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Abstract: Climate change, greenhouse gas emissions, and food security have put forward higher
requirements for sustainable agricultural development. Agricultural ecological efficiency (AEE) is an
important indicator to evaluate the sustainable development of agriculture. Low carbon agriculture
promotes sustainable agricultural development. Agricultural carbon sinks are an important output of
agricultural production, but they have not been fully reflected in the current research on agricultural
ecological efficiency. In this study, agricultural carbon sinks are considered as one of the expected
outputs of AEE. The data envelopment method was used to measure the AEE of 31 provincial-level
administrative regions in China from 2000 to 2019, and the AEE of China was compared with and
without carbon sinks. The Gaussian kernel function was used to estimate the time evolution of
regional differences in AEE. A geodetector model was used to detect the drivers of spatial differentia-
tion of AEE in China. The results showed that considering agricultural carbon sinks as one of the
expected measurement outputs brings the estimated AEE closer to reality. From 2000 to 2019, China’s
AEE showed an upward trend, and the efficiency value increased from 0.48 to 0.95, an increase of
97.92%. The spatial distribution pattern of AEE in China was Northeast > West > Central > East, with
obvious differences among provinces. The industrialization level, urban–rural gap, agricultural eco-
nomic level, agricultural disaster rate, and urbanization level were the leading driving forces for the
spatial differentiation of AEE in China. The research will help to reveal the dynamic characteristics,
spatial differentiation characteristics, and driving factors of China’s agricultural ecological efficiency,
and provide a scientific reference for the realization of sustainable agricultural development and
high-quality development.

Keywords: agricultural carbon sink; eco-efficiency; geodetector; factor

1. Introduction

With global climate change, natural disasters are occurring more and more frequently,
and greenhouse gas emissions and food security issues have begun receiving extensive
attention [1,2]. The “2022 World Food Security and Nutrition Status Report” showed that
hunger affects 100 million people worldwide, with approximately 29.3% of the world’s
population being moderately or severely food insecure. In the face of climate change and
the depletion of natural resources, the global situations of hunger and food insecurity
are becoming increasingly severe. Therefore, resource coordination and environmentally
friendly and sustainable agricultural development are particularly important for addressing
these issues. Meeting the growing demand for food production, efficiently utilizing existing
inputs and outputs, producing more products with fewer resources, and avoiding losses
and waste, all while reducing the adverse effects of air pollution and greenhouse gas
emissions from agricultural production, are the main challenges and opportunities for the
sustainable development of the agricultural industry [3].
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With the development of the economy and society, China’s agricultural economy
has been developing rapidly at a high cost. A series of problems caused by the excessive
exploitation of agricultural resources and excessive use of inputs such as chemical fertilizers
and pesticides have become increasingly prominent. The sustainability of agricultural
development is facing major challenges. Sustainable agricultural production emphasizes
ensuring economic benefits while protecting the local ecological environment, which
requires the coordination of economic development and environmental protection [4,5].
The concept of eco-efficiency, or the ratio of added value to increased environmental
impact [6], was proposed by Schaltergger in 1990 [7], and was subsequently promoted
by organizations such as the World Business Council (WBCSD) and the Organization for
Economic Cooperation and Development (OECD). Since its introduction, eco-efficiency
has gradually become an important tool for measuring sustainable development. Eco-
efficiency emphasizes the unification of economic and environmental benefits, or in other
words, minimizing resource consumption and environmental pressure while maximizing
output [8]. Agricultural ecological efficiency (AEE) is the expansion of ecological efficiency
to the agricultural field, specifically referring to obtaining higher agricultural output with
as little input as possible, while simultaneously reducing resource waste and environmental
pollution as much as possible. Ultimately, AEE achieves agricultural economic benefits
as well as environmental protection through the coordinated and unified development of
these benefits. The scientific evaluation of the temporal and spatial changes in AEE and the
exploration of its driving factors are of great significance for improving AEE and promoting
sustainable agricultural development.

At present, the research on AEE is relatively abundant and extensive, mainly at the
levels of agricultural production at the national, urban, and regional scales [9–18]. In terms
of research content, it mainly focuses on efficiency measurement time series evolution
and influencing factors [19–25]. In China, most measurements of AEE are based on only
30 provinces across the country, excluding Tibet; thus, they do not fully reflect China’s AEE.

