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Abstract: For grain storage and protection, grain pest species recognition and population density
estimation are of great significance. With the rapid development of deep learning technology, many
studies have shown that convolutional neural networks (CNN)-based methods perform extremely
well in image classification. However, such studies on grain pest classification are still limited in
the following two aspects. Firstly, there is no high-quality dataset of primary insect pests specified
by standard ISO 6322-3 and the Chinese Technical Criterion for Grain and Oil-seeds Storage (GB/T
29890). The images of realistic storage scenes bring great challenges to the identification of grain
pests as the images have attributes of small objects, varying pest shapes and cluttered backgrounds.
Secondly, existing studies mostly use channel or spatial attention mechanisms, and as a consequence,
useful information in other domains has not been fully utilized. To address such limitations, we
collect a dataset named GP10, which consists of 1082 primary insect pest images in 10 species.
Moreover, we involve discrete wavelet transform (DWT) in a convolutional neural network to
construct a novel triple-attention network (FcsNet) combined with frequency, channel and spatial
attention modules. Next, we compare the network performance and parameters against several
state-of-the-art networks based on different attention mechanisms. We evaluate the proposed network
on our dataset GP10 and open dataset D0, achieving classification accuracy of 73.79% and 98.16%.
The proposed network obtains more than 3% accuracy gains on the challenging dataset GP10 with
parameters and computation operations slightly increased. Visualization with gradient-weighted
class activation mapping (Grad-CAM) demonstrates that FcsNet has comparative advantages in
image classification tasks.

Keywords: grain pest classification; visual attention mechanism; discrete wavelet transform; deep
learning; computer vision

1. Introduction

Grains including cereals and legumes provide food for humans and livestock. Insect
infestation is one of the leading factors affecting the quantity, quality, nutrition and market
value of stored grains. Insect infestation during storage accounts for about 6–10% of posthar-
vest grain losses, which poses serious challenges to food security in many countries [1].
In the European standards of Storage of Cereals and Pulses, ISO 6322-3 gives guidance
on controlling attacks by 23 insect and mite pests. In the Chinese Technical Criterion for
Grain and Oil-seed Storage (GB/T 29890-2013) [2], ten primary insect pests are specified
to be identified. The species of ten primary insect pests are araecerus fasciculatus (AF,
coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus boheman (BRB,
broadbean weevil), callosobruchus chinensis (CC, azuki bean weevil), plodia interpunctella
(PI, Indian meal moth), rhizopertha dominica (RD, lesser grain borer), sitophilus oryzae
(SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga cerealella (SC, angoumois
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grain moth) and tenebroides mauritanicus linne (TML, cadelle beetle). Furthermore, the
unprocessed grain can be graded into basically clear grain (≤2 insects per kg), regular
occurrence of insect grain (3–10 insects per kg), and intense occurrence of insect grain
(>10 insects per kg), according to the population density of these ten primary insect pests.
Therefore, grain insect identification and population destiny estimation are necessary for
applying proper control actions.

The popular methods of insect detection and identification are visual inspection, probe
sampling, acoustic detection, electronic nose and imaging methods [3]. Among them, the
conventional methods such as visual inspection, trap methods and probe sampling are
time-consuming and labor-intensive. Modern methods such as acoustic detection and
electronic nose are costly and unreliable in noisy and complex environments. With the
advancement of computer vision, image processing-based methods are proved to be more
suitable for identification and classification of grain insects.

Traditional image processing methods utilize color, edge, corner, key point or other
low-level features to recognize the grain pests [4–7]. For example, the United States
Department of Agriculture (USDA) used visual reference images for insect detection and
grain grading since 1997. Ridgway et al. [8] developed a non-touching method based on
machine vision to detect saw-toothed grain beetles. Wen et al. [9] proposed a hierarchical
model that combined both local features and global features to identify orchard insects.

Thanks to huge volumes of image data, convolutional neural networks (CNN) achieve
great success in image classification, object detection, image segmentation and other visual
tasks. CNN-based deep learning models such as ResNet [10] and VGGNet [11] have already
surpassed human-level accuracy in image classification. Albeit the progress has been made
in common object classifications, grain insect pest classification is still a challenging task
in the practical application. As ten primary insect pests specified in GB/T 29890-2013
occur in three groups: grain weevils, grain borers and grain moths, among each group, the
insects are difficult to distinguish. On the other hand, the attributes of different shapes,
small sizes, multi-colors and cluttered backgrounds also pose challenges on grain insect
classification. Motivated by the fact that humans and birds can find the insects in grains
effectively, we introduce frequency, channel and spatial attention mechanisms into the
image classification models.

