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Abstract: This study was conducted to evaluate whether the application of proline as a potential
osmoprotectant at different doses could improve the genotoxic and mutagenic effects caused by
plant exposure to cadmium salts. For this purpose, the Comet assay was used, which allows the
rapid detection of DNA damage shortly after its occurrence, before the DNA is repaired, as well
as the discrimination of the DNA damage limited to specific cells in a heterogeneous population.
After treatment of Allium cepa roots with 75µM CdSO4·H2O (Cd sample), a DNA percentage of
35.24% was recorded in the tail. In the samples treated first with proline and then with cadmium
(pre-treatment group), the percentage DNA in the tail was reduced by 24.8% compared with the Cd
sample. Instead, in the post-treatment group (samples treated first with cadmium and then with
proline), the percentage DNA in the tail was reduced by 69.04% compared with the Cd sample.
All cadmium treatments induced chromosomal aberrations (CAs). Compared with the CAs values
obtained after Cd treatment, the reduction was 75.6% in the pre-treatment group and 55.39% in the
post-treatment group. The results of this study highlighted that exogenous application of proline
alleviated the genotoxic effect of cadmium.

Keywords: comet assay; chromosomal aberrations; DNA damage; cadmium; proline

1. Introduction

The presence of cadmium in ecosystems is mainly due to to human activity but
also to the mineralization processes of rocks that contain metals including cadmium [1].
In agricultural soils, the presence of cadmium is mainly due to the administration of
phosphorus-based fertilizers [2]. Multiple studies confirm the phytotoxicity of cadmium,
which manifests by inducing an oxidative explosion by generating reactive oxygen species
(ROS) [3], by perturbing the antioxidant systems [4], by having an inhibitory effect on
photosynthesis and cellular division [5], and by inducing necrosis in leaves and roots
and chlorosis in leaves [6], while also being capable of perturbing the metabolism of
chlorophyll [7], mineral nutrition [8], and water homeostasis [9], affecting transpiration and
the fixation of carbon dioxide, and modifying the permeability of cell membranes. Within
the soil, cadmium is generally present in mobile form, which has a negative ecological
significance. The mobile form determines a relatively large capacity for the migration of the
element within the landscape and leads to increased pollution due to the flux of substances
from soil to plants [10]. The accumulation of proline inside plants is a general adaptation
to stress factors, which has been highlighted under different types of stress (high salinity,
low temperatures, lack of nutrients, presence of heavy metals within the environment).
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The first reports of proline accumulation in wilted rye tissues were written by Kemble and
MacPherson [11]. The normal level of proline in Arabidopsis thaliana seedlings is 1 µmol/g
fresh mass, and under saline stress conditions (120 mM NaCl), this level increases eightfold.
In tobacco leaves (Nicotiana tabacum), the proline content increases 20-fold, and in soy
(Glycine max), it increase 11-fold if plants are exposed to 200 mM NaCl treatment [12].
In plants, proline constitutes less than 5% of the total free amino acids under normal
conditions. After the induction of stress, this level can increase to up to 80% of amino
acid reserves [13].

The increase in the endogenous proline content as a response to biotic or abiotic stress
factors is a mechanism commonly observed in bacteria, algae, and plants [14–17]. The ex-
ogeneous application of proline in cell cultures exposed to cadmium salts [18] causes an
increase in the activity of antioxidant enzymes, as well as an increase in the tolerance to
oxidative stress [19–21]. Stress conditions perturb intracellular redox homeostasis by chal-
lenging mechanisms that balance oxidative stress. The role of proline in stress resistance is
explained by its properties as an osmolyte and its ability to balance water stress. Plants
exposed to various stress conditions have an overproduction of proline, which gives the
plant an increased resistance to stress by maintaining osmotic balance for cell turgor and
the stability of cell membranes, preventing the leakage of electrolytes and bringing the
concentration of ROS to normal values [12]. In addition to acting as an excellent osmolyte,
proline plays three major roles during stress, as a metal chelator, an antioxidative defense
molecule, and a signaling molecule [22]. In a study performed by Sharma et al. 1998 [23],
exogenous proline protected the activity of glucose-6-phosphate dehydrogenase and nitrate
reductase in vitro against inhibition by Cd and Zn. This protection was due to the forma-
tion of a proline–metal complex. L-Proline is a multifunctional amino acid that plays an
essential role in primary metabolism and in the performance of physiological functions [24].
In soy plants under drought and salinity conditions, the accumulation of proline can be
100 times greater than that in plants grown under optimal conditions [25]. The exogeneous
application of proline increases nitrogen fixation and the content of antioxidant compounds
especially phenolic compounds, carotenoids, flavonoids, and tocopherols [26,27]. The accu-
mulation of proline in plants also appears during exposure to UV radiation, heavy metal
ions, pathogenic agents, and oxidative stress [21].