Agricultural carbon sinks describe the carbon absorbed by agricultural crops [26].
Agricultural activities that purify the atmosphere of carbon dioxide are regarded as agro-
ecological welfare. In terms of measurement indicators, existing research lacks the consid-
eration of agricultural carbon sinks. Furthermore, there have been relatively few studies of
AEE at the regional level, and the interactions between its overall driving factors. It should
also be noted that the existing research focuses on the planting industry. From the per-
spective of China’s agricultural output value, the current value from the planting industry
accounts for approximately 50% of the total agricultural output value, indicating that the
traditional agricultural production model based on planting has been diversified [27,28].
In addition, the proportion of non-plantation pollutant emissions in agricultural pollutants
is close to 75%, which means that if the ecological efficiency of the planting industry is
used to represent China’s AEE, the estimated results will indicate a gap in agricultural
production [14].

In terms of measuring AEE, the main methods are the ratio method, life cycle as-
sessment, stochastic frontier analysis (SFA), energy analysis, and data envelopment anal-
ysis [29–32]. In most cases, analytical methods such as data envelopment analysis (DEA)
are the most important methods for obtaining highly correlated results [33]. SFA is a pa-
rameterization method that is generally only suitable for single-output and multiple-input
production [34], which biases the calculated efficiency value; on this account, Tone pro-
posed the SBM model of undesired output in 2001 [35]. However, similar to the traditional
DEA model, the SBM model cannot further distinguish DMUs with an efficiency of one.
In 2002, Tone [36] built a super-efficient SBM model that can effectively avoid the short-
comings of other methods such as single-index, multi-index, principal component, and
decoupling analyses. Undesired outputs such as environmental pollution are incorporated
into the objective function to distinguish the differences between the effective DMUs, and
the calculation results are relatively more accurate than those of other methods.
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Based on the above, in order to achieve agricultural emission reduction and encourage
resource-saving and environmentally friendly agricultural production, the purposes of the
study are: (1) to build an AEE evaluation model including agricultural carbon sink, (2) to
explore the temporal and spatial evolution characteristics of AEE in China’s regions and
provinces from 2000 to 2019, (3) to identify the driving factors of AEE change in different
regions and provinces.

2. Materials and Methods
2.1. Data Sources

The study area includes 31 provinces in mainland China. Data on the number of
people in the primary industry, agricultural sown area, chemical fertilizers, pesticides,
agricultural plastic films, and the number of students in school were obtained from the
official website of the National Bureau of Statistics of China. Agricultural production and
socio-economic data were from the China Rural Statistical Data, the China Rural Statistical
Yearbook, and the statistical yearbooks and bulletins of various provinces, autonomous
regions, and municipalities. Interpolation methods were used to fill in the missing data.
Precipitation data were obtained from the “Annual Value Dataset of Surface Climate Data
in China” of the China Meteorological Data Network. Referring to the Hu Jianglin [37]
Barnes method, the Inverse Distance Weighted (IDW) method was used to interpolate the
grid point data, and then the regional average was calculated. Average annual precipitation
data were determined for each province. Basic geographic information data (national and
provincial borders) were obtained from the national 1:4 million basic geographic database
(webmap.cn) of the National Geographic Information Center. Data on the cultivated land
area were obtained from the “China Statistical Yearbook” and the RESSET database. All
data accessed from 1 February to 26 March 2022.

2.2. Methods
2.2.1. Super-SBM Model with Unexpected Outputs

The super-efficient SBM model based on undesired output mentioned above mainly
considers factors such as environmental pollution. The undesired output is included in the
objective function, and then the difference between the effective DMUs is distinguished.
The specific model is constructed as follows:
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x
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λj ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . n; j 6= 0;

s = 1, 2, . . . r1; q = 1, 2, . . . , r2.

In the formula, n is the number of DMUs; j is the jth DMU; k is the kth DMU calculated
by the current efficiency; x is the input index; m is the number of input indexes; i is
the ith input index; yd and yu are the expected output and undesired output indicators,
respectively; r1 and r2 are the quantities of expected output and undesired output indicators,
respectively; s and q represent the sth and qth expected output and undesired output
indicators, respectively; ρ is the AEE value; and λ represents the weight.

