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Abstract: Smart livestock farming aims to improve the productivity of livestock through the provision
of optimal housing, and it is developed using various sensors and actuators. Ventilation systems play
a crucial role in smart livestock farming, including disease prevention and the processing of pollutants
(ammonia and hydrogen sulfide) that are severely detrimental to livestock growth. Malfunctions
in animal housing ventilation systems lead to mass mortality events. To address such issues, this
study reports the design and implementation for a smart detection system for malfunctions in the
ventilation devices installed in animal housing. This system is based on recurrent neural networks
(RNNs) and implements the ontology method, considering sensor and controller data as the standard.
A semantic sensor network ontology founded on a knowledge base was used to detect malfunctions,
and stimulus-sensor-observation patterns were used to determine a sensor network within the smart
barn. System activation and RNN model tests were used to test the malfunction detection system,
and the error between actual data and predicted values was found to be 0.06889. These findings
provide insight into the development of autonomous detection systems for device malfunctions and
are essential for the development of smart livestock farming technologies.

Keywords: smart agriculture; Internet of Things; failure prediction; recurrent neural network; ontology

1. Introduction

Smart livestock farming involves the use of technologies that monitor the internal and
external environments of animal housing using sensors and actuators so as to optimize the
housing environment [1,2]. In highly developed nations such as South Korea, the smart
livestock farming industry is developing differentiated technologies centered around the
integration of software and hardware platforms, intellectualization of data, and fusion with
artificial intelligence, cloud computing, and the Internet of Things (IoT). These techniques
can help develop an intelligent livestock farming industry with the use of information
communication technology (ICT) devices. Research in this industry also requires the
technological evolution of intelligent data fusion systems through data collection, analysis,
and prediction [3]. The ultimate goal of smart livestock farming is to improve productivity
by maintaining the optimal growth environment for livestock and by predicting factors
such as gestation periods [4].

Barn ventilation is one of the environmental factors that can significantly impact live-
stock productivity [5]. The ventilation system plays a crucial role in processing pollutants—
such as ammonia and hydrogen sulfide—that are generated within the barn and can be
detrimental to the health of livestock [6]. As such, ventilation systems are related to disease
prevention and the productivity rate of livestock. Malfunctions in these systems can lead
to mass mortality events within the barn, thereby reducing productivity and adversely
impacting livestock management [7,8]. Therefore, it is necessary to closely monitor the
ICT equipment and related facilities, verify the soundness of the system, and implement
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state-based predictive maintenance technologies. These measures can help prevent damage
to livestock farms due to accidental faults or failures caused by aging [9].

To address the above-mentioned issues, in this study, we propose a smart system for
detecting malfunctions in ventilation devices in poultry farms. We also discuss ontology-
based malfunction detection using recurrent neural networks (RNNs), considering sensor
and controller data collected throughout the operation of a smart barn as the standard.
During the experiment, RNN training data were generated by accounting for major problem
factors, including environmental factors—such as external temperature changes and airflow
rate—and the use of old filters or aging equipment.

Chapter 2 presents a review of literature on malfunction detection devices, and
Chapter 3 introduces our proposed system—including the architecture and composition of
the platform—to detect device malfunctions in a smart poultry farm. Chapter 4 discusses
various developments, techniques, and experimental procedures based on the aforemen-
tioned information, and the collected data are analyzed in the Results section.

2. Review of Literature

Researchers in various industries have investigated the detection of malfunctions
in ICT devices. Studies typically identify various types of data abnormalities (with an
emphasis on sensor networks technology) and present malfunction detection techniques
for each type of data abnormality [10]. Malfunction detection techniques for sensor data
can assess a single datum or multiple data within a given space. Most research on mal-
function detection has been based on the moving average method with a focus on time
series analysis. Techniques have also been developed to detect the accuracy of data classi-
fication based on the spatial understanding of sensor values [11]. In the Gaia project—a
ubiquitous ontology-based computing system [12]—Bayesian networks (which use prior
data to distinguish abnormal values) have been used to estimate inaccuracy and to apply
significant corrections.

To date, many studies in other industries have used ontology-based methods, but
there is a lack of such studies in the agricultural industry. Therefore, in this study, we
aimed to develop a basic model of data analysis that would allow the application of
artificial intelligence technology in agriculture. Noisy or ambiguous data obtained from
malfunctioning sensors can be processed using sensor outlier models [13]. However, we
concluded that the existing malfunction detection technologies primarily utilize individual
data types (such as temperature and humidity values), which limits their applicability.