This paper focuses on the frequency-enhanced attention mechanism, which integrates
more clues to improve the accuracy of grain insect classification. The main contributions of
this paper can be summarized as follows.

(1) We collect a challenging dataset of 10 species of stored-grain insects specified by
the standard GB/T 29890-2013.

(2) We construct a novel triple-attention network (FcsNet) combined with frequency,
channel and spatial attention modules. The frequency information of discrete wavelet
transform (DWT) and discrete cosine transform (DCT) are involved in the convolutional
neural network. FcsNet can be plugged into classic backbone networks as an efficient
add-on module.

(3) Extensive experiments and ablation studies are carried out on the proposed dataset
GP10 and open dataset D0. More insights into the frequency-enhanced attention mechanism
can be found in the visualization results of the confusion matrix and Grad-CAM.

2. Related Works

In order to process the information received visually more efficiently, people are used
to paying attention to some of the information while ignoring other visible information.
Inspired by human vision, a new method for data processing is proposed, called attention
mechanism. The attention mechanism is essential to add different weights to each part
of the input information, so that the model could pay attention to areas which are more
significantly weighted and thus improves the accuracy of model judgment.

To solve the problems caused by pests, Cheng et al. [12] established a system that
can identify agricultural pests in a complex background using a convolutional neural
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network (CNN) and residual network. This system has 98.67% accuracy for classifying the
images of 10 species of agricultural pests, which is better than the ordinary deep neural
network AlexNet [13]. Nanni et al. [14] proposed an automatic pest classification model
by combining CNN and significance methods, but these methods [12,14] do not introduce
an attention mechanism. Xie et al. [15] published a large field crop pest dataset (D0).
The dataset contains about 4500 images of 40 species of field crop pests. However, the
background of this dataset is single and the pose of pests is similar, which makes it easy to
extract pest features. Ung et al. [16] followed a residual attention network (RAN), feature
pyramid network (FPN) and a multi-branch multi-scale attention network (MMAL-Net)
to improve the accuracy of the final pest classification based on integration technology
and in accordance with the prediction results of the above three networks. However, they
used only one attention mechanism. Zhou et al. [17] proposed an efficient small-scale
convolutional neural network for pest identification, which is composed of a double fusion
with a squeeze-and-excitation-bottleneck block (DFSEB block) and a max feature expansion
block (ME block). Li et al. [18] developed a multi-scale insect detector (MSI_Detector) by
constructing a feature pyramid to extract stored-grain insect image features with different
spatial resolutions and semantic information. Shi et al. [19] proposed a multi-class stored-
grain insect object detection network based on R-FCN (Region-based fully convolutional
network) which achieves both high classification accuracy and speed.

In the development of attention in computer vision, common attention mechanisms
can be divided into spatial attention and channel attention. Spatial attention can be viewed
as an adaptive spatial region selection mechanism, and using it can directly predict the
most relevant spatial locations [20,21] or select important spatial regions [22]. Hu et al. [23]
captured long-range spatial context information by gather and excite operations, and they
designed the GENet model, which not only emphasizes on important features, but also
suppresses noise. Li et al. [24] viewed self-attention in terms of expectation maximization
(EM) and proposed EM attention. Huang et al. [25] treat the self-attention operation
as graph convolution and proposed cross-attention. Compared with the previous self-
attention-based spatial attention [22], it improves the speed and generalization capability.
Channel attention adaptively recalibrates the weight of each channel, and can be viewed
as an object selection process, thus determining to what to pay attention. Hu et al. [26]
proposed a new architecture unit based on ResNet [10], which is called a squeeze-and-
excitation network (SENet) block. They compared the performance of global average
pooling (GAP) and global maximum pooling (GMP) as squeeze operators, and finally
adopted GAP to calculate the channel attention. Gao et al. [27] proposed the global second-
order pooling (GSoP) block to address the limited ability of the SE block to capture global
information. To overcome the high model complexity, Wang et al. [28] proposed an efficient
channel attention (ECA) block. This block introduces one-dimensional convolution to
reduce the redundancy of fully connected layers and obtain more efficient results. Moreover,
Woo et al. [29] found that the combination of two kinds of attention has better performance
through ablation experiments, and proposed the convolutional block attention module
(CBAM). From another perspective, Qin et al. [30] regarded the channel representation
problem in SENet as a compression process using frequency analysis, and proposed a new
multi-spectral channel attention method (FcaNet) with the performance superior to that of
SENet. Guo et al. [31] surveyed attention models in deep neural networks and encouraged
various studies to improve deep learning results by using attention mechanisms.

