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Abstract: Soybean is one of the most important agricultural commodities in the world, thus making
it important for global food security. However, widely used process-based crop models, such as
the GIS-based Environmental Policy Integrated Climate (GEPIC) model, tend to underestimate the
impacts of extreme climate events on soybean, which brings large uncertainties. This study proposed
an approach of hybrid models to constrain such uncertainties by coupling the GEPIC model and
extreme climate indicators using machine learning. Subsequently, the key extreme climate indicators
for the globe and main soybean producing countries are explored, and future soybean yield changes
and variability are analyzed using the proposed hybrid model. The results show the coupled GEPIC
and Random Forest (GEPIC+RF) model (R: 0.812, RMSD: 0.716 t/ha and rRMSD: 36.62%) significantly
eliminated uncertainties and underestimation of climate extremes from the GEPIC model (R: 0.138,
RMSD: 1.401 t/ha and rRMSD: 71.57%) compared to the other five hybrid models (R: 0.365–0.612,
RMSD: 0.928–1.021 and rRMSD: 47.48–52.24%) during the historical period. For global soybean
yield and those in Brazil and Argentina, low-temperature-related indices are the main restriction
factors, whereas drought is the constraining factor in the USA and China, and combined drought–
heat disaster in India. The GEPIC model would overestimate soybean yields by 13.40–27.23%. The
GEPIC+RF model reduced uncertainty by 28.45–41.83% for the period of 2040–2099. Our results
imply that extreme climate events will possibly cause more losses in soybean in the future than we
have expected, which would help policymakers prepare for future agriculture risk and food security
under climate change.

Keywords: soybean yield; extreme climate events; machine learning; crop model; uncertainty

1. Introduction

Soybean is the fifth most grown crop in the world [1]. Extreme weather and climate
events including extreme temperature and precipitation [2], drought [3] and combined
heat–drought disasters [4,5] will greatly impact the stability of global soybean production.
The extreme heat stress would reduce soybean yield by a quarter by the 2080s [6]. The
variations of temperature and precipitation may suppress 30% of US soybean yield [7].
The compound hot–dry extreme weather may reduce more than 0.8 t/ha of the soybean
yield in the US [4]. And the soybean yield may be reduced by climate change about 1% in
China [8]. Climate change and the increasing frequency of extreme weather and climate
events not only lead to a decline in soybean yield and farmers’ stable incomes, but also
aggravate disaster risks, the demand for additional arable land, and the unstable supply of
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food, which are seriously affecting global food security [9–11]. Furthermore, most of the
main soybean producing regions are rainfed, which will increase the uncertainty and risk
for soybean production and supply. Therefore, understanding how soybean yields change
under extreme weather events in the future and its uncertainties become increasingly
important [12–15].

The statistical models [4,16] and process-based crop models [17,18] are the two main
approaches for predicting yield and quantitatively assessing the impact of meteorological
disasters on yield. Different models have distinct applicability and simulation capabilities,
making it necessary to identify the strengths and weaknesses of each model for better
simulating accurate soybean yield prediction [19,20]. However, most crop models have
large uncertainties in simulating crop yields under the influence of extreme disasters [12,13].
Soybean crop models are currently subject to large uncertainties and sometimes even
have opposite trends in future projections [1]. This may be due to the lack of in-depth
understanding of the mechanisms of extreme weather affecting crops, and the lack of
relevant computational modules [21], or the modules are relatively simple and insufficient
to accurately simulate the complex mechanisms of disaster impact [22,23].

In recent years, coupling crop models or statistical models with machine learning or deep
learning methods has been obtaining recognition. Feng et al. [24] and Everingham et al. [25]
incorporated the APSIM model and random forest (RF) model to increase the simulation
performance for crop yield. Nearly 90% accuracy was achieved on sugarcane yield simula-
tions when combining the crop model and multi-linear regression [26]. The DSSAT model
can be incorporated with the Support Vector Regression (SVM) model to assess groundwa-
ter variability [27]. Moreover, the uncertainties also can be reduced using machine learning
algorithms to constrain the simulated yield from crop model [15].