To overcome these limitations, we introduce an ontology-based semantic sensor net-
work founded on a knowledge base and design a malfunction detection system for ven-
tilation devices in a smart barn. Ontology-based semantic sensor networks can handle
various attributes of sensors, such as the detection target, detection method, and metadata
creation [14]. As such, although this network has been designed for versatility, it is lim-
ited by its complexity. The novel concept of stimulus-sensor-observation ontology design
pattern has been developed previously, and major patterns related to sensors and batch
systems have been introduced to mitigate this limitation of ontology-based semantic sensor
networks. This makes it possible to define sensor networks within the context of a smart
livestock barn.

The design of this malfunction detection system will lead to standardization of the
service interface to respond to abnormal situations in the future of malfunction in the smart
agricultural field, thereby increasing the diversity of services related to malfunction in
smart livestock and enabling efficient communication of agricultural information through
smart terminals.

3. Designing a Smart System for Detecting Malfunctions in Ventilation in
Poultry Farms

This chapter presents a diagram of ventilation devices and systems in a smart poultry
farm, and we discuss the structural design and detailed general design of a malfunction
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detection system. The structural design includes the architecture of the system, software,
and integration of internal systems, whereas the general design includes the interface,
ontology, and database design.

3.1. Ventilation Devices in a Smart Poultry Farm

The ventilation system of a poultry farm can be described as follows. As shown in
Figures 1 and 2, For axial ventilation, pressure is generated by a fan, installed on the outer
wall, and a chimney. These components create a temperature difference inside and outside
the ventilation shaft, thereby facilitating ventilation. The ventilation device uses serial
communication based on the RS-232C communication standard [15] and is configured with
several settings, including fan speed, temperature, and Wi-Fi-based remote control systems.
The device controls the fans installed inside the inner chimney and walls of the poultry
farm. The system processes poisonous gases generated by the livestock and their manure
by controlling the coolers and heaters using data obtained from the temperature sensors
installed within the barn.
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3.2. Structural Design of the System

As shown in Figure 3, The oneM2M-interoperable open API [16] is used as a public
interface that links the cloud to the internal data of ventilation devices and sensor data,
both of which are obtained locally from the smart poultry farm. Actual data—extracted
from the internal interface of the malfunction detection system through the cloud—are
obtained using the public interface
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Figure 3. System architecture of a malfunction detection system for ventilation in poultry farms and
the functions of various modules.

The environmental data are monitored and logged in a database, which provides
training data for RNN-based prediction models. Discrepancies between the actual results
and the prediction results of the RNN-based prediction model are determined through
statistical analysis by modules, which compute the statistical parameters needed to dis-
tinguish malfunctions from normal data. The RNN-based prediction model is trained
using time series data and sequential modeling. The system is configured to predict sensor
values using the trained model, and the sensor and controller values are presented as
input. The semantic module for the malfunction detection system is composed of the smart
farm, time, space, event, and malfunction detection ontology. The malfunction detection
ontology defines concepts such as threshold values and prediction information and helps
identify malfunctions based on statistical analysis. Finally, the external interoperability
module provides an interface for relaying the results to users (such as farmers) through a
notification interface provided by the cloud [17,18].

3.2.1. Software Architecture

The software as shown in Figure 4, composed of the following layers: an execution
environment, a malfunction detection engine, an interface, and a user interface. The
execution environment layer runs on a Java runtime environment (JRE) and consists
of JRE code (that facilitates development in the Java language), the Hadoop platform
(for the distributed processing of big data), Spark (for big data processing and real-time
data streaming), and HBase (that facilitates non-stop data-saving for massive volumes
of distributed data) [19–24]. The malfunction detection engine layer is composed of an
ontology-based predictor (for deducing malfunctions using the RNN-based prediction
model and information collected from smart livestock farms [25]), an RNN-based prediction
model (for training and prediction using input data [26]), and a statistical computation
module (that detects malfunctions using the basic statistics of the training data and the
predicted values provided by each model). Finally, the interface and user interface layers are
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composed of a public API, an internal API for malfunction detection, a GUI for monitoring
the sensors installed in the livestock farm, and another GUI for expressing requests and
responses for RNN-based malfunction detection tests.
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poultry farms.

3.2.2. Integration Architecture for Internal Systems

The malfunction detection module as shown in Figure 5 collects real-time data from
the public and internal APIs—including the device control information and measurement
data—through the HTTP RESTful API [27]. The HTTP RESTful API stores the collected
data for a certain period of time and then performs diagnostic tests based on a scheduler.
The scheduled jobs perform RNN-based predictions using the collected information, and
execute semantic translation procedures to add the original data and predicted results
to the ontology [28]. Once the data have been translated into the triple format, they
are added to the semantic storage. Pre-registered rules are used to judge the validity of
malfunction detections, and the ontology is tasked with sending cloud notifications for
future malfunction events. Such events can be saved and managed in RDBMS/HBase [29].
Queries related to the malfunction detection history are directly sent to RDBMS and HBase
through the API, which allows users to inspect previous malfunction events.
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3.3. Detailed Design of the System

This section discusses the components of a malfunction detection system in detail,
including the design of the interface, ontology, and database.