3. Materials and Methods
3.1. Residual Networks

He et al. [32] proposed a residual network (ResNet) in 2015. This network solved
the network degradation problem caused by too many hidden layers in the deep neural
network (DNN) (this degradation is not caused by overfitting), abandoned the dropout
and used Batch Normalization (BN) for training acceleration. In addition, it introduced the
shortcut connection between the input and output to avoid gradient disappearance and
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explosion in the DNN training. After these problems are solved, the depth of the network
rose by several orders of magnitude.

The structure of ResNet can not only speed up the training of neural networks very
quickly and improve the accuracy of the model, but it is also easy to optimize. Therefore,
ResNet has become the basis for many research tasks, including classification, detection
and segmentation. In other words, ResNet is suitable for backbone networks.

3.2. Channel Attention Module

The channel attention mechanism was proposed by Hu et al. [26] in 2017. It can
reallocate the feature weight on the channel based on a new “feature recalibration” strategy,
which has improved effective features and suppressed invalid feature information. More-
over, Woo et al. [29] noted that the global maximum pooling (GMP) also plays a role in
channel attention, and has modified it, as shown in Figure 1. All above can be summarized
as follows:

C = Fcbam (X, θ) = σ(W2δ(W1GAP(X)) + W2δ(W1GMP(X))) (1)

where X represents the input, GAP and GMP represent the global average pooling and
global maximum pooling operations, respectively, Wi represents the weight of the full
connection layer, and the δ and σ distribution represents ReLU and Sigmoid functions.
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Figure 1. Diagram of channel attention module (CAM). As illustrated, the channel attention module
utilizes both max-pooling outputs and average-pooling outputs and forward them to the fully
connected layer, which finally generates channel attention through the sigmoid function.

3.3. Spatial Attention Module

At the same time, Woo et al. [29] noted the importance of spatial attention and pro-
posed a convolutional block attention module (CBAM). They found that spatial attention
and channel attention are complementary. Unlike channel attention, the spatial attention
focuses on “where” the information part lies. In the study of spatial attention, they com-
pared the convolution kernels of different sizes and found that a larger convolution kernel
can produce better accuracy. This shows that a wider receptive field is needed in spatial
attention. As shown in Figure 2, it can be written as follows:

S = σ(Conv([GAP(X); GMP(X)])) (2)

where Conv(·) represents a convolution operation.
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3.4. Frequency Attention Module

In addition to the channel and spatial attention modules, Qin et al. [30] also proposed
a frequency domain channel attention network (FcaNet). Based on SENet, they regarded
the channel representation problem as a compression process using frequency analysis,
and analyzed GAP in the frequency domain. They mathematically proved that GAP is a
special case of characteristics in the frequency domain and proposed a new multi-spectral
channel attention method based on such discovery.

GAP is used to calculate the mean value of all spatial elements in each channel. How-
ever, different channels may have the same mean value, but have different semantics, which
leads to poor diversity of features obtained through GAP. The discrete cosine transform
(DCT) is a kind of Fourier transform and is often used to compress signals and images,
and the two-dimensional DCT contains more frequency components, including the lowest
frequency component GAP.

Specifically, it first divides the input images into several groups and then conducts
two-dimensional DCT processing for each group. Finally, similar to SENet processing, the
final weight is obtained by using the full connection layer, ReLU and Sigmoid functions.
This can be written as follows:

S = Ffca (X, θ) = σ(W2δ(W1[(DCT(Group(X)))])) (3)

where DCT represents 2D discrete cosine transform while Group represents dividing the
input into several groups.

Li et al. [33] found that the down-sampling (max-pooling, average-pooling and strided-
convolution) in deep learning often amplifies random noise and destroys the basic results
of the target. They used Discrete Wavelet Transform (DWT) to replace the down-sampling
operation in the network to improve the robustness of model classification.

DWT can decompose the one-dimensional signal s =
{

sj
}

j∈Z into low-frequency
components s1 = {s1k}k∈Z and high-frequency components d1 = {d1k}k∈Z, which can be
written as follows: {

s1k = ∑j lj−2ksj
d1k = ∑j hj−2ksj

(4)

where l = {lk}k∈Z and h = {hk}k∈Z are respectively low-pass and high-pass filters of the
orthogonal wavelet.