In this study, we aim to combine the process-based crop model and machine learning
methods to build a hybrid model and constrain uncertainties from the crop model for global
soybean yield projections. Besides mean climate state, we focus on assessing the impacts
of extreme climate events during soybean growing season, which is the main reason why
annual yield fluctuates and tends to be underestimated in previous studies [13,28]. The
main objectives are to (1) analyze which type of machine learning methods are best for the
hybrid model, (2) quantify the relative importance of extreme climate events during soybean
growing season for the whole globe and for the main producing countries, (3) explore how
the effects of the main extreme climate events will change for soybean in the future, and
(4) compare the yield differences between the crop model and the hybrid model under
future climate change at global and country scales.

2. Materials and Method
2.1. Process-Based Crop Model and Input Climate Data

A process-based crop model, the GIS-based Environmental Policy Integrated Climate
model (GEPIC) [29], is adopted in this study as an example within the Inter-Sectoral Impact
Model Intercomparison Project Phase 2b (ISIMIP2b) [30]. The GEPIC model was based on
the Environmental Policy Integrated Climate model (EPIC) which could simulate crop yield
and water productivity and assess the cost of erosion for determining optimal management
strategies on a global scale [31].

Five bias-corrected climatic datasets, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, GFDL-ESM2M and NorESM1-M [32–34], are the climate inputs of the GEPIC model.
These datasets are from the General Circulation Models (GCMs) of the CMIP5 archives with
history (1981–2005) and future (2040–2099) under Representative Concentration Pathway
6.0 (RCP 6.0). The grid resolutions of climatic datasets were 0.5◦ × 0.5◦ and we utilized
daily maximum temperature, minimum temperature, mean temperature, precipitation and
solar radiation. Other detailed inputs and simulation protocol such as crop calendar, soil
properties and crop management can be found in the literature [17,30,35,36]. The outputs
from the GEPIC model included simulated soybean yields, growing seasons (planting date
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and maturity date) and the soybean evapotranspiration. Both crop model outputs and climatic
datasets were downloaded from https://data.isimip.org (accessed on 18 July 2020).

2.2. Extreme Climate Indicators

Only when extreme climate occurs during soybean growing season does it affect
soybean yield. In this study, we intended to assess the impacts of five types of extreme
climate disasters, cold, heat, drought, waterlogging and compound heat–drought, during
soybean main growing season (between planting and harvest days) that are relevant to
soybean yield [14,24,37]. The soybean growing seasons were from the GEPIC model and
were based on the SAGE [38] and the MIRCA2000 [39] crop calendars.

Combining the climate data and soybean growing season, we computed fourteen
extreme climate indicators (Table 1) as predictors of soybean yield in history and future.
The extreme climate indicators included extreme high and cold temperatures (cold degree
days, CDD; extreme degree days, EDD; mean value of daily maximum temperature, Tmax;
mean value of daily minimum temperature, Tmin; maximum value of daily maximum
temperature, TXx; minimum value of daily minimum temperature, TNn), precipitation in-
dicators (cumulative precipitation, Pr; maximum 5-days cumulative precipitation, Rx5day),
drought (maximum continuous drought days, Dd; actual evapotranspiration from crop
model minus Pr, Drought) and combined heat and drought disasters (mean value of daily
mean temperature during Dd, Dt). Generally, the minimum and maximum limits of tem-
peratures for soybean were 8 and 30 ◦C, D8 and D30, respectively [40–42]. In addition,
soybean growing degree days (GDD) during soybean growing season were calculated. The
trends of future extreme climate indicators were derived from the coefficients of a simply
linear regression function for 10 years (10a).

Table 1. Extreme climate indicators for machine learning framework during soybean growing season.