3.3.1. Interface Design

The interface is an open API based on the HTTP RESTFul API. Inquiries and notifica-
tions regarding malfunction detection results use the JSON format for each identification
code. Each interface as shown in Table 1 configured to add malfunction events based on
pre-defined rules.

Table 1. System rules for the addition of malfunction events.

Standard Content

Rule 1
When the device type (e.g., temperature sensor) is identical to another device

installed in the same zone, and the sensor values differ from each other, a
malfunction event is added.

Rule 2 When a heater in another device is close to a temperature sensor, a malfunction
event is added.

Rule 3
When temperature and humidity sensors are installed in the same zone, and the

temperature is ≤5 ◦C degrees and the humidity is ≤10 ◦C, a malfunction
event is added.

Rule 4 When the device has been initialized but the measurements of sensors installed in
the same zone are 0, a malfunction event is added.

Rule 5
When an RNN-based predicted value exists for an installed equipment, and the

absolute predicted value exceeds the absolute value of the threshold for the
equipment, a malfunction event is added.

When the malfunction-retrieve command is identified, as shown in Figure 6, the system
extracts specific inspection requests from the history of malfunction diagnosis results and
relays the relevant results as malfunction-response messages. The results associated with
malfunction detection are communicated along with the malfunction-notification message.

Agriculture 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

Figure 6. Example of a system interface for users to diagnose device malfunctions through the cloud. 

The inspection interface displays as shown in Figure 7 the rules for malfunction de-

tection in individual devices in the form of URLs and messages. When the user inserts a 

rule-retrieve message in the system, it returns the values that define malfunction detection 

thresholds for individual devices. 

 

Figure 7. Items of the inspection interface that define the rules for malfunction detection in individ-

ual devices. 

3.3.2. Ontology Design 

To detect malfunctions in ventilation devices in a smart barn, the system ontology 

must be defined to allow the execution of diagnoses founded on a knowledge base. In a 

barn, key environmental factors are measured by sensors, and the data are compiled 

through sensor networks. Therefore, we defined the ontology of our system based on the 

semantic sensor network ontology [30]. 

The semantic sensor network ontology was designed for versatility in various as-

pects, including the detection target, detection method, metadata, batch system with sen-

sors, and other attributes. Due to its complexity, the semantic sensor network ontology (in 

Figure 6. Example of a system interface for users to diagnose device malfunctions through the cloud.



Agriculture 2022, 12, 2150 7 of 22

The inspection interface displays as shown in Figure 7 the rules for malfunction
detection in individual devices in the form of URLs and messages. When the user inserts a
rule-retrieve message in the system, it returns the values that define malfunction detection
thresholds for individual devices.
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3.3.2. Ontology Design

To detect malfunctions in ventilation devices in a smart barn, the system ontology
must be defined to allow the execution of diagnoses founded on a knowledge base. In
a barn, key environmental factors are measured by sensors, and the data are compiled
through sensor networks. Therefore, we defined the ontology of our system based on the
semantic sensor network ontology [30].

The semantic sensor network ontology was designed for versatility in various aspects,
including the detection target, detection method, metadata, batch system with sensors, and
other attributes. Due to its complexity, the semantic sensor network ontology (in its original
form) is inefficient and inappropriate for real-world applications. Therefore, in the context
of a smart barn, the sensor network was defined based on the stimulus–sensor–observation
pattern [31] and other patterns related to batch systems with sensors.

The W3C ontology was used to depict time [32]. To depict ventilation-related devices
installed throughout the smart barn, the concept of space was defined with reference to
publicly available spatial information ontologies. As shown in Figure 8 multiple ontologies
were integrated to facilitate malfunction detection in a smart barn environment.

The different ontologies are described as follows:

1. The event ontology defines major events indicating the outcomes of malfunction
detection. Information related to device configuration and actual measurement values
are interpreted through rule-based inferences, based on rules provided by the user.
Following semantic translation, the results are saved in the form of RDF Triples [33].

2. The detection ontology indicates the malfunction threshold for each device. The
time series of sensor data are used to train an RNN model, and the results are used
to predict sensor values. Various concepts are defined to indicate the predicted
values, which are needed to identify device malfunctions. When certain thresholds
are exceeded, a device malfunction is indicated based on the discrepancy between
predicted values and actual sensor measurements.