2.2.2. Kernel Density Function

The kernel density function is a non-parametric estimation method based on the
kernel function [38]. It is used to estimate the probability density of random variables by
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smoothing to determine the distribution of random variables. When the probability density
function of a set of random variables is f(x), the expression of the model is:

f (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
where n is the number of observations, K(·) is the kernel density function, and h is the
bandwidth. The optimal h should be selected to minimize the integral mean square error.
There are various kernel functions, including the Gaussian kernel and quadratic kernel.
Compared with other kernel functions, the Gaussian kernel function has the best estimation
effect. Therefore, in this study, the Gaussian kernel function was used to estimate the AEE
kernel density curve to analyze the time evolution of regional differences in AEE [39].

2.2.3. Geodetector

The geodetector is a statistical tool for studying the spatial heterogeneity of geographi-
cal phenomena and revealing their driving factors [40]. The basic assumption of geographic
detectors is that several sub-regions are distinguished. If the sum of the variances of the
sub-regions is less than the total regional variance, there is spatial heterogeneity; if the
spatial distribution of two variables tends to be consistent, there is a statistical correlation
between the two variables [41,42]. The functions of geodetectors include factor detection
and risk detection. There are four sub-detectors of interactive detection and ecological
detection, among which the most commonly used are differentiation, factor detection, and
interactive detection. That is, the q value and p value are calculated to reveal the spatial
heterogeneity of geographical elements and explore their influencing factors. This study
mainly used factor probing and interaction probing.

1. Factor detection. The factor detector was used to calculate the q value of each factor,
which was used to quantitatively analyze the spatial differentiation of AEE and to
detect the extent to which a factor explained the spatial differentiation. The formula is:

q = 1− ∑m
h=1 Nhσ2

h
Nσ2

where h = 1, 2, . . . ; m is the stratification or partition of the independent variable X
and the dependent variable Y; Nh and N are the number of units in layer h and the
whole area, respectively; σ2

h and σ2 are the variances of the Y values of layer h and
the whole area, respectively; and q is a measurement of the explanatory power, with
a range of 0 to 1. The larger the q value, the stronger the explanatory power of the
independent variable X to the dependent variable Y, and vice versa.

2. Interactive detection was used to identify the interaction between different indepen-
dent variables, that is, to determine whether the interaction of influencing factors will
enhance or weaken the explanatory power of AEE, or whether the influencing factors
act independently, the detection calculation formula were from Wang [40].

2.2.4. Indicator Selection

1. Explained variable

Based on the concept of agricultural carbon sinks, the previous research, and the
actual agricultural production in China, this study selected factors such as labor, land,
irrigation, agricultural machinery, chemical fertilizers, pesticides, and agricultural film as
input variables, and selected the total output value of agriculture, agriculture carbon sinks,
and agriculture carbon emissions as output variables. The total output value of agriculture
and agricultural carbon sinks were the expected outputs, and agricultural carbon emissions
were the undesired outputs. Based on this, a measurement index system of China’s AEE
was constructed (Table 1). There are three main sources of agricultural carbon emissions.
One is the greenhouse gas generated by livestock breeding, which mainly includes CH4
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emissions caused by enteric fermentation as well as CH4 and N2O emissions caused by
manure management and treatment. Therefore, this study selected seven categories of
livestock, including cattle, horses, and donkeys, to calculate their carbon emissions. Another
source of emissions is the greenhouse gas generated by chemical fertilizers, pesticides,
agricultural film, agricultural diesel, agricultural irrigation, and agricultural machinery
during the agricultural production process. The final source is the CH4 emissions from rice
fields. The carbon emissions from these latter two sources were also calculated. The above-
mentioned emission sources were multiplied by the corresponding emission coefficients to
obtain estimations. The calculation formula and correlation coefficients were obtained from
existing studies by Min et al. [43–46]. The agricultural carbon sink was calculated based
on the total amount of carbon dioxide absorbed by different crops during photosynthesis.
The calculation formula and correlation coefficient were obtained from existing studies by
Han et al. [47–50].

Table 1. Index system of AEE measurement.