If expressed by vectors and matrices, the formula (4) can be written as:

s1 = Ls, d1 = Hs (5)

where L and H are, respectively:

L =


· · · · · · · · ·
· · · l−1 l0 l1 · · ·

· · · l−1 l0 l1 · · ·
· · · · · ·

 (6)

H =


· · · · · · · · ·
· · · h−1 h0 h1 · · ·

· · · h−1 h0 h1 · · ·
· · · · · ·

 (7)

For a 2D signal X, DWT usually performs one-dimensional DWT on each row and
column, namely:

Xll = LXLT (8)

Xlh = HXLT (9)

Xhl = LXHT (10)
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Xhh = HXHT (11)

DWT decomposes an image X into high-frequency components Xlh, Xhl and Xhh and
low-frequency component Xll. Xll is the low-resolution version of the image it keeps the
most energy and basic structure of the image. While Xlh, Xhl and Xhh represent the image
details that include edges and noise. Therefore, the DWT coefficients can be integrated into
the convolution neural network to extract useful features for object classification.

3.5. Proposed Method

In this work, we believe that channel attention, spatial attention and frequency domain
attention focus on the target area in the image from different dimensions. We speculate
that if these three attention modules are combined, the network’s overall performance will
be improved by mutual complementation. Based on the three attention modules and DWT
down-sampling operation, we proposed a novel triple-attention network (FcsNet). Figure 3
shows the schematic diagram of the network we proposed.
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Figure 3. FcsNet integrated with a ResBlock in ResNet. This figure shows the exact position of our
module when integrated within a ResBlock. We apply FcsNet on the convolution outputs in each
block. Therein, the condition for DWT operation is Stride equal to 2.

To compare the network structures of ResNet and FcsNet (ours), we list their details
in Table 1, where DWT1 represents the wavelet transform substituting max-pooling op-
eration and DWT2 represents the wavelet transform substituting convolution operation
with stride 2. CAM, SAM and FAM represent channel, spatial and frequency attention
modules, respectively.

Table 1. Network structure of ResNet-50 and Fcs-ResNet-50(ours). The shapes and operations with
specific parameter settings of a residual block are shown in brackets, with the numbers of blocks
stacked. The right side shows different down-sampling performed by conv3_1, conv4_1, and conv5_1
with a stride of 2.

Layer Name Output Size ResNet-50 Fcs_ResNet-50

conv1 112 × 112 conv, 7 × 7, 64, stride 2

conv2_x 56 × 56

max pool, 3 × 3, stride 2 DWT1 conv, 1× 1.64
conv, 3× 3.64
conv, 1× 1.256

× 3

Conv2D
BN


conv, 1× 1.64
conv, 3× 3.64
conv, 1× 1.256

CAM + SAM + FAM

× 3

DWT2

Conv1 × 1
BN

conv3_x 28 × 28

conv, 1× 1.128
conv, 3× 3.128
conv, 1× 1.512

× 4


conv, 1× 1.128
conv, 3× 3.128
conv, 1× 1.512

CAM + SAM + FAM

× 4

conv4_x 14 × 14

 conv, 1× 1.256
conv, 3× 3.256

conv, 1× 1.1024

× 6


conv, 1× 1.256
conv, 3× 3.256

conv, 1× 1.1024
CAM + SAM + FAM

× 6
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Table 1. Cont.

Layer Name Output Size ResNet-50 Fcs_ResNet-50

conv5_x 7 × 7

 conv, 1× 1.512
conv, 3× 3.512

conv, 1× 1.2048

× 3


conv, 1× 1.512
conv, 3× 3.512

conv, 1× 1.2048
CAM + SAM + FAM

× 3

1 × 1 global average pool, 10-d fc, softmax

4. Experiments and Results

In this section, firstly we explained our experiment. Secondly, in order to better com-
pare our dataset (GP10) and D0 dataset [15], we rebuilt all evaluated networks [10,26,29,30]
in the PyTorch framework, and used standard evaluation indicators to compare with the
performance of previous methods. Finally, we studied the effectiveness of our method in
the classification of grain pest images.