3. The sensor network ontology consists of concepts that represent various devices
installed throughout the smart barn and their measurements. The measurements
obtained from these devices (such as sensors and actuators) are utilized as basic
patterns with reference to the semantic sensor network ontology.



Agriculture 2022, 12, 2150 8 of 22

4. The GeoSpatial ontology utilizes the concept of space and structural relationships
to define the space (such as an animal barn) where the devices (such as sensors and
actuators) are installed.

5. The OWL-2 DL ontology defines temporal concepts and is used to describe the
temporal characteristics of resources [34]. It also provides the lexicon for describing
information related to duration, the relationships between the temporal locations—
including date and time—of each moment, the intervals between moments, and their
temporal order.
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3.3.3. Database Design

As shown in Table 2, the results of malfunction detection are presented in the form of
a table that contains information related to the detection results, the livestock farm where
the malfunction event occurred, the device number, the time of detection, and the contents
of the notification sent to the user.

As shown in Table 3, the rules for malfunction detection are listed in a separate table.
This is mainly based on a comparative analysis of data obtained from different devices. The
values are inspected and analyzed according to the detection ontology, following which
the results of the malfunction detection are reported. Discrepancies between the predicted
and actual values are analyzed through comparisons between sensors installed in different
zones within the barn.

Table 2. Database showing the results of malfunction detection and the corresponding responses,
including the contents of the notification sent to the user.

Malfunction Detection Results

SYSTEM Common Framework
Based on ML/DL SUB SYSTEM Malfunction Detection

TABLE ID Malfunction_
detection TABLE NAME Malfunction Detection Results

NO COLUMN ID COLUMN NAME DATA TYPE NULL KEY REMARK

1 Detection_id Diagnostic Result
Identifier VARCHAR(20) NOTNULL PK md_yymmddhhmmssSSS

2 Livestock_owner_ID Livestock Farm ID VARCHAR(30) NOTNULL PK 1
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Table 2. Cont.

Malfunction Detection Results

SYSTEM Common Framework
Based on ML/DL SUB SYSTEM Malfunction Detection

3 Livestock_unqno Livestock Farm
Identifier VARCHAR(6) NOTNULL PK 101

4 Barn_unqno Place Identifier VARCHAR(10) NOTNULL PK 1001

5 Instal_device_unqno Equipment unique
Number VARCHAR(6) NOTNULL PK 1001-1

6 Instal_device_nm Installation
Equipment Name VARCHAR(50) NOTNULL Internal temperature

7 Device_class_cd Equipment
classification code VARCHAR(6) NOTNULL Temp_sensor

8 Detection_time Detection time TIMESTAMP NOTNULL 2000-00-00-00:00:00

9 Mesur_value Mesur value DECIMAL(10,2) NOTNULL 50

10 Detection_type Detection type VARCHAR(64) NOTNULL Over threshold

11 expt exception VARCHAR(1024) NOTNULL Temperature sensor
threshold exceeded.

Table 3. Database showing the rules for malfunction detection.

Malfunction Detection Rules

SYSTEM Common Framework
Based on ML/DL SUB SYSTEM Malfunction Detection

TABLE ID Malfunction_
detection TABLE NAME Malfunction Detection Results

NO COLUMN ID COLUMN NAME DATA TYPE NULL KEY REMARK

1 Livestock_owner_ID Livestock Farm ID VARCHAR(30) NOTNULL PK 1

2 Livestock_unqno Livestock Farm
Identifier VARCHAR(6) NOTNULL PK 1

3 Rule_id Rule Identifier VARCHAR(32) NOTNULL PK The_rule_001

4 Rule_name Rule name VARCHAR(64) NOTNULL Sensor threshold rule

5 Rule_type Rule type VARCHAR(16) NOTNULL
Threshold,

multisensory, actuator,
User_defined

6 Device_class_cd Equipment
classification code VARCHAR(6) NOTNULL Temp_sensor

7 Min_value Min value DECIMAL(10,2) 30.5

8 Max_value Max value DECIMAL(10,2) 50.5

9 Device_calss_cd2 Equipment
classification code VARCHAR(6) A_sensor

10 Device_calss_cd3 Equipment
classification code VARCHAR(6) B_sensor

11 Operator1
Equipment 1
Comparison

Operator
VARCHAR(3) >, <, >=, <=, ==, !=

12 Operator2
Equipment 2
Comparison

Operator
VARCHAR(3) >, <, >=, <=, ==, !=
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Table 3. Cont.