Single cell gel electrophoresis (SCGE) or the Comet assay is a sensitive testing sys-
tem used to evaluate the genotoxic potential of various polluting agents. Comet anal-
ysis allows the detection of the DNA damaging capacity of chemical substances in the
environment [28–32]. Measuring the comet tails is an important parameter because it rep-
resents free DNA fragments and shows lesions within individual cells [33]. Quite often,
the capacity of certain polluting agents in the environment (including heavy metals) to
damage DNA is proven by the comet assay using species such as Allium cepa, Hordeum
vulgare, Arabidopsis thaliana, Glycine max., Vicia faba, and Zea mays as bio-indicators of
genetic toxicity [34,35].

In our study, we used the Comet assay to test the effects of the exogeneous application
of proline in diminishing the genotoxic effect of cadmium. The study shows, as a novelty,
that treatments with proline can reduce the genotoxic effects of cadmium on plants.

2. Materials and Methods
2.1. Experimental Design

Treatments were undertaken according to Fedel-Miyasato et al. [36], with some modi-
fications. Bulbs of Allium cepa cv. Vidalia with a 3 cm diameter were immersed in sterile
water for 72 h, at 24 ◦C, in darkness, at the level of the radicular meristem. After this time
interval, the roots were 2–3 cm long, and two types of treatment were applied, called pre-
treatment and post-treatment. For both treatments, the following samples were used: the
negative control (CTRL−), consisting of the immersion of the onion roots in 1% methanol
solution, the positive control (CTRL+), consisting of the immersion of the roots in 15 µM
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H2O2 solution, and the Cd sample (Cd), consisting of the immersion of roots in 75 µM
CdSO4·H2O solution. In all three samples, the root immersion time was 24 h (Figure 1a,b).
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Figure 1. Experimental design in the pre-treatment (a) and post-treatment (b). CTRL—(negative
control sample, treatment with 1% methanol); CTRL+ (treatment with 15 µM H2O2); Cd—samples
treated with 75 µM CdSO4·H2O; P10, P20, and P40—samples treated with 10, 20, and 40 mM
proline, respectively; P10Cd, P20Cd, and P40Cd—samples treated with 75 µM CdSO4·H2O after
te treatment with different concentrations of proline (10, 20, and 40 mM, respectively); CdP10,
CdP20, and CdP40-samples treated with 75 µM CdSO4·H2O for 12 h and then with 10, 20,
and 40 mM proline, respectively.
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The pre-treatment consisted of exposing the roots to different proline (Duchefa, CAS
No:147-85-3) doses of 10 mM (P10), 20 mM (P20), and 40 mM (P40) for 12 h at room
temperature. After this time interval, the roots were washed with distilled water and
immersed in the 75 µM CdSO4·H2O solution for another 12 h (Figure 1a). At the end of the
pretreatment, the following samples were obtained: P10Cd, P20Cd, and P40Cd, in which
the roots were treated with 10, 20, and 40 mM proline, respectively, followed by treatment
with cadmium.

In the case of post-treatment, the roots were initially immersed in the 75 µM CdSO2·H2O
solution for 12 h, after which they were treated with different concentrations of proline
(10, 20, and 40 mM) for another 12 h, obtaining the following samples: CdP10, CdP20,
and CdP40 (Figure 1b). At the end of both treatments, the roots were washed, separated
from the bulb, and kept on ice while waiting for the core to be extracted

2.2. Comet Assay
2.2.1. Preparation of the Slides for the Comet Assay

Standard microscope glass slides were degreased and covered with a 1% normal
melting point agarose (NMPA) (Bio-Rad, Hercules, CA, USA) in a phosphate buffered
saline, PBS (Lonza–Verviers, Verviers, Belgium).