4.1. Datasets

We evaluated our proposed method on two datasets. We collected the first dataset
(GP10), including 1082 pictures of 10 species of stored grain pests, namely, araecerus fas-
ciculatus (AF, coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus
boheman (BRB, broad bean weevil), callosobruchus chinensis (CC, azuki bean weevil),
plodia interpunctella (PI, Indian meal moth), rhizopertha dominica (RD, lesser grain borer),
sitophilus oryzae (SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga ce-
realella (SC, angoumois grain moth) and tenebroides mauritanicus linne (TML, cadelle
beetle). Figure 4 shows some sample images of our dataset.
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While collecting these samples, we relied on common image specimen search engines,
including iNaturalist and Bugwood Images, etc. iNaturalist is a global community contain-
ing biodiversity data, whose goal is to promote biodiversity discipline and conservation.
Bugwood Images is a funded project launched by the Center for Invasive Species and
Ecosystem Health of the University of Georgia in 1994. It provides an accessible high-
quality image archive and focuses on species related to economy, including insects, plants,
agriculture and integrated pest management, etc.

We used the English name and corresponding synonyms of each subcategory as query
keywords to search and download samples of the corresponding category. Secondly, we
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searched and learned the structural characteristics of each type of stored grain pests on
professional insect science websites to screen and verify each type of sample. Thirdly, we
cut each type of picture according to size requirement for convenient model training later.

The second dataset is D0 (4500 pictures in all), including 40 different pests. Some are
shown in Figure 5.
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4.2. Experiment Settings

Our dataset is divided into three subsets: training set images (876 pcs), verification set
images (103 pcs) and test set images (103 pcs), subject to the ratio of 8:1:1. See Table 2 for
detailed classification. In order to obtain sufficient target features, we first expanded the
training set to 2628 images by flipping horizontally and adding Gaussian noise. To make
the experiment more normal and impartial, we first used python script to divide the three
subsets at random, with no duplicate images present in these three subsets. The same set of
division data was used in the subsequent experiments. Similarly, the same settings were
used on dataset D0.
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Table 2. Composition of the D0 dataset.

Species Abbreviations Number of Samples Train Val Test

Araecetus fasciculatus AF 115 93 11 11
Bruchus pisorum BP 110 88 11 11

Bruchus rufimanus Boheman BRB 97 79 9 9
Callosobruchus chinensis CC 83 67 8 8

Plodia interpunctella PI 129 105 12 12
Rhizopertha dominica RD 69 57 6 6

Sitophilus oryzae SO 176 142 17 17
Sitophilus zeamais SZ 83 67 8 8
Sitotroga cerealella SC 115 93 11 11

Tenebroides mauritanicus Linne TML 105 85 10 10
Total 1082 876 103 103

We processed the input images in advance. Firstly, we applied random clipping to
the training set and adjusted its size to 224 × 224. Then, we used the method of randomly
changing brightness, contrast and saturation to enhance the generalization of the model and
solve the problem of overfitting. In the verification set, firstly, we adjusted the minimum
edge of the image to 256, with the aspect ratio of the original image maintained. Then, we
used the center clipping method to cut the image size to 224 × 224. Finally, we applied the
center clipping method with the same size as the training window in the test phase. For
more convenient training, we converted the data into Tensor format and standardized the
data accordingly.

In the phase of training, we used the multi-class cross entropy as the cost function.
Then, we used the Adam optimizer with a learning rate of 10−4 to optimize the network
parameters. Next, we set the small batch to 32 and conducted 200 epochs of training.
Finally, we saved the optimal training parameters and tested their predictions.

4.3. Evaluation Metrics

Because of the imbalanced class distribution of our dataset, we employed several
comprehensive metrics for the classification task, including parameters (params), floating
point operations (FLOPs), accuracy (acc), average precision (MPre), average recall (MRec),
average F1-score (MF1), receiver operating characteristic (ROC) curve and area under the
roc curve (AUC).

FLOPs are mainly used to describe the computation of a model, which is similar to the
time complexity of an algorithm.

For the convolution kernel, we compute FLOPs as follows:

FLOPs_c = 2HW
(

CinK2 + 1
)

Cout (12)

where H, W and Cin are the respective height, width and number of channels of the input
feature map, K is the kernel width (assumed to be symmetric), and Cout is the number of
output channels.