Malfunction Detection Rules

SYSTEM Common Framework
Based on ML/DL SUB SYSTEM Malfunction Detection

13 Operator3
Equipment 3
Comparison

Operator
VARCHAR(3) >, <, >=, <=, ==, !=

14 Value1
Equipment 1
Comparison

Value
DECIMAL(10,2) 50.5

15 Value2
Equipment 2
Comparison

Value
DECIMAL(10,2) 50.5

16 Value3
Equipment 3
Comparison

Value
DECIMAL(10,2) 50.5

17 Power_consum Power consumption DECIMAL(10,2) Power Consumption
Comparison

18 Power_consumption Actuator Power
consumption DECIMAL(10,2) 390.0 (Wh)

19 User_rule Custom Rule
Sentences VARCHAR(2048)

4. Implementation and Outcomes of a Malfunction Prediction System for Smart
Livestock Farming

Section 4.1 discusses IoT sensors and their control, the implementation of an RNN-
based malfunction prediction model for field devices, and coordination between servers
across different hubs. Section 4.2 discusses the results of on-site experiments in which
we tested the RNN model and device interoperability by applying the proposed system
in practice. To apply the ontology method for diagnosing device malfunctions using this
system, it is necessary to identify the critical point of each sensor in a smart farm. Using
this method, if the sensor indicates an abnormal value or shows a large deviance from the
predicted value, this may indicate a device malfunction.

4.1. Implementation of an RNN-Based Prediction Model for Malfunction Detection

Before implementing the RNN model, we first identified various factors that affected
the operation of ventilation devices in the poultry farm selected for the study. We analyzed
the data collected over a period of 1 year and identified the following major factors: changes
in external temperature due to seasonal change, excessive control of the airflow rate, and the
use of old filters. The data were cleaned and organized while accounting for these factors,
and this database was used to train the RNN. Using these training data, a many-to-one
model was created, followed by training with a time series of actual sensor values classified
into sequences. The differences between prediction values—calculated at the time of
training—and actual measurements followed a normal distribution with a set of confidence
intervals. The thresholds were determined by semantic translation. Ultimately, this system
predicted malfunctions using sensor data and was implemented to resolve the discrepancy
between predicted and actual values. The discrepancies underwent semantic translation
and were used to determine whether a device was malfunctioning. This determination was
based on pre-defined rules and comparisons with the thresholds calculated by the model.

Structure of the RNN Prediction Model

Table 4 indicates the data used to implement the RNN prediction model in the mal-
function detection system for ventilation devices in smart poultry farms. Each database
lists the source of the training and prediction models, sensor data from livestock farms,
and data used for the prediction tests. The training model was composed of constants and
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global variables to which normalization and inverse normalization functions were applied.
The training and test datasets were uploaded separately.

Table 4. File structure of the prediction model for malfunction detection.

Directory File Outline

malfunction_rnn malfunction_rnn_prediction_model.py Training model source

malfunction_rnn_predicttion.py Prediction model source

malfunction_rnn/model

Checkpoint
Malfunction_predict.pd.data-

00000-of-00001
Malfunction_predict.pd.index
Malfunction_predict.pd.meta

Saved training model

malfunction_rnn/temp

PF_01_Train.csv
PF_02_Train.csv
PF_03_Train.csv
PF_04_Train.csv

Temperature data for each
training poultry farm

malfunction_rnn/test

PF_01_Pridict.csv
PF_02_Pridict.csv
PF_03_Pridict.csv
PF_04_Pridict.csv

Data for prediction tests

As shown in Table 5, the main code of the training model loaded data from the
directory of each farm, defined the RNN Cell/Multi-RNN Cell, and configured the RNN
network. A fully connected layer code was used to verify the training and test datasets.

Table 5. Main code of the training model.

print(’size of training: ’ + str(len(tainX)))
print(’size of test: ’ + str(len(inputX)))

X = tf.placeholder(tf.float 32, [None, seq_length, data_dim])
Y = tf.placeholder(tf.float32, [None, 1])

cell = tf.contrib.rnn.GRUCell(
num_units = hidden_dim, activation = tf.tanh)
cells = tf.contrib.rnn.MultiRNNCell([cell] * NUMBER_OF_RNN_CELL_LAYERS);

outputs, _states = tf.nn.dynamic_rnn(cell, X, dtype = tf.float 32)

Y_pred = tf.contrib.layers.fully_connected(
outputs[:, -1], output_dim, activation_fn=None)

As shown in Table 6, a cost function was added to execute the train node, conduct a
globally-established number of training sessions, and save the results. AdamOptimizer
was used to minimize the cost.
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Table 6. Code of the cost minimization process for the training model.

loss = tf.reduce_sum(tf.square(Y_pred - Y))
tf.summary.scalar(“cost”, loss)
summary = tf.summary.merge_all()
optimizer = tf.tarin.AclamOptimizer(learning_rate)
targets = tf.placeholder(tf.float32, [None, 1])
rmse = tf.sqrt(tf.reduce_mean(tf.square(targets - predictions)))

with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)

# Create summary writer
writer = tf.summary.FileWriter(TB_SUMMARY_DIR)
writer.add_graph(sess.graph)
global_step = 0

As shown in Table 7, to obtain the training results, the test data—which had been
created using data from livestock farms—were used to return test plots for the trained
model. The prediction model returned predicted values that were calculated based on
actual sensor sequences, where the input file path was provided through a command line
argument.