2.2.2. Preparation of Plant Cell Nuclei

Approximately 25 root tips of 3 mm each were placed in a cold Petri dish, inclined,
in 600 µL of ice-temperature Tris-MgCl2 buffer (0,2 M Tris, pH 7.5; 4 mM MgCl2–6H2O;
0.5% g/v Triton X-100). The roots were immediately sliced with a razor, and then the slices
were minced for approximately 15 s, according to recommendations by Pourrut et al. [37],
in order to release the nuclei and to collect them in the Tris-Mg Cl2 buffer.

2.2.3. Single-Cell Gel Electrophoresis

The protocol for neutral electrophoresis, with some modifications, is that described by
Wojewodzka et al. [38]. The neutral Comet assay highlights the double catenary ruptures
of the DNA, the comets having well-defined contours, appropriate for image analysis.
All operations were done under inactinic red light to avoid DNA photodegradation. Specif-
ically, 80 µL of 0.8% agarose with a low melting point (LMPA) (Thermo Scientific, Waltham,
MA, USA) at 37 ◦C was mixed with 50 µL of nuclear suspension and deposited on a
slide pre-covered with 1% normal melting-point agarose (NMPA). The suspension was
covered with a 25 × 40 mm glass slide and left to solidify for 5 min on a tray cooled with
ice. After solidification, the slides were immersed in ice-cold lysis solution (2.5 M NaCI,
100 mM EDTA, 10 mM Tris-HCI, 1% N-lauroilsarcozine, pH 9.5, to which 0.5% Triton
X-100 and 10% dimetilsulfoxide (DMSO) were added before use. After lysis (for 1 h at 4 ◦C
in the dark), the slides were washed three times, 5 min each time, with an electrophoresis
buffer, and were placed in the horizontal electrophoresis unit, in the electrophoresis buffer
(300 mM sodium acetate, 100 mM Tris-HCl, pH 8.3) for 1 h in the dark at 4 ◦C. The slides
were then subjected to electrophoresis in the dark for an hour at 14 V (0.5 V/cm, 11–12 mA)
at 4 ◦C.

2.2.4. DNA Damage Evaluation

After electrophoresis, the slides were washed three times with cold distilled water,
for neutralization, colored with 50 µL ethidium bromide (EtBr) (2 µg/mL), and then covered
with a glass slide. From each slide, 50 nuclei were selected randomly, which were analyzed
with a Bio Systems fluorescent microscope, equipped with a 546 nm excitation filter and
a 590 nm emission filter. Three slides were evaluated per treatment, and each treatment
was repeated twice. The images were processed with Comet Score software (Comet Score
2.0.0.38; TriTek Corp., Sumerdock, VA, USA).
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2.3. Cytogenetic Test

Upon final exposure, five roots from each bulb were immediately fixed for 2 h in
Clarke’s solution (ethanol, glacial acetic acid; 3:1) and afterwards in 96% ethanol for
15 min. Then, the samples were placed in 70% ethanol at 4 ◦C. For cytological studies,
the roots were hydrolyzed in HCl (1 N) for 15 min at 60 ◦C, washed with distilled water,
and colored for 4 min with 2% aceto-orcein. The cells were displayed under slides (using
the squash technique) and were analyzed under a binocular microscope (Typ H 600 LL
Helmut Hund GMBH, Wetzlar, Germany) at 400×magnification. For each experimental
variant, 5 slides were prepared, and at least 3500 cells were analyzed for each experimental
variant. The mitotic index (MI) was determined by using Equation (1):

Mitotic index (%) = Number of mitotic cells/Total number of cells (1)

2.4. Statistical Analysis

The results represent the mean and standard deviation (SD) of 3 independent ex-
periments. Statistical significance between the samples was determined by one-way
ANOVA and Tukey’s multiple comparison test, using GraphPad Prism (version 8.01).
A p value < 0.05 was considered statistically significant.