Main Variable Type Specific Indicators Variable Description Data Sources

Labor consumption Labor input Number of people in the
primary industry/104 stats.gov.cn

Unput indicator

Material
consumption

Land input Crop sown area/103 hm2 stats.gov.cn

Water input Effective irrigation
area/103 hm2 stats.gov.cn

Agricultural
machinery input

Agricultural
mechanization/104 kw

China Rural
Statistical Yearbook

Environmental cost
Fertilizer input Fertilizer application rate/104 t stats.gov.cn
Pesticide input Pesticide usage/104 t stats.gov.cn

Agricultural
film input

Amount of plastic film
used/104 t stats.gov.cn

Output indicator

Expected output
Agricultural
output value

Agricultural output
value/108 ¥ stats.gov.cn

Carbon sink Agricultural production
carbon sink/104 t by Han et al. [46–49]

Undesired output Carbon emission Total agricultural carbon
emissions/104 t by Min et al. [42–45]

2. Explanatory variables

AEE is a systematic problem that is not only affected by internal resource conditions
such as the endowment of agricultural production itself, but also by external conditions
such as social and economic development, the natural ecological environment, and policy
support. In view of this, this study selected independent variables from four aspects of
agricultural resource endowment, agricultural economic development, social environment,
and policy support, including eleven specific indicators, to construct a driving factor
indicator system for AEE (Table 2).

Table 2. Driving factors and classification of AEE.

Type of
Representation

Driving Factors
Code Data Sources

Driver Variable Description and Calculation

Natural Resources

Per capita arable land Area of arable land/resident population at
the end of the year X1 resset.com

Agricultural
disaster rate Affected area/total sown area X2 stats.gov.cn

precipitation Average annual precipitation X3 data.cma.cn
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Table 2. Cont.

Type of
Representation

Driving Factors
Code Data Sources

Driver Variable Description and Calculation

Agricultural
Development

Agricultural
economic level

Gross Agricultural Output/Number of
Permanent Residents X4 stats.gov.cn

Industrial structure
Gross agricultural output value/gross

output value of agriculture, forestry, animal
husbandry and fishery

X5 stats.gov.cn

Degree of agricultural
mechanization

Total power of agricultural machinery/total
sown area of crops X6 stats.gov.cn

Social Environment

Urbanization level Urban Population/Total Population X7 stats.gov.cn
Level of

industrialization
Industrial value added/Gross

regional product X8 stats.gov.cn

urban–rural gap
Per capita disposable income of urban

residents/per capita disposable income of
rural residents

X9 stats.gov.cn

Years of education per
capita in rural areas

(Number of primary school students * 6 +
Number of junior high school students * 9 +
Number of people above high school * 16)

Total number of people

X10

stats.gov.cn,
China Rural

Statistical
Yearbook

Policy Support The level of financial
support for agriculture

Fiscal expenditure on agriculture, forestry,
and water/financial general public

budget expenditure
X11

China Statistical
Yearbook, Finance

Yearbook
Of China

3. Results
3.1. Measurement Analysis of AEE with and without Carbon Sinks

Agricultural carbon sinks are ecological benefits that accompany agricultural produc-
tion practices. In this study, the super-efficient SBM model was used to measure the AEE of
each province in China. Figure 1 reports the AEE of China with and without agricultural
carbon sinks. When carbon sinks were considered, the AEE was significantly higher than
that when carbon sinks were not considered.

As can be seen from Table 3, when carbon sinks were not considered, only five
provinces had AEEs greater than 0.5. According to the division standard of the four major
economic divisions of the National Bureau of Statistics, the eastern region (including Beijing,
Tianjin, Hebei, Jiangsu, Zhejiang, Shanghai, Fujian, Guangdong, Shandong, Hainan), the
central region (including such as Shanxi, Hunan, Hubei, Henan, Jiangxi, Anhui), the
western region (including Tibet, Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang), and the northeast region (including
Liaoning, Jilin, Heilongjiang), had average values of 0.35, 0.36, 0.38, and 0.27, respectively.
Thus, the order of the four regions were West > Central > Eastern > Northeast.

When considering agricultural carbon sinks, the AEE of 22 provinces was greater
than 0.5, indicating that AEE was greatly improved when agricultural carbon sinks were
considered. Under this scenario, the average AEE in the northeast region has increased the
most, with an AEE growth rate of 168.22%, followed by the central region with 75.23%, the
western region with 64.64%, and the eastern region with 56.23%. The AEE performance was
in the order of Northeast > West > Central > East. This may be because better agricultural
carbon sinks effectively raise the AEE in these places. The western plateau, underdeveloped
regions, and northeastern regions are sparsely populated, rich in forest resources, and of
high ecological importance, thus providing better agricultural carbon sinks.