Table 7. Code for displaying test plots for the training model.

test_predict = sess.run(Y.pred, feed_dict = {X: firstTestX})
rmse_val = sess.run(rmse, feed_dict = {
targets: firstTestY, predictions: test_predict})
print(“firstTestX RMSE: {}”.format(rmse_val))

correst_prediction = test_predict - firstTestY
accuracy = tf.reduce_mean(correct_prediction)

plt.figure(figsize =(20, 6))
plt.plot(RevMinMaxScaler(firstTestY), ‘b-’, label = ‘Sensing’)
plt.plot(RevMinMaxScaler(test_predict), ‘r-’, label = ‘Prediction’)
plt.xlabel(“Time Period”)
plt.Ylabel(“Temperature”)
plt.legend( lod = ‘best’)

plt.show()
})

The structure of the prediction model source as shown in Table 8, identical to that of
the training model source. During the prediction phase, the prediction model calculated
the discrepancy between actual measurements and predicted values to determine whether
a device malfunction had been accurately identified.

Table 8. Code for displaying the test plots for the prediction model.

prdict = RevMinMaxScaler(sess.run(Y_pred, feed_dict = {X: inputX}))
print(“Predict: ” + str(predict))

variance = abs(predict - RevMinMaxScaler(sensingValueY))
print(“Variance: ” + str(variance))
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4.2. System Activation Test

This section discusses the procedures for configuring the ontology-based malfunction
detection system for ventilation devices in poultry farms.

To facilitate the diagnosis of device malfunctions, a test environment needs to be
configured to verify the prediction model. Throughout the experiment, we tested the
functioning of linkages between the API, diagnostic units, and various sensors. As shown
in Figure 9 and Table 9, the equipment used in the experiment included a Zigbee sensor
node, a Zigbee gateway equipment, and a poultry farm ventilation system.
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Table 9. Key functions of the test equipment used in the experiment.

Equipment Description

Zigbee sensor node

Supports Zigbee communication capabilities
Provides protocol support for communication with

Zigbee gateways
Provides RS-485-based communication assistance
Temperature measurement range: −40 ◦C to 80 ◦C

Zigbee gateway

802.15.4 IEEE Zigbee provides RS-485-based
communication capabilities

Transmission of temperature measurement information
using RS-485

Poultry farm ventilation system
Remote ventilation control system

Provides functions to set fan speed and temperature
Supports RS-485 serial, Zigbee, Wi-Fi communications

As shown in Figure 10, the communication protocol for data collection is displayed as
a message block.
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Table 10 describes the contents of each field in the communication protocol, including
the size, type, and operational contents of each field.

Table 10. Communication protocol details.

Field Size Type Description

STX 1 byte unsigned int Start of message
0 × 02

Length 2 bytes Little-endian
unsigned int payload byte size

CMD 1 byte unsigned int

Message Type/Command Code
0 × 02: Register pc information

0 × 03: Server→ Agent: Change agent pc power state
0 × 05: Agent→ Server: Ping (Heartbeat)

Payload n bytes -
Transmission Data Area (Variable)

Maximum size: 32,767 bytes
Follows the JSON format.

ETX 1 byte unsigned int End of message
0 × 03

Next, the protocol for gateway registration is defined as shown in Table 11. The
defined protocol registers network configuration information—such as the gateway MAC,
ventilation device ID, and channel—and configures the gateway to transmit at the time
of first connection to the server or on reconnection after connection termination. The
communication is transmitted from the gateway to the server.

Table 11. Communication protocol for gateway registration.

Field Size Type Description

STX 1 0 × 02 Message Start Indicator

Length 2 0 × 01 Payload data byte size

CMD 1 0 × 64 Massage type (0 × 64)

Payload variable JSON

KEY:
mac: MAC address

panId: PAN ID
channel: channel

ex) {“mac”: “E0-43-DB-0B-1F-20”, “panId”: 1,
“channel”: 11}

ETX 1 0 × 03 Message End Indicator

The protocol for sensor node registration is defined as shown in Table 12. The de-
fined protocol is set to register the MAC address and model name for the temperature
sensor node.