For fully connected layers, we compute FLOPs as follows:

FLOPs_fc = (2I− 1)O (13)

where I is the input dimension and O is the output dimension.
Params is mainly used to describe the size of a model, which is similar to the spatial

complexity of an algorithm.
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The parameter number of the convolution layer is calculated as follows:

params_c = Co ×
(

k2 × Ci

)
(14)

where Co is the number of output channels, Ci is the number of input channels, and K is
the kernel width (assumed to be symmetric). If the convolution kernel has a bias term, it
will be added by one, and if not, it will not be added.

The number of parameters of the full connection layer is calculated as follows:

params_fc = (I + 1)×O = I × O + O (15)

where I is the length of the input vector and O is the length of the output vector.
Acc is the proportion of the true positive value to the total predicted value among all

classes as follows:
Acc =

TP
N

(16)

where N is the number of samples and TP is true positive. Pre is the proportion of positive
values in the total number of categories. To treat the classes as being equally important,
we computed the precision for each category, then took an average of them to obtain MPre
as follows:

Prec =
TPc

TPc + FPc
(17)

MPre =
∑C

c=1 Prec

C
(18)

where C is the number of classes. FPc and TPc stand for the false positive and the true
positive of the c− th class, respectively. Similarly, we computed Rec and MRec as follows:

Recc =
TPc

TPc + FNc
(19)

MRec =
∑C

c=1 Recc

C
(20)

where FNc stands for the false negative of the c− th class. The F1 combines the MPre and
MRec as a trade-off as follows:

MF1 = 2
MPre ·MRec

MPre + MRec
(21)

In addition, the ROC (receiver operating characteristic) curve is used to compare the
classification performance of the models. The vertical axis of the ROC curve represents the
true-positive rate (TPR), and the horizontal axis represents the false-positive ratio (FPR).
The higher the TPR and the lower the FPR, the better the performance of the model. In
other words, the closer the ROC curve is to the upper left corner, the higher the model
prediction results. TPR and FPR are defined as follows:

TPR =
TP

TP + FN
(22)

FPR =
FP

TN + FP
(23)

where TP, FP, FN and TN refer to true positive, false positive, false negative and true
negative, respectively. The ROC curve is difficult to distinguish the performance gap
between models, so we choose AUC (area under the roc curve) as the evaluation metric. The
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AUC is between [0, 1], and the closer its value to 1, the better the classification performance
of the model. The AUC definition is as follows:

AUROC =
∫

TPRd(FPR) (24)

4.4. Experimental Results
4.4.1. Verification on Private Dataset

In accordance with the evaluation criteria in Section 4.3, we first compare the perfor-
mance and efficiency of the proposed model with existing attention mechanisms on the
dataset GP10 and D0, then report the results in Table 3. We observed that our method
performs best on Acc, MPre, MRec and MF1. FcsNet achieves 11.65%, 9.71%, 5.83% and
3.89% accuracy gain than ResNet, SENet, CBAM and FcaNet, respectively. This means
that our method is effective. This method can combine the attention of frequency domain,
channel and space, and use DWT for down-sampling to improve the accuracy significantly.

Table 3. The performance comparison of different networks on GP10 and D0 datasets.

Architecture Backbone Params FLOPs
GP10 D0

Acc MPre MRec MF1 Acc MPre MRec MF1

ResNet ResNet-50 23.53 M 4.12G 62.14 64.74 61.17 61.71 96.08 96.50 95.61 95.82
SENet ResNet-50 26.04 M 4.13G 64.08 69.30 64.62 63.93 97.00 97.49 96.79 97.00
CBAM ResNet-50 26.05 M 4.14G 67.96 71.37 67.16 67.45 97.47 97.76 97.28 97.40
FcaNet ResNet-50 26.04 M 4.13G 69.90 69.88 68.77 68.06 97.63 98.19 97.62 97.81

FcsNet(ours) ResNet-50 28.56 M 5.18G 73.79 74.38 72.79 71.99 98.16 98.49 98.33 98.34

Furthermore, we analyzed the complexity of this method from two aspects such as
learnable parameters (Params) and floating point operations per second (FLOPs). For
parameters, our method increased by 9.6% and 9.7%, respectively, compared with CBAM
and FcaNet. For the FLOPs, our method increased by 25.4% and 25.1%, respectively,
compared with CBAM and FcaNet.

Our method (FcsNet) achieved a confusion matrix as shown in Figure 6. It can be
found that obvious errors are caused by several similar categories which belong to the same
genus and have many common features. For example, BP and BRB belong to the same
genus of bruchus, SO and SZ belong to the same genus of sitophilus.