Extreme Climate Indicators Descriptions Unit

CDD Cold degree days, cumulative value of daily mean temperature < 8 ◦C ◦C d
GDD Growing degree days, cumulative value of 8 ◦C ≤ daily mean temperature ≤ 30 ◦C ◦C d
EDD Extreme degree days, cumulative value of daily mean temperature > 30 ◦C [42] ◦C d
D30 Days of daily maximum temperature > 30 ◦C [40] d
D8 Days of daily minimum temperature < 8 ◦C d
Tmax Mean value of daily maximum temperature ◦C
Tmin Mean value of daily minimum temperature ◦C
TXx Maximum value of daily maximum temperature ◦C
TNn Minimum value of daily minimum temperature ◦C
Dd Maximum continuous drought days (daily precipitation < 2 mm) [5] d
Dt Mean value of daily mean temperature during Dd [5] ◦C
Pr Cumulative precipitation mm
Rx5day Maximum 5-days cumulative precipitation (Vogel et al., 2021) mm
Drought The difference between actual evapotranspiration and Pr mm

2.3. Hybrid Model Framework

A hybrid model combining the crop model and extreme climate indicators with
machine learning methods is proposed to constrain and reduce the uncertainty of soybean
yield predicted by the crop model [15,43]. The process of the hybrid model is shown in
Figure 1. At first, the GEPIC model is applied at the grid scale to obtain soybean yields,
growing seasons and actual evapotranspiration. Subsequently, fourteen extreme climate
indicators are derived from climate datasets during soybean growing seasons. Finally,
soybean yield simulations from the GEPIC model and derived extreme climate indicators
are applied as predictor variables in the hybrid model. After considering numerous machine
learning algorithms, six main machine learning algorithms are analyzed to achieve the best
performance of the hybrid model, which include MLR (Multi-Linear Regression), LASSO
(the Least Absolute Shrinkage and Selection Operator), SVM (Support Vector Machine), RF
(Random Forest), DT (Decision Tree) and KNN (K-Nearest Neighbor). The application of

https://data.isimip.org
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machine learning algorithms is based on python3.7-Scikit-learn [44]. We use the grid-search
algorithm of Scikit-learn to find the best parameters for the hybrid models. The total
grid number is 123,604 × 5 climate datasets for training and 7090 × 5 climate datasets
for validation.
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Figure 1. The process of the hybrid model.

The observed soybean yield is derived from the GDHY dataset where the yield data
from 1981 to 2000 is used for training and that from 2001 to 2005 is for evaluation. The
observed soybean yields are derived from the GDHY (the Global Dataset of Historical
Yields for major crops) [45]. The GDHY dataset has combined statistical and satellite data
with a spatial resolution of 0.5◦ × 0.5◦.

Finally, the best hybrid model is used to project the future soybean yield. For each
model simulation, long-term yield average and interannual yield variability are calculated
to analyze the trends and uncertainties of the crop model and the hybrid model. Uncer-
tainties are calculated as standard deviation for the soybean yield simulations from the
GEPIC model and the hybrid models, similar to previous studies [15,43]. The predicted
soybean yields are used to fit probability density functions (PDF) of kernel density estimate
(KDE) functions. The interannual yield variability, uncertainties and KDE function were
calculated as follows.

IYV =
Yf uture − Ybaseline

Ybaseline
(1)

where IYV is the interannual yield variability, Yfuture is future yield in one year or the future
mean yield in a time period, Ybaseline is the baseline mean yield.

U =

√
∑ (Y − Y)2

n − 1
(2)

where U is the uncertainties of a yield timeseries, Yi is yield, Y is the mean yield, n is the
number of the yield timeseries.

fh(x) =
1

nh

n

∑
i=1

K(
Y − Yi

h
) (3)

where fh(x) is the KDE function, h is a smoothing parameter which is estimated by python
seaborn package, K is the Gaussian kernel, Y is any given yield point, Yi is a yield timeseries,
n is the number of the yield timeseries.

2.4. Model Evaluation

Three consistency metrics are calculated to measure the agreement and disagreement
between the original and improved simulated soybean yield. These evaluation metrics are
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quantified by correlation coefficient (R), Root-Mean-Squared Difference (RMSD) recom-
mended by Willmott [46], and Relative Root-Mean-Squared Difference (rRMSD).