Agriculture 2022, 12, 1726 7 of 17

Figure 1. China’s AEE with and without agricultural carbon sinks for the period 2000–2019.

Table 3. AEE ranking of 31 provinces in China with and without agricultural carbon sinks.

Province
Without
Carbon

Sink
Rank

With
Carbon

Sink AEE
Rank Province

Without
Carbon

Sink
Rank

With
Carbon

Sink
Rank

Liaoning 0.3228 16 0.6414 11 Guangdong 0.4357 6 0.5771 16
Jilin 0.2151 26 0.8682 4 Guangxi 0.3007 17 0.8351 5

Heilongjiang 0.2699 19 0.6574 9 Hainan 0.6291 2 0.8770 3
Beijing 0.5705 5 0.7553 8 Chongqing 0.2722 18 0.5149 21
Tianjin 0.4354 7 0.6285 13 Sichuan 0.3625 12 0.5657 18
Hebei 0.2475 23 0.4697 23 Guizhou 0.3400 13 0.6467 10
Shanxi 0.1580 30 0.3647 30 Yunnan 0.1971 28 0.4488 26

Inner Mongolia 0.2214 25 0.5113 22 Shaanxi 0.3962 11 0.6121 14
Shanghai 0.6177 3 0.8785 2 Gansu 0.1300 31 0.2853 31
Jiangsu 0.3962 10 0.5879 15 Qinghai 0.5978 4 0.6393 12

Zhejiang 0.3346 15 0.4642 24 Ningxia 0.3365 14 0.7683 7
Anhui 0.1692 29 0.3837 29 Xinjiang 0.2670 20 0.8120 6
Fujian 0.4333 8 0.5204 20 Tibet 0.9245 1 1.0025 1

Jiangxi 0.2082 27 0.4240 27 Northeast
region 0.2693 4 0.7223 1

Shandong 0.4077 9 0.5751 17 East region 0.3500 3 0.5469 4
Henan 0.2633 22 0.5652 19 Central region 0.3556 2 0.6230 3
Hubei 0.2648 21 0.4638 25 Western region 0.3824 1 0.6296 2

Hunan 0.2397 24 0.4200 28 Average
in China 0.3537 0.6053

In summary, agricultural carbon sinks are an important factor for accurately assessing
AEE. Estimates of AEE may be biased if agricultural carbon sinks are ignored. Therefore,
agricultural carbon sinks must be considered when assessing China’s AEE. This is consistent
with the findings of Liao [51].



Agriculture 2022, 12, 1726 8 of 17

3.2. Analysis of Time Series Evolution Characteristics of AEE in China

On the national scale, China’s AEE showed a clear upward trend from 2000 to 2019.
The national AEE increased from 0.48 in 2000 to 0.95 in 2019, a growth rate of 97.92%. How-
ever, at the provincial scale, most of China’s AEE is at a low level, with only 14 provinces
exceeding the national average.

In order to clearly explore the evolution process of the regional differences in AEE
over time, the Gaussian kernel function was used to analyze the evolution law based
on the Silverman optimal bandwidth (Figure 2). From the perspective of displacement,
the Gaussian kernel density curve gradually shifted from left to right from 2000 to 2009,
indicating that China’s AEE gradually increased, which also confirmed the consistency
of the previous research results. In 2000, a single main peak was obvious, and double
peaks had the tendency to form but were weak. By 2019, the single peak shifted to the
right. In terms of the kurtosis intensity, the main peak shifted to the right between 2000 and
2015, but the change in kurtosis was not obvious. By 2019, the kurtosis had changed from
broad to sharp and had sharply increased, reflecting the difference of AEE in provincial
areas is relatively small during the period from 2016 to 2019. This may be because China
has been paying more attention to the development of agricultural green ecology since
2016, and has successively issued the “Opinions on Accelerating the Construction of
Ecological Civilization”, “National Agricultural Sustainable Development Experimental
Demonstration Zone Construction Plan”, “Innovation Institutions and Mechanisms to
Promote Agricultural Green Development”, “Opinions on Mechanism to Promote Green
Agricultural Development”, and other relevant policy documents. Through these actions,
the country has achieved remarkable results.