Figure 7 shows the prediction probability of SO and SZ. Because of the similar mor-
phology of SO and SZ, there are two prediction probabilities much bigger than the other
categories. This means these two categories are often misclassified. If the top-2 error rate is
considered, the accuracy will be greatly improved on the proposed dataset GP10. This also
confirms that the above-mentioned categories of the same genus have common featuresand
pose challenges to our research.

In order to eliminate the influence of sample imbalance, we draw the ROC curve of
each model to intuitively represent the prediction ability of each model. We also calculated
the AUC to make it clear which model performed better. This is shown in Figure 8. By
comparison, it is easy to find that, although our model is slightly inferior to FcaNet and
CBAM in the beginning, the performance of our model is slightly higher than other models
in general.
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4.4.2. Verification on Open Dataset

In the field of pest images, the open dataset D0 of Xie et al. [15] is often used as a
standard dataset to verify proposed methods for classification. In order to further verify
the performance of the proposed method, we used this dataset as supplementary proof. We
observe that FcsNet is superior to other architectures in every comparison, which indicates
that the benefits of FcsNet are not limited to our dataset (GP10). See Table 3 for details.

Through comparison, it is not difficult to find that the accuracy on the dataset GP10
is not as high as that on D0. Based on analysis, we concluded the following two reasons.
Firstly, the images on dataset D0 have a similar background and the pest postures change
slightly. In Figure 5, we give images of some categories. Secondly, our dataset (GP10) has a
complex background and a high degree of similarity exists in appearance between different
categories. Therefore, classification on the GP10 dataset is more challenging.

4.5. Visualization with Grad-CAM

This section shows the visualization of our proposed model. Previously, it was believed
that the deep learning network was a black box and lacked some explanatory power,
for example, in classification network models (such as VGGNet [11], ResNet [10] and
MobileNet [34]), and it was unclear why the network predicted like this and where the
concerns were for each category. Zhou et al. [35] proposed a kind of category activity
mapping technology, which can draw a thermodynamic chart to show to which areas the
network pays attention, and also where the network structure needs to be changed and
retraining carried out. Moreover, Selvaraju et al. [36] upgraded and improved it based on
category activity mapping to make the existing most advanced deep model interpretable
without changing its architecture, thus avoiding the tradeoff between interpretability
and accuracy.
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Figure 9 shows the Grad-CAM [36] generated by ResNet, SENet, CBAM, FcaNet and
FcsNet based on the input images of our test set. As can be seen, FcsNet includes the focus
of other models in the focus input image, and it seems to focus more on the whole area of
the grain pests. This also confirms the effectiveness of our proposed method.
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5. Conclusions

In this paper, we propose a stored grain pest identification method based on a triple-
attention module (FCS), namely, frequency domain attention (FAM), channel attention
(CAM) and spatial attention (SAM). We combine the three domains and use wavelet
transform for down-sampling to achieve considerable improvement in performance while
maintaining a low overhead, and verified on our dataset (GP10) and D0, with the accuracy
rates being 73.79% and 98.16%, respectively. FcsNet has good performance and can provide
a new idea and method for the rapid detection and identification of pests. In the future,
our work will focus on using multi-domain attention mechanisms to solve pest detection
and segmentation tasks.



Agriculture 2022, 12, 2046 15 of 16

Author Contributions: Conceptualization, J.Y. and N.L.; Methodology, Y.S. and J.Y.; software, Y.S.
and Q.P.; data curation, Y.S.; writing, Y.S. and J.Y.; writing—review and editing, Y.S. and J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Key R&D and Promotion Projects of Henan
Province (Science and Technology Development, 212102210152); the Innovative Funds Plan of Henan
University of Technology(2021ZKCJ14); the Young Backbone Teacher Training Program of Henan
University of Technology (2015006).

Institutional Review Board Statement: The authors are grateful to the editors and anonymous
viewers for their valuable and insightful comments and suggestions.

Data Availability Statement: The data are not publicly available because the data need to be used in
future work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abdullahï, N.; Dandago, M.A. Postharvest Losses in Food Grains—A Review. Turk. J. Food Agric. Sci. 2021, 3, 25–36. [CrossRef]
2. GB/T 29890-2013; Chinese Technical Criterion for Grain and Oil-Seeds Storage. Standards Press of China: Beijing, China, 2013.

(In Chinese)
3. Banga, K.S.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.K. Techniques for Insect Detection in Stored Food Grains: An Overview. Food

Control 2018, 94, 167–176. [CrossRef]
4. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.