R =
∑ (Si − S)(Oi − O)

∑ (Si − S)2
∑ (Oi − O)

2 (4)

RMSD =

√
∑n

i=1 (Si − Oi)
2

n
(5)

rRMSD = RMSD/O (6)

where Oi is the observed data from GDHY dataset, Si is the simulated data from crop
model or hybrid model, O is the mean value of observations, and S is the mean value of
the simulations. The smaller the RMSD, the better the agreement between simulations
and observations. The R provides the degree of association and ranges from −1 to 1. The
rRMSD is derived from RMSD and gives a percentage measure of the relative differences
between simulations and observations.

3. Results
3.1. Comparisons between GEPIC Model and the Hybrid Models during the Historic Period

Simulated soybean yield from the GEPIC model and the hybrid models have been
evaluated at global scale (Figure 2). Before building the hybrid model, the GEPIC model has
obviously poorest performance with the R, RMSD and rRMSD values of 0.138, 1.401 t/ha
and 71.57%, respectively. The GEPIC+RF model performed best with the highest R value
of 0.812 and lowest RMSD and rRMSD values of 0.716 and 36.62% respectively. The
R values lower than 0.5 were those of the hybrid models GEPIC+MLR, GEPIC+LASSO
and GEPIC+KNN. The rRMSD values higher than 50% were those of the hybrid models
GEPIC+MLR, GEPIC+LASSO and GEPIC+SVM.
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Figure 2. Simulated soybean yield comparisons between GEPIC model and six hybrid models during
the historic period from 2001 to 2005 around the globe.

All the simulation evaluation metrics’ values from the GEPIC model and the hybrid
models at the national scale are tabulated in Table 2. We also estimated how the GEPIC
and the hybrid models perform at the national and grid scale. Since the GEPIC+RF model
performed best at the global and national scale, national simulations from the GEPIC+RF
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model are displayed quantitatively in Figure 3 and the rRMSD values visually at grid
scale in Figure 4. Similar to the comparisons at the global scale, the GEPIC+RF model
at the national scale has the best performance with the closest 1:1 line and the highest R
ranging from 0.513 to 0.733, as well as the lowest RMSD ranging from 0.716 to 1.132 t/ha
and rRMSD ranging from 31.97% to 53.92%, for the five main producing countries. To be
more specific, the GEPIC model performed best in China, while the lowest metrics were in
Brazil of the five countries. Visually, when using the GEPIC+RF model, the central USA,
Argentina, west India, Nigeria and Brazil have obvious decreasing RMSD values within
0.5–2 t/ha.

Table 2. Evaluation metrics of GEPIC and GEPIC+ML models for globe and main producing countries
during the historic period.

Argentina Brazil USA China India

R

GEPIC 0.032 0.032 0.114 0.141 0.303
GEPIC+RF 0.569 0.513 0.629 0.579 0.733
GEPIC+KNN 0.305 0.308 0.42 0.266 0.338
GEPIC+DT 0.381 0.345 0.442 0.356 0.511
GEPIC+MLR 0.095 0.207 0.239 0.308 0.57
GEPIC+LASSO 0.063 0.21 0.286 0.355 0.579
GEPIC+SVM 0.395 0.293 0.504 0.41 0.456

RMSD

GEPIC 1.362 1.584 1.423 1.008 1.355
GEPIC+RF 0.805 1.109 1.132 0.851 0.716
GEPIC+KNN 1.283 1.348 1.434 0.981 0.938
GEPIC+DT 1.058 1.464 1.44 1.085 0.828
GEPIC+MLR 0.982 1.403 1.331 0.935 0.834
GEPIC+LASSO 0.965 1.375 1.367 0.933 0.812
GEPIC+SVM 0.996 1.501 1.414 0.917 0.824