Figure 2. Distribution and evolution trend of the AEE core density in representative years.
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3.3. Spatial Differentiation Characteristics of AEE in China

Based on the 2000, 2005, 2010, 2015, and 2019 data as well as the mean cross-section
samples from 2000 to 2019, the spatial distribution map of China’s AEE was drawn with
the help of ArcGIS software (Figure 3) (The version of the software is ArcGIS Desk top 10.8,
by Esri.Inc.). The figure shows that with the development of the economy and society, there
were obvious differences in the AEE of Chinese provinces in different years.

Figure 3. Spatial distribution of AEE every five years in China.

The differences in AEE between provinces were also obvious (Figures 3 and 4). Tibet,
which is in the western region, had the highest AEE value, which reached 1.10. The next
highest AEE values were in Shanghai, Hainan, Jilin, Guangxi, and Xinjiang provinces,
with values of 0.88, 0.88, 0.87, 0.84, and 0.81, respectively. The 16 provinces Ningxia,
Beijing, Heilongjiang, Guizhou, Liaoning, Qinghai, Tianjin, Shaanxi, Jiangsu, Guangdong,
Shandong, Sichuan, Henan, Fujian, Chongqing, and Inner Mongolia had AEE values
between 0.51 and 0.77. Hebei, Zhejiang, Hubei, Yunnan, Jiangxi, Hunan, Anhui, Shanxi,
and Gansu had low AEE values, all of which were lower than 0.47, with Gansu having the
lowest at 0.29 (Table 3).

To further identify regional gaps, the AEE levels of the eastern, central, western, and
northeastern regions were compared (Figure 4). The average AEE in the northeastern
region was 0.72, the western region was 0.63, the eastern region was 0.62, and the central
region was 0.55. As shown in Figure 4, the northeast region had the highest and most
consistent AEE, whereas the east and the west had more variable values and the central
region had consistently lower values.
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Figure 4. Spatial distribution of AEE.

3.4. Drivers of Spatial Differentiation of AEE in China
3.4.1. Identification of Driving Factors for the Spatial Differentiation of AEE in China

Using the geographic detector, we obtained and sorted the q-values of all factors at
five time points (2000, 2005, 2010, 2015, and 2019) and the entire study period (Table 4).

Table 4. Factor detection results of the spatial differentiation of AEE in China.

Factor
2000 2005 2010 2015 2019 Total

q Rank q Rank q Rank q Rank q Rank q Rank

Per capita arable land 0.24 9 0.24 7 0.32 4 0.15 11 0.38 2 0.16 11
Agricultural disaster rate 0.32 5 0.48 1 0.39 1 0.35 2 0.43 1 0.22 8

Precipitation 0.35 4 0.37 3 0.16 10 0.31 5 0.27 7 0.16 10
Agricultural economic level 0.17 10 0.19 9 0.25 6 0.43 1 0.23 8 0.35 4

Industrial structure 0.27 7 0.18 10 0.38 2 0.18 10 0.34 4 0.27 7
Degree of agricultural

mechanization 0.17 11 0.25 6 0.14 11 0.23 9 0.30 6 0.21 9

Urbanization level 0.31 6 0.28 5 0.23 7 0.35 3 0.33 5 0.32 6
Level of industrialization 0.75 1 0.40 2 0.22 8 0.28 6 0.35 3 0.51 1

urban–rural gap 0.36 3 0.18 11 0.19 9 0.33 4 0.22 9 0.40 3
Years of education per capita

in rural areas 0.39 2 0.24 8 0.33 3 0.25 7 0.19 11 0.34 5

The level of financial support
for agriculture 0.26 8 0.32 4 0.30 5 0.25 8 0.21 10 0.44 2
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Table 4 shows that each explanatory variable had a different explanatory power for
the spatial differentiation of AEE at different time points. From the perspective of the entire
study period, the top five factors that affected the differentiation of AEE in China were
the level of industrialization (q = 0.51), the level of fiscal support for agriculture (q = 0.44),
the urban–rural gap (q = 0.40), the agricultural economic level (q = 0.35), and the years of
education per capita in rural areas (q = 0.34). These five factors had a strong explanatory
power and had the greatest impact on the spatial differentiation of AEE. The explanatory
power of the agricultural disaster rate, urbanization level, industrial structure, per capita
cultivated land area, and agricultural mechanization degree to the spatial differentiation
of AEE was relatively general, with a q value between 0.16 and 0.32. The factor with
the weakest explanation ability was the per capita cultivated land area, with a q value of
only 0.16.