3. Results and Discussion

Results obtained via the Comet assay are reported using different descriptors, of which
the most frequently used are the percentage of DNA in the tail, the length of the tail,
the moment of the tail (obtained by multiplying the percentage of DNA in the tail by the
length of the tail), and the OTM (olive tail moment) [39]. In reporting the results of this
study, we chose to use the descriptor of the percentage of DNA in the tail (Figure 2) because
this parameter is linearly connected to the rupture frequency [40].
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different concentrations of H2O2 [45] show broken DNA, a fact that leads to a substantial 
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icant DNA deterioration induced by the positive control, with p < 0.05 compared to the 
other variants (Figure 3). An exception is the treatment with 75 µM CdSO4 · H2O, where 
recorded values, processed via the Tukey test, showed no significant difference (6.05%) 
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found that the dose of 15 µM H2O2 induced significant DNA damage, which is why we 
used this dose in the experiment (data not shown). 

Figure 2. Representative images of neutral comets. (a) Positive control (CTRL+)—treatment with
15 µM H2O2 for 24 h; (b) Cd—treatment with 75 µM CdSO4·H2O for 24 h; (c) Pre-treatment
(P40Cd)—samples treated with 40 mM Pro for 12 h and then with 75 µM CdSO4·H2O; (d) Post-
treatment— (CdP40) samples treated with 75 µM CdSO4·H2O for 12 h and then with 40 mM Pro;
(e) CTRL—(control sample, treated with 1% methanol); (f) P10—samples treated with 10 mM proline;
(g) P40—samples treated with 40 mM proline (h) Comet profiles in the neutral Comet test.

Numerous publications that describe the results of comet tests support the assumption
that this descriptor offers reliable information on the migration of DNA in the comets [41–44].
Regarding the oxidative-induced DNA deterioration, we found a significant response
between the test variants, which confirms observations that cells treated with different
concentrations of H2O2 [45] show broken DNA, a fact that leads to a substantial increase
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in the DNA percentage found in the tail [46]. We determined statistically significant DNA
deterioration induced by the positive control, with p < 0.05 compared to the other variants
(Figure 3). An exception is the treatment with 75 µM CdSO4 · H2O, where recorded values,
processed via the Tukey test, showed no significant difference (6.05%) with IC 95% from
−11.2779 to 0.0258 and with p = 0.0258. In a previous screening, we found that the dose
of 15 µM H2O2 induced significant DNA damage, which is why we used this dose in the
experiment (data not shown).
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Figure 3. Effect of the exposure of Allium cepa meristem cells to Cd (Cd sample) and different
concentrations of proline (P10, P20, and P40—samples treated with 10, 20, and 40 mM proline, respec-
tively). Pre-treatment (P10Cd, P20Cd, and P40Cd) and post-treatment (CdP10, CdP20, and CdP40).
Results are expressed as the mean ± SD and compared the Cd sample with pre-treatment and
post-treatment samples. **** p < 0.00001 statistically significant differences determined by Tukey’s
multiple comparison test.

In the case of treatment with CdSO4·H2O (Cd) (Table 1), Tukey’s multiple compari-
son test showed statistically significant differences, with p < 0.05, compared to the post-
treatment group (p = 0.0069 in Cd-CdP10; p < 0.0001 in Cd-CdP20 and Cd-CdP40). Cad-
mium interacts with DNA and manifests its genotoxic effect either directly [47,48] or
indirectly [31].The direct genotoxic effect may involve the binding of Cd to DNA, and the
indirect interaction may be associated with oxidative damage to DNA, increasing cellular
oxidants in the cells [49], and the stimulation of ROS synthesis that damages DNA and
causes the manifestation of oxidative stress [50]. The deterioration of DNA in the cells of
Vigna unguiculata suggests that under Cd toxicity, the production of ROS leads to catenary
ruptures and to a series of structural modification to the nucleus [51].
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Table 1. Statistical significance between all samples (p values).