rRMSD

GEPIC 54.07% 58.93% 52.22% 51.00% 102.00%
GEPIC+RF 31.97% 41.24% 41.56% 43.06% 53.92%
GEPIC+KNN 50.96% 50.14% 52.65% 49.61% 70.60%
GEPIC+DT 42.00% 54.47% 52.86% 54.86% 62.31%
GEPIC+MLR 38.98% 52.21% 48.85% 47.31% 62.74%
GEPIC+LASSO 38.30% 51.15% 50.17% 47.16% 61.11%
GEPIC+SVM 39.55% 55.83% 51.89% 46.37% 62.01%
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3.2. Importance Analysis of Extreme Climate Indicators for Soybean Yield

We used the RF model to estimate the importance (number of y axis) of extreme
climate indicators for the globe and the five main soybean producing countries (Figure 5).
The higher the importance value is, the more decisive the extreme climate indicator was.
At the global scale, the most affecting extreme climate indicator was the Tmin, followed by
Rx5d, GDD and TNn. The most affecting extreme climate indicator was drought for China
and the USA, and D8 for Argentina. Combined heat and drought disaster (Dt) dominated
for India’s soybean yield, followed by drought. For Brazil, the TNn and Drought ranked
first and second, respectively. We can infer that for the northern hemisphere, drought
dominates for soybean yield and low temperature disaster is the main affecting factor for
the southern hemisphere. The values of the importance would help us to assess the priority
of an extreme climate indicator and improve adaptation and mitigation ability.
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3.3. Future Projections of Soybean Yield

For the future period of 2040 to 2099, the projected annual mean soybean yields from
the GEPIC and GEPIC+RF models are shown in Figure 6. Both the GEPIC model and
GEPIC+RF model witness a slight increase in the future, with the positive slopes and the
coefficients of determination (R2) being very small. There were obvious overestimations oc-
curing at the global scale for the GEPIC model, and there are larger fluctuations of soybean
yield compared to the GEPIC+RF model. Specifically, the mean differences between the
two models are 0.42 t/ha for global, 0.54 t/ha for the USA, 0.48 t/ha for China, 0.40 t/ha for
Argentina and India, and 0.28 t/ha for Brazil. Brazil has the lowest impacts from climate
disasters, while the USA is affected most by climate disasters.
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For the three 20-year periods of 2040–2059, 2060–2079 and 2080–2099, the GEPIC
model projects larger variations and higher yields than the GEPIC+RF model for the
whole globe and for the five main producing countries (Figure 7). The GEPIC model
overestimated soybean yields compared with the baseline yield (mean yield of 1981–2005),
and there are small differences in the mean yield variations between the three 20-year
periods. The GEPIC+RF model shows the variations range from −10.89% to 4.39% for
the globe compared with the baseline yield, while the variations of the GEPIC model
range from 5.53% to 31.75%. For the main soybean producing countries, the GEPIC model
projects that India has the largest increase, with a yield variation of 102.68%, followed by
China with 45.01%, while there is a reducing tendency with −4.13% in the USA compared
with baseline. On the contrary, the GEPIC+RF model projects that the yield variations are
74.74%, 17.71%, −24.66%, −12.55% and −14.43% for India, China, the USA, Argentina and
Brazil, respectively.