3.4.2. Interaction Identification of the Spatial Differentiation of AEE

In order to explore the AEE explanatory power when different driving factors interact,
the interaction of each factor was selected to analyze the interaction mechanism affecting
the spatial differentiation of AEE. The average value of the whole study period was used as
the sample for analysis, and the results showed the interaction between the factors is close;
in addition to mutual independence, both antagonistic and synergistic effects occurred
(Figure 5).

Figure 5. Factor interaction results.
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The interactions of the agricultural disaster rate with precipitation and the agricultural
industrial structure showed nonlinear enhance, as did the interactions of precipitation with
the agricultural economic level, agricultural mechanization level, and industrialization
level. The agricultural industrial structure and urbanization level also exhibited nonlinear
enhance when interacting. The interactions of the per capita arable land area with precipi-
tation, the agricultural economic level, agricultural industrial structure, and agricultural
mechanization level showed bivariate enhance. The interactions of the agricultural disaster
rate with the agricultural mechanization level and urban–rural gap, as well as the interac-
tions of precipitation with the urbanization level and years of education per capita in rural
areas showed bivariate enhance. The interactions of the agricultural economic level with the
agricultural industrial structure, agricultural mechanization level, urbanization level, and
urban–rural gap, showed bivariate enhance. The interactions of the agricultural industrial
structure with the industrialization level, urban–rural gap, years of education per capita in
rural areas, the level of financial support to agriculture, urbanization level, and urban–rural
gap showed bivariate enhance. The interactions of the agricultural mechanization level
with the industrialization level and the level of financial support to agriculture showed
bivariate enhance. The interactions of the urbanization level with years of education per
capita in rural areas and the level of financial support to agriculture showed bivariate
enhance. The interactions of the industrialization level with years of education per capita
in rural areas and the level of financial support to agriculture showed bivariate enhance.
The interactions of the urban–rural gap with years of education per capita in rural areas
showed bivariate enhance. These results show that most of the dominant factors were
synergistic when they interacted, though some other factors were antagonistic.

4. Discussion
4.1. AEE Considering Carbon Sinks

This study analyzed the spatiotemporal differentiation and driving factors of AEE in
China. The results of the study found that there is still much room for improvement in
China’s AEE. In future agricultural production practices, more attention should be paid to
green ecological development while pursuing economic benefits [52].

Additionally, there were certain differences in the research results of scholars. For
instance, some scholars found that the spatial order of AEE in China is eastern > west-
ern > central > northeastern [53,54], while other scholars found that the province with the
highest ecological efficiency is Qinghai [55]. This study attributes these differences to two
reasons. First, previous studies did not include Tibet, which is an ecological civilization
highland, in the research scope. Second, an evaluation index system that includes agricul-
tural ecological welfare was constructed in this study and it considers agricultural carbon
sinks as part of the expected output. After adding the agro-ecological welfare factor, the
AEE of some eastern coastal provinces decreased, while the AEE of some western and
northeastern provinces increased [56]. The AEE frontiers in the northeast and western
regions with low degrees of development and high ecological values shifted as a whole,
and the overall AEE increased.

4.2. Drivers of Spatial Differentiation of AEE

The leading driving factors of AEE differed at different time points. The level of indus-
trialization, per capita years of education in rural areas, overall explanatory power of the
urban–rural gap, and the level of financial support for agriculture declined over the study
period. This may be because the development of industrialization is conducive to the devel-
opment of petroleum-based agriculture [33,57]. With the improvement of China’s level of
industrialization in the 21st century, the impact of the industrialization level on the differen-
tiation of AEE is also weakening. The q-value ranking of the per capita years of education
in rural areas dropped from 2nd in 2000 to 11th in 2019. This may be the reason why China
has greatly promoted the balanced development of education in recent years, the level of
education in rural areas has been greatly improved [58]. The impact of the education level
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of farmers on the spatial differentiation of AEE is weakening; the q-value ranking of the
urban–rural gap dropped from 3rd in 2000 to 9th in 2019. This may be because, with the ac-
celeration of China’s urbanization process and poverty alleviation in rural areas, the overall
victory of the agricultural economy has greatly increased the income of rural residents [59],
and the narrowing of the urban–rural gap has also weakened the differentiation of AEE.
With the acceleration of urbanization, traditional agriculture-based rural society is rapidly
transforming into a modern urban society dominated by non-agricultural industries, and
the agricultural population is decreasing [60]; these changes are resulting in the decrease in
the differentiation of AEE. The level of financial support to agriculture dropped from 8th
place in 2000 to 10th place in 2019. This may be because the rural revitalization strategy
implemented by China in 2017 led to provincial governments strongly supporting the
development of the agricultural industry and providing considerable political and financial
support. In particular, the agricultural development level of poverty-stricken areas has
greatly improved, such that the spatial differentiation of provinces is weakening [61,62].

