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Text S1. The combined determination methods [1-3]

Briefly, the determination procedures are as follows. First, H*-saturated samples were prepared
by washing approximately 100 g soil four times with 500 mL of 0.1 mol L' HC], and then with
deionized water repeatedly until the solution was free of Cl-in the suspension. The H*-
saturated soil samples were oven dried at 60 °C and sieved through a 0.25 mm sieve. Second,
10 g H*-saturated soil sample (triplicates) was transferred to a 150 mL triangular bottle, and an
equal volume of 0.0075 mol L' Ca(OH): and NaOH solution was added. After shaking for 24 h,
several drops of 1 mol L' HCI were added to adjust the pH of the suspension to 7. Then, the
suspension reached cation exchange reaction equilibrium after another 24 h of shaking and
determined the final pH, which was approximately 7. Third, the supernatant was collected after
the suspension was centrifuged. The Ca? and Na* concentrations in the supernatant were
measured using atomic absorption spectrometry and flame photometer, respectively. Finally,
the surface electrochemical properties of soil samples can be calculated by the following
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where @o (mV) is the surface potential; oo (C m™) is the surface charge density; E (V m™) is the
surface electric field strength; SSA (m?2 g™) is the specific surface area; CEC (cmol kg™) is the
cation exchange capacity; R (J] K™ mol™) is the universal gas constant; T (K) is the absolute
temperature; F (C mol™?) is the Faraday constant; Zis the charge of each ion species;
Bna and fca are the corresponding modification factors of Z for Na*and Ca?, respectively; ¢ is
the dielectric constant for water (8.9x10°C2J" m™); x (dm™) is the Debye-Hiickel
parameter; I (mol L) is the ionic strength; and c°Na (mol L) and c%a (mol L) are equilibrium

Na* and Ca? concentrations in the bulk solution, respectively.

Text S2. Tracer experiments.

The hydrodynamic conditions of the soil columns were obtain using the tracer experiments [4].
Before tracer experiments, the solution chemistry was stabilized using 20 mM CaClz to avoid
breakdown of the packed soil aggregate. Then, 20 PVs of 10 mg L' NOs~ (KNOs, because KCl
was used in the pre-treatment) were injected to the columns. The effluents were collected every

10 min and analyzed using an ultraviolet-visible spectrophotometer at 201 nm [5].

Text S3. Advection Dispersion Model.
The breakthrough curves of NOs~ were simulated by the Advection Dispersion Model. The

equation was:
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where C is the concentration of NOs~ (mg L); D is the dispersion coefficient (cm? min™); v is

the Darcy velocity (0.2829 ¢cm min); pis bulk density (g cm™); 0is the porosity. D was

calculated using Hydrus-1D software [6].
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Table S1. Fitted parameters of accumulation curves.

KCl Concentration (mol L) Fitting equation R?
105 y =29.413In(x) - 103.29 0.992
103 y =27.805In(x) - 96.519 0.994
102 y =3.6392In(x) - 10.895 0.981

R2: correlation coefficient

Table S2. Fitted parameters of accumulation curves.

Distance (nm) Fitting equation R?
1.5 nm y =175.69x — 5467.50 0.996
2.0 nm y =149.55x — 2434.90 1.000
4.0 nm y =140.91x - 612.30 0.999
6.0 nm y = 146.22x — 258.33 0.998
8.0 nm y=155.65x - 128.96 0.998

9.0 nm y =162.00x — 93.75 0.997




Figure S1. Map of sampling site.
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Figure S2. Experimental arrangements.



1600

1200 A
5L
&n -
g R2=0.999
= i
8 800 &
g
3 400 - .
o
e
0 & : T T T T
0 0.5 1 1.5 2.5 3
Abs.
Figure S3. Calibration curve of the Lou soil particles.
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Figure S4. Simulation results of the tracer transport.
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Figure S5. Concentration variation rate of released soil particle.
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Figure S6. Violin plot of mean particle size of released soil.
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Figure S7. Particle size distribution of soil particle with pore volume under 10->M (a) and 102

M (b).