The communication protocol for periodically transmitting temperature measurements
(as recorded by the temperature sensor) to the server is shown in Table 13. These data are
transferred from the sensor node to the server.
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For the experiment, the testing environment for activation tests were configured as
shown in Table 14.

Table 12. Communication protocol for sensor node registration.

Field Size Type Description

STX 1 0 × 02 Message Start Indicator

Length 2 0 × 01 Payload data byte size

CMD 1 0 × 65 Massage type (0 × 65)

Payload variable JSON

KEY:
mac: MAC address(optional)

address: Equipment Identifier
model: model name

ex) {“mac”: “E0-43-DB-0B-1F-20”, “address”:1,
“model”: “XXXX-111A”}

ETX 1 0 × 03 Message End Indicator

Table 13. Communication protocol for transmitting temperature measurements.

Field Size Type Description

STX 1 0 × 02 Message Start Indicator

Length 2 0 × 01 Payload data byte size

CMD 1 0 × 04 Massage type (0 × 04)

Payload variable JSON

KEY:
mac Sensor Node MAC

value: Sensing Value
unit: unit

type: Data type(“byte”, “int”, “float”,
“double”, “string”)

ex) {“mac”: “E0-43-DB-0B-1F-20”, “value”: “35”,
“unit”: “◦C”, “type”:“int”}

ETX 1 0 × 03 Message End Indicator

Table 14. Testing environment for the activation test of our proposed malfunction detection system
for ventilation devices.

Name of Device Outline Installation Software

DL API Test Server DL Server

Hadoop 2.6.0
Hive 2.1.0 or higher

Maria DB
JDK 1.7

Client Device Windows 10 POSTMAN
Chrome Browser

Malfunction detection devices
for ventilation Gateway and Sensor Nodes

Gateway F/W
Linkage of ventilation
malfunction detection

measurement devices and
gateway communication F/W

Because the activation test required browsers capable of running AJAX, compatible
browsers—POSTMAN and Chrome—were selected for use. Servers used Hadoop versions
2.6.0 or higher and Hive versions 2.x or higher. The client and server were configured
in accordance with this, with the firewall being opened at the HTTP 80 port. Finally, the
malfunction detection systems for ventilation devices were configured with an appropriate
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network composition, IP and firewall settings, and port forwarding, so that they could be
connected to the server.

API Test for Interoperability in Malfunction Detection

The interoperability tests as shown in Figure 11, included verifying the results after
using a browser in the POSTMAN REST Client sphere to test whether a malfunction
occurred on the device in accordance with predefined rules. The interoperability API
test executed the following procedures: inspection of the results of device malfunction;
creation of thresholds, actuator rules, multi-sensor rules, and user-defined rules; inspection
of rules; inspection of lists of rules; alteration of threshold rules, actuator rules, multi-
sensor rules, and user-defined rules; deletion of user-defined rules; decision on whether to
collect measurements from devices; and an interoperability test for malfunction detection
in ventilation devices.
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Figure 11. API test for interoperability in malfunction detection in ventilation devices.

Figure 11 shows the process of setting input data and checking HTTP response in
conjunction with an actual server. One shows the API test of whether the temperature
sensor installed in the ventilation system may malfunction, and the other shows whether
the ventilation system itself may malfunction.

4.3. Training and Validation of the RNN Model

This section discusses the process of modifying data for training the RNN model.
Approximately 20% of the original data were used as test data to verify the model. The
biggest advantage of RNN as shown in Figure 12, that it can create various structures in a
flexible manner owing to its network architecture, which can take inputs of any length.

For data analysis, we used test bed data measured at 1-h intervals for 24 h every
Saturday. These data were classified into various categories such as internal environment,
external environment, usage of ventilation devices, and airflow rate of ventilation fans.
The training dataset was created by modifying the temperature data because temperature
was the primary factor affecting the ventilation devices within the barn. The temperature
within the barn was heavily impacted by period (1–365), time (0–23), external temperature,
quantity of solar radiation, rainfall, and internal temperature [35–38]. The training dataset
as shown in Figure 13, included the following items: A (period), B (time), C (external
temperature), D (quantity of solar radiation), E (rainfall), and F (internal temperature).
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Figure 13. Configured training dataset for detecting malfunctions in ventilation devices using the
recurrent neural network model.

As shown in Table 15, the model parameters were defined to facilitate the training of
the RNN model.

The number of training sessions were 500, 1,000, 5,000, 10,000, 50,000 and 100,000.
The results indicated that there were no significant differences beyond ≥ 50,000 training
sessions. We used the root mean squared error (RMSE) to verify the results of the training.
As shown in Table 16, the RSME values of the Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models were derived from the RNN cells.
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Table 15. Parameters defined to facilitate the training of the recurrent neural network model.

