.; Wang, F. CRA-Net: A channel recalibration feature pyramid network
for detecting small pests. Comput. Electron. Agric. 2021, 191, 106518. [CrossRef]

22. Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R.; Zhang, J. Adaptive feature fusion pyramid network for multi-classes agricultural pest
detection. Comput. Electron. Agric. 2022, 195, 106827. [CrossRef]

23. Lim, J.S.; Astrid, M.; Yoon, H.J.; Lee, S.I. Small object detection using context and attention. In Proceedings of the 2021 International
Conference on Artificial Intelligence in Information and Communication, ICAIIC, Jeju Island, Republic of Korea, 13–16 April
2021; pp. 181–186.

24. Zou, F.; Xiao, W.; Ji, W.; He, K.; Yang, Z.; Song, J.; Zhou, H.; Li, K. Arbitrary-oriented object detection via dense feature fusion and
attention model for remote sensing super-resolution image. Neural Comput. Appl. 2020, 32, 14549–14562. [CrossRef]

25. Liu, Z.; Gao, G.; Sun, L.; Fang, Z. HRDNet: High-resolution detection network for small objects. In Proceedings of the 2021 IEEE
International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–6.

26. Mohanty, S.P.; Hughes, D.P.; Salath, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419.
[CrossRef]

27. Wang, F.; Wang, R.; Xie, C.; Zhang, J.; Li, R.; Liu, L. Convolutional neural network based automatic pest monitoring system
using hand-held mobile image analysis towards non-site-specific wild environment. Comput. Electron. Agric. 2021, 187, 106268.
[CrossRef]

28. Chen, C.J.; Huang, Y.Y.; Li, Y.S.; Chang, C.Y.; Huang, Y.M. An AIoT based smart agricultural system for pests detection. IEEE
Access 2020, 8, 180750–180761. [CrossRef]

29. Lou, Y.; Hu, Z.; Li, M.; Li, H.; Yang, X.; Liu, X.; Liu, F. Real-time detection of cucumber leaf diseases based on convolution
neural network. In Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control
Conference, ITNEC, Xi’an, China, 15–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1040–1046.

30. Gu, K.; Xia, Z.; Qiao, J.; Lin, W. Deep Dual-Channel Neural Network for Image-Based Smoke Detection. IEEE Trans. Multimed.
2019, 99, 311–323. [CrossRef]

31. Gu, K.; Zhang, Y.; Qiao, J. Ensemble meta-learning for few-shot soot density recognition. IEEE Trans. Ind. Inform. 2020, 17,
2261–2270. [CrossRef]

32. Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. arXiv 2019, arXiv:1902.07296.
33. Akyon, F.C.; Altinuc, S.O.; Temizel, A. Slicing aided hyper inference and fine-tuning for small object detection. arXiv 2022,

arXiv:2202.06934.
34. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, CVPR, Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2980–2988.

http://dx.doi.org/10.3389/fpls.2020.00898
http://dx.doi.org/10.1016/j.inpa.2019.12.002
http://dx.doi.org/10.32604/iasc.2021.015225
http://dx.doi.org/10.3389/fpls.2019.00611
http://www.ncbi.nlm.nih.gov/pubmed/31178875
http://dx.doi.org/10.1016/j.eswa.2020.113594
http://dx.doi.org/10.1016/j.compag.2020.105687
http://dx.doi.org/10.1002/jsfa.12052
http://dx.doi.org/10.1007/s11119-020-09726-2
http://dx.doi.org/10.1016/j.compag.2020.105222
http://dx.doi.org/10.1016/j.compag.2021.106191
http://dx.doi.org/10.1016/j.ecoinf.2021.101466
http://dx.doi.org/10.3390/agriculture12020248
http://dx.doi.org/10.1016/j.compag.2021.106518
http://dx.doi.org/10.1016/j.compag.2022.106827
http://dx.doi.org/10.1007/s00521-020-04893-9
http://dx.doi.org/10.3389/fpls.2016.01419
http://dx.doi.org/10.1016/j.compag.2021.106268
http://dx.doi.org/10.1109/ACCESS.2020.3024891
http://dx.doi.org/10.1109/TMM.2019.2929009
http://dx.doi.org/10.1109/TII.2020.2991208


Agriculture 2022, 12, 2160 14 of 14

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 770–778.

36. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

	Introduction
	Materials and Methods
	Image Acquisition
	Dataset Labeling and Enhance

	Network Model
	Overview of RetinaNet
	Small Object Head
	Context Fusion
	Improve Anchor Scales

	Experiment
	Experiment Setting
	Model Evaluation Metrics
	Comparison with Other Models
	Different IOU
	Ablation Experiments

	Conclusions
	References