CTRL− CTRL+ Cd P10 P20 P40 P10 Cd P20 Cd P40 Cd Cd P10 Cd P20 Cd P40

CTRL− 1 <0.0001 <0.0001 >0.9999 0.9985 0.0013 <0.0001 <0.0001 <0.0001 <0.0001 0.0016 0.0009

CTRL+ **** 1 0.0499 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Cd **** * 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

P10 ns **** **** 1 0.9895 0.0005 <0.0001 <0.0001 <0.0001 <0.0001 0.0006 0.0004

P20 ns **** **** ns 1 0.0318 <0.0001 <0.0001 <0.0001 <0.0001 0.0378 0.0242

P40 ** **** **** *** * 1 <0.0001 <0.0001 <0.0001 0.0281 >0.9999 >0.9999

P10 Cd **** **** **** **** **** **** 1 0.9993 >0.9999 <0.0001 <0.0001 <0.0001

P20 Cd **** **** **** **** **** **** ns 1 >0.9999 0.0001 <0.0001 <0.0001

P40 Cd **** **** **** **** **** **** ns ns 1 <0.0001 <0.0001 <0.0001

Cd P10 **** **** **** **** **** * **** *** **** 1 0.0235 0.0368

Cd P20 ** **** **** *** * ns **** **** **** * 1 >0.9999

Cd P40 *** **** **** *** * ns **** **** **** * ns 1

Statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. ns: not significant.

Compared to an average value of 35.24% DNA in the tail recorded during treatment
with CdSO4·H2O, in the post-treatment group, the % DNA in the tail was reduced by 56.87%
in response to CdP10, by 75.51% in response to CdP20, and by 74.71% in response to CdP40.
This reduction in the length of the tail is due to the protective effect of applying proline.
It is known that the exogenous application of proline increases plant stress resistance
by modulating the endogenous metabolism of proline [52]. ROS can lead to impaired
physiological function through cellular damage to DNA, proteins, lipids, and other macro-
molecules [53]. The application of exogenous proline [54] activated the antioxidant systems
by increasing the activities of catalase, ascorbate peroxidase, and superoxide dismutase.
Quantitative analysis of the present study showed a significant reduction in the percentage
of DNA in the tail after pre-treatment with proline, highlighting its de-mutagenic role.
Quantifying the percentage of DNA in the tail confirmed its reduction by 26.7% in the
P10Cd variant, by 31.15% in the P20 Cd variant, and by 28.77% in the P40Cd variant. In both
tested situations (pre- and post-treatment with proline), we recorded a significant reduction
in the %DNA in the tail, compared to the H2O2 treatment and CdSO4·H2O treatment. Com-
parative analysis of the % DNA in the tail between the P40 sample with the Cd P20 and
Cd P40 post-treatment samples revealed no statistically significant differences (Table 1),
the DNA repair process being able to occur even in the absence of antigenotoxic substances.
However, the experimental design we used together with the specific requirements of the
method (working under yellow light, low temperature and execution speed) ensured that
real results were obtained. The accumulation of excessive concentrations of heavy metals in
plants generates stress that leads to serious physiological and structural disturbances [22].
One of the responses of plants to this state of stress is the accumulation of a large amount
of proline in the cells [55,56]. Proline acts as both an osmoprotectant and a heavy metal
chelator by inducing the formation of phytochelatins that chelate with heavy metals such as
Cd, thereby reducing their toxicity [57]. Our observations confirm this role of proline, as in
all of the experimental variants where cadmium was associated with proline, its level of
genotoxicity was reduced compared to the variants treated with cadmium alone. It was re-
ported [58] (Xu et al., 2009) that the exogenous application of proline decreased ROS levels,
improving cadmium tolerance. According to Roy et al. 1993 and Jain MJ et al., 2003 [59,60],
the effect of exogenously applied proline is dependent on its concentration. In our study,
the treatments with 10 and 20 mM proline solutions generated lower percentages of DNA
in the tail than the treatment with 40 mM proline solution.

According to Kada et al. [61], there are two classes of protective substances that
act against DNA damage: antimutagenic compounds that block the action of agents that
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induce DNA deterioration, mainly by absorption, and that act preferentially on extracellular
mediums; and bio-antimutagens capable of preventing DNA lesion formation or being
involved in the modulation of DNA repair. According to our results, in the pre-treatment
group (where the roots were exposed to proline for 12 h and then to Cd, a reduction in DNA
de-structuring was observed, and therefore an antimutagenic quality can be attributed
to proline [62], although it exerts this function indirectly by modifying the activity of
antioxidant enzymes [63]. Statistical analysis of the values of the negative control (CTRL-)
compared to the values of the P10, P20, and P40 samples revealed no statistical differences,
except for P10 vs. P40, where a significant difference was recorded (p = 0.43).