Future soybean yield change patterns from 2040 to 2099 are displayed in Figure 8,
which shows an increase of more than 0.05 t/ha/10a for eastern Brazil, most regions of
China, Nigeria, northern India and the central and northern USA based on the GEPIC
model. On the other hand, the GEPIC+RF model shows that the soybean yields will
increase more than 0.05 t/ha/10a only in northern and northeast China, Nigeria and
northern Argentina. The increasing trends show significant reduction in eastern Brazil, the
central USA and southern China.
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From the importance analysis results (Figure 5), the changes of main extreme climate
indicators during soybean growing season in the future are analyzed (Figure 9). The
Tmin has an increasing trend at global scale and has a more than 0.3 ◦C/10a trend in
the central-south USA, northern Argentina and southern Brazil. The D8 has a decreasing
trend in high latitude areas in the central-north USA, northeastern China and northern
Argentina. Drought has an increasing trend in the central-south and eastern USA, southern
Brazil, northern Argentina, Nigeria, and southwestern China, while it has a significant
decreasing trend in central India and Brazil. The combined drought–heat disaster, Dt, tends
to increase in most regions in all of the main producing countries. Moreover, the values
of Dt have an obvious increase trend in southwestern and central China, the central USA,
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northern Argentina and southern Brazil where Dt is higher than 0.5 ◦C/10a. The TNn has
a significant increase trend higher than 0.5 ◦C/10a in the central-south USA, central Brazil,
and southwestern and southern China.
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Figure 9. The trends of extreme climate indicators during soybean growing season from 2040 to
2099 (per 10a). (a) Tmin (◦C/10a) stands for mean value of daily minimum temperature. (b) D8
(days/10a) stands for days of daily minimum temperature < 8 ◦C. (c) Drought (mm/10a) stands
for the difference between actual evapotranspiration and cumulative precipitation. (d) Dt (◦C/10a)
stands for mean value of daily mean temperature during maximum continuous drought days (daily
precipitation < 2 mm). (e) TNn (◦C/10a) stands for minimum value of daily minimum temperature.

3.4. Uncertainties in Future Yield Projection

The PDF of future changes in soybean yield compared to the baseline mean yield
(1981–2005) from the GEPIC model (unconstrained) and GEPIC+RF model (constrained) for
the globe and main producing countries are shown in Figure 10. An obvious uncertainties
reduction is achieved not only for the globe, but also in the five main soybean producing
countries. A large uncertainty of 127.70% is found for the globe from the GEPIC model.
After being constrained by machine learning method, the uncertainty decreases to 87.16%.
The uncertainties have been reduced by about 41.83%, 31.83%, 31.88% and 28.45% for
China, Argentina, the USA, Brazil and India, respectively. The largest uncertainties of
the GEPIC+RF model are for the USA, while the smallest uncertainties are for India. The
constrained results project that there are more soybean yield losses in the future, and this
indicates that crop models may overestimate the soybean yield.
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Figure 10. Probability distribution of future (2040–2099) soybean yield uncertainties compared with
mean yield of baseline (1981–2005) for the globe and main producing countries. The blue and orange
line are the probability distribution of the simulated soybean yield from the GEPIC and hybrid
models, respectively. The vertical solid and dash lines indicate the mean and ± standard deviation of
future soybean yield changes.

4. Discussion
4.1. Performance of the Hybrid Models

Recent studies have found that there were some overestimations and large uncertain-
ties from the process-based crop model [13,21]. In this study, we proposed a hybrid model
by combining multiple machine learning algorithms and the GEPIC model to improve the
simulated yield given by the GEPIC model. The GEPIC+RF model had the best simulation
ability to reconstruct historical observed soybean yield compared to MLR, SVM, LASSO,
DT and KNN models (Figure 2). Compared with the original GEPIC model, the R value
of the GEPIC+RF hybrid model during the historical period has increased by 370%, and
RMSD and rRMSD values decreased by 36%. In the future, when applying the hybrid
model, the uncertainties and overestimations of simulated soybean yield would reduce by
28.45–41.83% and 13.40–27.23%, respectively. The desirable performance of the GEPIC+RF
hybrid model is probably related to the RF model being able to solve the overfitting in DT
and better explore complex non-linear relations with multiple trees in agricultural-based
applications [15,24]. Moreover, coupling the crop model and extreme climate indicators is
an effective and robust way to project crop yield and can be easily expanded to the impacts
of extreme climate on other crops.