The above results show that there are many factors affecting the spatial differentiation
of China’s AEE, and the influence of the driving factors significantly differs depending
on the stage of social development. Therefore, agricultural development must keep pace
with economic and social development, and it must consider the dominant factors to
improve their influence on the spatial differentiation of AEE. For this reason, each region
should formulate corresponding development strategies based on its own agro-ecological
development status, while simultaneously paying attention to inter-regional coordination
and cooperation, in order to achieve resource conservation as well as environmentally
friendly and high-quality sustainable development [63,64].

4.3. Measurement Method

In this study, an index system for measuring AEE was constructed under the premise
of considering agricultural carbon sinks, and the super-efficiency SBM model was used
to bring the measurement results closer to the reality of agricultural production [65].
Although various factors are considered, ecological efficiency focuses on the coordinated
development of economy and environment. The environmental problems caused by
agricultural production are not only the production of greenhouse gases, but also cause
certain agricultural non-point source pollution [66,67]. Agricultural non-point source
pollution is not easy to quantify. Due to the difficulty of data acquisition, the index system
constructed in this study does not account for agricultural non-point source pollution.
Subsequently, quantitative analysis of agricultural non-point source pollution can be carried
out from the residues caused by the use of pesticides, fertilizers, and agricultural films [68].
Furthermore, the spatial differentiation of AEE is affected by many factors. It is crucial
to understand the dominant factors of spatial differentiation. Quantitatively solving the
spatial differentiation of AEE is also a problem that needs attention. Quantitative analysis
of the regional differentiation of the driving factors of AEE through geographic detection
can not only quantify the impact of a single factor, but also quantify the interaction between
the two factors; thus, this method can effectively solve the qualitative problem of AEE in
spatial stratification.

5. Conclusions

Based on the perspective of agricultural carbon sinks, this study constructed a mea-
surement index system of China’s agricultural ecological efficiency and measured the
spatial and temporal evolution, spatial differentiation, and driving factors of regional
AEE for 31 provinces in China. The research conclusions were as follows: China’s AEE
may be underestimated when the agricultural carbon sink is not considered. Using the
agricultural carbon sink as the expected output of the measurement will bring the mea-
sured AEE closer to reality. China’s AEE showed an overall upward trend from 2000 to
2019. However, the overall level of China’s AEE was not high, and there is ample room
for improvement. The AEE of the four major economic zones was 0.72 in the northeast,
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0.63 in the west, 0.62 in the center, and 0.55 in the east. There was also a big difference
between provinces. Therefore, the development of regional AEE was unbalanced, and the
phenomenon of regional differentiation was obvious. The spatial differentiation of China’s
AEE was affected by multiple factors, among which the industrialization level, urban–rural
gap, agricultural economic level, agricultural disaster rate, and urbanization level were
the dominant factors, with AEE varying in certain years. The influence of the agricultural
disaster rate, agricultural economic level, and urban–rural gap on the spatial differentiation
of AEE gradually increased over time. At the same time, the spatial differentiation of AEE
in China was significantly affected by pairs of factors in both antagonistic and synergistic
ways. Therefore, based on our own resource endowments, we should strengthen financial
policy support, promote the improvement of agricultural ecological efficiency according
to the time and place, realize the minimum input of agricultural resource elements and
maximize the agricultural economic benefits; at the same time, we should reduce agri-
cultural greenhouse gas emissions and effectively promote high-quality and sustainable
agricultural development.

However, this study still contains some shortcomings. For example, the exploration
of the factors driving the spatial differentiation of AEE only considers the interaction
between two factors and does not explore the interaction between three or more factors.
Furthermore, in addition to the visible cost of agricultural production, various natural
and socio-economic factors have an impact on the loss of AEE. Future research should
conduct an in-depth study of the impacts of natural factors, related policies, agricultural
labor, changes in agricultural technology, and other factors on AEE.
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