[CrossRef]
5. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
6. Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int. J. Comput. Vis.

2001, 42, 145–175. [CrossRef]
7. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp.
886–893.

8. Ridgway, C.; Davies, E.R.; Chambers, J.; Mason, D.R.; Bateman, M. Rapid Machine Vision Method for the Detection of Insects and
Other Particulate Bio-Contaminants of Bulk Grain in Transit. Biosyst. Eng. 2002, 83, 21–30. [CrossRef]

9. Wen, C.; Guyer, D. Image-Based Orchard Insect Automated Identification and Classification Method. Comput. Electron. Agric.
2012, 89, 110–115. [CrossRef]

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Computer Vision—ECCV,
Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 630–645.

11. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
12. Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest Identification via Deep Residual Learning in Complex Background. Comput.

Electron. Agric. 2017, 141, 351–356. [CrossRef]
13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
14. Nanni, L.; Maguolo, G.; Pancino, F. Insect Pest Image Detection and Recognition Based on Bio-Inspired Methods. Ecol. Inform.

2020, 57, 101089. [CrossRef]
15. Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-Level Learning Features for Automatic

Classification of Field Crop Pests. Comput. Electron. Agric. 2018, 152, 233–241. [CrossRef]
16. Ung, H.T.; Ung, H.Q.; Nguyen, B.T. An Efficient Insect Pest Classification Using Multiple Convolutional Neural Network Based

Models. arXiv 2021, arXiv:2107.12189.
17. Zhou, S.-Y.; Su, C.-Y. An Efficient and Small Convolutional Neural Network for Pest Recognition—ExquisiteNet. arXiv 2015,

arXiv:1409.1556.
18. Li, J.; Zhou, H.; Wang, Z.; Jia, Q. Multi-Scale Detection of Stored-Grain Insects for Intelligent Monitoring. Comput. Electron. Agric.

2020, 168, 105114. [CrossRef]
19. Shi, Z.; Dang, H.; Liu, Z.; Zhou, X. Detection and Identification of Stored-Grain Insects Using Deep Learning: A More Effective

Neural Network. IEEE Access 2020, 8, 163703–163714. [CrossRef]
20. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.
21. Mnih, V.; Heess, N.; Graves, A. Recurrent Models of Visual Attention. In Advances in Neural Information Processing Systems; Curran

Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.
22. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

http://doi.org/10.53663/turjfas.958473
http://doi.org/10.1016/j.foodcont.2018.07.008
http://doi.org/10.1016/j.cviu.2007.09.014
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1023/A:1011139631724
http://doi.org/10.1006/bioe.2002.0096
http://doi.org/10.1016/j.compag.2012.08.008
http://doi.org/10.1016/j.compag.2017.08.005
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.ecoinf.2020.101089
http://doi.org/10.1016/j.compag.2018.07.014
http://doi.org/10.1016/j.compag.2019.105114
http://doi.org/10.1109/ACCESS.2020.3021830


Agriculture 2022, 12, 2046 16 of 16

23. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi, A. Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks. In
Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

24. Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Lin, Z.; Liu, H. Expectation-Maximization Attention Networks for Semantic Segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9167–9176.

25. Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. CCNet: Criss-Cross Attention for Semantic Segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.
[CrossRef]

26. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

27. Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global Second-Order Pooling Convolutional Networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3024–3033.

28. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 11531–11539.

29. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

30. Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 783–792.

31. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention
Mechanisms in Computer Vision: A Survey. Comp. Vis. Media 2022, 8, 331–368. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

33. Li, Q.; Shen, L.; Guo, S.; Lai, Z. Wavelet Integrated CNNs for Noise-Robust Image Classification. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7243–7252.

34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

35. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

36. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]

http://doi.org/10.1109/TPAMI.2020.3007032
http://doi.org/10.1007/s41095-022-0271-y
http://doi.org/10.1007/s11263-019-01228-7

	Introduction 
	Related Works 
	Materials and Methods 
	Residual Networks 
	Channel Attention Module 
	Spatial Attention Module 
	Frequency Attention Module 
	Proposed Method 

	Experiments and Results 
	Datasets 
	Experiment Settings 
	Evaluation Metrics 
	Experimental Results 
	Verification on Private Dataset 
	Verification on Open Dataset 

	Visualization with Grad-CAM 

	Conclusions 
	References