4.2. Importance and Changes of Climate Indicators

Extreme climate events, as the main factor causing yield losses, are attracting more
and more concern recently [9,14,47]. Since there are complex non-linear relationships
between climate indices and soybean yield, it is crucial to identify the main extreme climate
drivers globally and for the main producing countries. We found that low-temperature-
related indices have a decreasing trend while high-temperature-related indices have a
reversed trend during the soybean growing season in the future. The low-temperature-
related indices are the main affecting feature for crop yield for the globe and for the
southern hemisphere countries of Brazil and Argentina. However, drought and drought–
heat disasters are the main affecting features for the northern hemisphere countries of
China, the USA and India, which is consistent with Zipper et al. [16] and Leng et al. [3].
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4.3. Limitations

However, there are some limitations in this study. The uncertainties of the simulated
yields are possibly from the observed gridded crop yield dataset, climate datasets, and
the process-based crop model and machine learning algorithms [48]. Even though high-
resolution observed-yield datasets are hard to access now, international collaboration can
obtain high-resolution observed-yield data. Moreover, with the improvement of climate
models and multi-model ensemble methods, the accuracy of future climate projections
are improving based on the Coupled Model Intercomparison Project Phase 6 [49]. For the
process-based crop model, in future study we should enhance the scientific understanding
of the process of extreme climate events tolerance for crop growth and yield [22,23], or
use a multi-crop model ensemble to reduce uncertainties [35]. Although the uncertainties
have been greatly reduced, machine learning still has its own uncertainties which affect
the statistical model and crop model. Moreover, quantifying the uncertainties from each
model and the hybrid model is still unknown and needs further research [50]. In addition,
this study ignored technology development and agronomic adjustments in the future. The
agricultural technology development [51] and agronomic adjustments [52] may still not
completely offset future climate trends and extreme climate, and they will also increase the
uncertainty of yield prediction [53].

At the same time, our study applied mean climate state indices and extreme climate
indices as input feature variables in the hybrid model, but more climate indices such as
monthly mean climate variables [14] and VPD [42] could be tested as ML inputs. Fur-
thermore, the variables selection for machine learning is important, but manual feature
engineering is tedious and time consuming [54]. In future research, deep learning models
with more hidden layers will be capable of learning feature representations from data in an
end-to-end regime instead of using manual feature engineering based on human experience
and prior knowledge [55].

Finally, to cope with the future climate extremes for soybean, appropriate adapta-
tion and mitigation strategies should be developed [47,56]. For example, adding more
fertilizer [57], controlling the soybean growing window [58] and planting longer-duration
soybean cultivars [59] are efficient ways to mitigate negative climate impacts in the fu-
ture. Later planting dates and drought-tolerant soybean cultivars are more suitable for the
USA [60], China [61], and South America [62–64] in the future. Meanwhile, early warning
systems and contingency planning are very important for developing countries [64].

5. Conclusions

Since soybean yield is susceptible to extreme climate, in this study we constructed
hybrid models by coupling the GEPIC model and extreme climate indicators with six ma-
chine learning models which were then compared to present a robust hybrid model to
explore the impacts of extreme climate events and reduce the yield prediction uncertainties
for current and future soybean yields. It was found that the process-based crop model
has larger uncertainties, and would overestimate soybean yield and underestimate risks
from extreme climate events, but these problems can be eliminated with machine learning
methods. This study demonstrates that the hybrid model of the GEPIC+RF model has the
best performance compared with the GEPIC model and the other five GEPIC + ML models,
both at the global and country scales. Tmin is the main affecting weather disaster factor for
global soybean yield, while drought, Dt and D8 are the main factors for China and the USA,
India and Argentina, respectively. Future soybean yield projections from the process-based
crop model may have a 13.40–27.23% overestimation, 0.42 t/ha on average, at the global
scale due to the ignorance of extreme climate events. With the optimal GEPIC+RF model,
the uncertainties are reduced by 28.45–41.83% for future soybean yield projections both
at global and country scales. Our results imply that the extreme climate impact functions
in the process-based crop model need further improvement and the hybrid model can
serve as a powerful tool for crop yield simulation. This study can provide some useful
information for global soybean traders, farmers and policy makers with regard to agricul-
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tural adaptation and mitigation strategies in the context of increased climate extremes in
the future.
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