Parameter Name Value

Training Data Size 3590

Test Data Size 1006

RNN Cell LSTM

Layer Stack Size 5

Data Dim 6

Hidden Dim 10

Sequence Len 5

Iteration 500

Learning rate 0.01

Optimizer AdamOptimizer

As shown in Figure 14, the results of the training were used to deduce cost values.
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Table 16. Root mean squared error (RMSE) values of the Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) models.

RNN Cell RSME

LSTM 0.0689
GRU 0.0643

The results showed that the RSME values of LSTM were 0.004 higher than those of
GRU. Therefore, the RNN cells were found to be suitable for LSTM. Table 17 summarizes
the RSME values according to the sequence length.

Table 17. Root mean squared error (RMSE) values based on sequence length.

Sequence Length RSME

3 0.0697

5 0.0682

7 0.0725

10 0.0716

There were no significant differences in RSME between different sequence lengths.
However, a sequence length of 5 provided the optimal RSME, and this was used for the
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experiment. As shown in Table 18, we also evaluated the RMSE for different values of the
hidden dimension.

Table 18. Root mean squared error (RMSE) values based on the value of the hidden dimension.

Hidden Dimension RSME

3 0.0832

10 0.0692

A hidden dimension value of 10 provided the least RMSE and was used for the
experiment. In addition, we evaluated the RMSE associated with different numbers of
hidden layers (that is, the number of RNN cells stacked in the multi-RNN layer).

The RMSE was lowest when the number of hidden layers was five (Table 19). Therefore,
five hidden layers were used for analysis. Finally, we evaluated the differences between different
numbers of training sessions (500, 1,000, 5,000, 10,000, 50,000 and 100,000) (Table 20).

Table 19. Root mean squared error (RMSE) values based on the number of hidden layers.

Hidden Layer RSME

5 0.0692

10 0.0713

Table 20. Root mean squared error (RMSE) values based on the number of training sessions.

Number of Training Iterations RSME

500 0.0755

1000 0.0734

5000 0.0725

10,000 0.0691

50,000 0.0689

100,000 0.0958

The RSME value was lowest when the model was trained >50,000 times, but it increased
as the number of training sessions increased to 100,000 times (overfitting). As shown in
Figure 15, the prediction results using the RNN model indicated an RMSE of 0.0689.
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As shown in Figure 15, the overall test outcomes revealed a small error between actual
sensor data and predicted values.
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Errors in temperature data are the key cause of malfunctions in ventilation devices. By
predicting temperature data using RNN-based prediction models, we can predict device
malfunctions and provide preemptive notifications to farmers. This can help prevent
malfunctions in ventilation devices and contribute to the prevention of mass mortality
events among livestock.

5. Conclusions

In enclosed barns (such as those used in poultry farms), dust accumulation around
ventilation devices and the release of poisonous gases (such as ammonia and hydrogen
sulfide) can lead to problems such as device malfunctions. The current study proposes
the design and implementation of a new technology to detect malfunctions in ventilation
devices in livestock farming, which is one of the necessities of a smart poultry farm. Here,
we used a semantic sensor network ontology founded on a knowledge base to detect device
malfunctions in a barn. We also implemented several key concepts (e.g., stimulus-sensor-
observation patterns) to define a sensor network within the smart barn environment. We
introduce an interface module to the malfunction detection system, which is designed
to calculate the discrepancy between actual measurements and predicted values through
RNN-based data prediction. This module also sends notifications to the farm if the estab-
lished rules indicate the possibility of a malfunction event. In addition, a rule database
was implemented to analyze the degree of difference between actual measurements and
predicted values by comparing the data from multiple sensors installed in different regions
of a poultry barn. The actual error rate in the field was measured by conducting on-site ex-
periments. Following experimentation, the error was determined to be 0.06889, indicating
a small error between actual sensor data and predicted values. Malfunctions in ventilation
devices can cause critical damage to livestock production, as even a single malfunction can
be fatal for poultry. This necessitates research on the immediate detection or prediction of
device malfunctions. Our findings contribute to the development of autonomous detec-
tion systems for malfunctions in ventilation devices—a core technology in smart livestock
farming—and provide evidentiary basis for the development of smart livestock farming
technologies. The study presented in this paper analyzed training data related to temper-
ature, which is a major factor in ventilation device malfunctions, then made predictions
with this data. However, additional data such as vibration and dust amount measurements,
are factors that may cause malfunctioning of the device. In future studies, these factors
are to be examined carefully in the training data for livestock ventilation system so that
more precise malfunction prediction can be performed. In addition, it plans to contribute
to measures to cope with malfunctions, such as submitting a standard agenda for rapid
response to the failure of these smart livestock ventilation devices.
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