From the data presented in Table 2, it was observed that cadmium had a genotoxic
effect in all samples in which Allium cepa roots were treated with this metal. The results we
recorded are in agreement with the results obtained by other authors [32,64], who attribute
this mitotic depression and %MI reduction to the fact that the heavy metal prevents cells
from entering prophase, thus blocking the mitotic phase of the cellular cycle. Frequently,
this induces modifications in chromosome structures, which manifest as chromosome
ruptures (Figure S1a,f), delayed chromosome formation (Figure S1b), unequal distribution
of chromatin (Figure S1c), and the formation of bridges (Figure S1d,e). In all experimental
variants in which the Cd treatment was accompanied by pre- or post-treatment with proline,
the genotoxic effect of cadmium was significantly diminished (p ≤ 0,05) compared to the
positive control and to the variant to which the only treatment administered was cadmium
(Table 2).

Table 2. Mitotic index (MI) and chromosomal aberrations (CAs) % in meristem cells of Allium cepa
roots exposed to Cd and proline depending on treatments.

Treatment MI (%) Interphase Prophase Metaphase Anaphase Telophase CAs (%)

CTRL− 64 ± 1.8 a 1260 1826 224 114 84 1.6 ± 0.14 cd

CTRL+ 2.4 ± 0.22 e 3416 42 23 12 7 4.2 ± 0.30 b

Cd 2.8 ± 0.37 e 3402 48 19 15 16 5.2 ± 0.58 a

P10 40 ± 1.75 b 2100 386 256 155 98 0.0

P 20 40 ± 1.49 b 2083 870 278 186 65 0.0

P 40 38.1 ± 1.21 b 2170 882 248 173 32 0.0

Pre-treatment

P10Cd 13 ± 0.82 c 3045 196 113 101 45 1.2 ± 0.18 c

P20Cd 15.4 ± 0.58 c 2975 214 146 114 51 1.4 ± 0.16 c

P40Cd 16 ± 1.12 c 2938 210 168 132 50 1.2 ± 0.24 c

Post-treatment

CdP10 8.4 ± 0.74 d 3200 146 79 48 21 2.1 ± 0.23 d

CdP20 9.4 ± 0.43 d 3169 172 98 40 19 2.4 ± 0.34 d

CdP40 9.6 ± 0.59 d 3164 194 106 32 4 2.4 ± 0.44 d

Different letters for each sample denote statistically significant differences (p = 0.05) between pre- and post-
treatment samples and Cd samples, determined by Tukey’s multiple comparison test. Results are expressed as the
mean ± sd.

Statistically significant differences in %MI were also recorded in pre- and post-treatment
groups according to the concentration of proline administered (10, 20, 40 mM). Recent
research by Hassan et al. [65] highlighted the role of proline as an attenuating agent that
reduces mutagenic effects of Cd by increasing %MI and decreasing CAs in comparison
with untreated samples (CTRL-, P10, P20, and P40). All treatments with cadmium induced
CAs. Compared with CAs values obtained after Cd treatment, the reduction was 75.6% in
the pre-treatment group and 55.39% in the post-treatment group.
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4. Conclusions

The Comet test may be used in in situ monitoring of plants exposed to heavy metals.
Through measurements of the DNA lesions, the genotoxic effects of cadmium under low
levels of exposure can easily be evaluated. The exogenous application of proline alleviated
the genotoxic effect of cadmium. This fact suggests that proline treatments could be applied
to plants grown on cadmium-containing soils. Plants grown on cadmium-polluted soils
can be treated with proline to reduce the effects of stress and to stimulate the production
of biomass for energy purposes. Future studies are needed to identify the mechanisms by
which proline annihilates the toxic effect of heavy metals.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agriculture12101568/s1, Figure S1: Chromosomal aberrations in
meristem cells of Allium cepa exposed to 75 µM CdSO4·H2O. (a) lagging chromosome formation;
(b) aberrant nucleus; (c) unequal distribution of chromatin; (d,e) bridge formation; (f) chromosome
displacement at anaphase.
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