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Abstract: Considering the slow response and unstable velocity of agricultural machinery caused
by soil resistance, actuator delay, environmental change, velocity fluctuation, and other internal
and external factors under real working conditions, a kind of agricultural machinery following
a control system that considers variable load and control delay was proposed. Taking distance-
keeping, velocity-following, and acceleration-following as parameters, the controller model was
deduced, and the influence of different values of model parameters on the driving stability of
agricultural machinery was analyzed in detail. In addition, this paper describes a kind of agricultural
machinery following a strategy that can realize the graded adjustment of vehicle distance with the
dynamic increase in vehicle weight. Then, the following strategy, under the influence of velocity
and quality, was simulated and verified using MATLAB/Simulink (MATLAB2016a, mathworks:
Natick, Massachusetts, USA). When the crop harvester was at 1.5 m/s and the amplitude of velocity
fluctuation was 0.3 m and 1.3 m, respectively, the grain truck could adjust its velocity to keep up
with the crop harvester to complete the operation task. Simulation verification was carried out for
the proposed graded adjustment of vehicle distance of agricultural machinery following strategy.
The unit mass of the crops was set at 360 kg, and the vehicle distance changed at 18s to adapt to
the graded adjustment of the vehicle distance following strategy. Finally, a real-vehicle validation
test was carried out, and the results show that the grain truck velocity can keep up with the change
of crop harvester velocity on the basis of maintaining the desired vehicle distance, the grain truck
velocity can keep up with the change of crop harvester velocity on the road condition, which verifies
the effectiveness and feasibility of the proposed method.

Keywords: agricultural machinery; control delay; vehicle variable load; multi-machine coordination

1. Introduction

At the beginning of the development of agricultural navigation technology, due to tech-
nical limitations, the mainstream of agricultural navigation technology is single-machine
automatic navigation [1–3]. In recent years, relying on the leap-forward development
of positioning and communication technology, the automatic navigation technology of
agricultural machinery has significantly developed [4,5]. The current intensive, large-scale,
industrialized, and unmanned agricultural production [6], put forward higher requirements
for automatic navigation technology of agricultural machinery; therefore, multi-machine
cooperative operation, which can effectively improve the efficiency and utilization rate of
agricultural machinery, has gradually been paid attention to by agricultural researchers.

Multi-machine collaborative operation originated in the field of robotics and the
automotive industry [7,8]; however, it is rarely used in agriculture. Research into a multi-
machine collaboration of agricultural machinery can be traced back to the end of the
20th century. In 2000, Lidam et al. of Kyoto University in Japan developed an automatic
following control system for agricultural vehicles. Each vehicle is equipped with ultrasonic
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sensors to measure the relative position and declination angle between vehicles [9]. Due to
the limitation of infrared and ultrasonic equipment, the system signal is inevitably unstable
during the steering process. In 2004, Noguchi N et al. of Hokkaido University proposed
a cooperative operation system of agricultural machinery with two operation modes of
“GOTO” and “FOLLOW” [10]. In the GOTO mode, the slave can receive the command
sent by the host and complete the specified task according to the received command.
The FOLLOW mode realizes the precise following operation of the following agricultural
machinery to the leading agricultural machinery at a fixed distance and declination angle.
It can be applied to the same kind of agricultural machinery operation, and can also
be applied to the master–slave joint follow-up operation of crop harvesters and carriers,
so the FOLLOW mode has more application value than the GOTO mode. After years
of development, the research on the cooperative operation of agricultural machinery
and multi-machines has a certain foundation. At present, a multi-machine cooperative
operation is divided into two modes: follower cooperative operation and command-type
master–slave cooperative operation [11].

Follow-up master–slave collaborative operation means that multiple agricultural
machines work together in the field, using one of the agricultural machines as the master,
and the other agricultural machines as slaves to follow the master. Researchers have
undertaken a lot of research on follower master–slave collaborative work. Zhang et al. of
Hokkaido University developed a leadership-following system based on two agricultural
robots [12], which realizes that the two robots cooperate with each other to complete
operations such as straight-traveling and follow-up, head-turning, and other operations
on the basis of ensuring no collision. Zhang et al. of Karlsruhe Institute of Technology
developed an intelligent master–slave system for agricultural vehicles [13], which enables
the slave vehicle to follow the master vehicle at a given lateral and longitudinal offset, but
the fixed-distance following strategy cannot be fully adapted to the complex and changeable
working environment. Bai Xiaoping’s team combined the feedback linearization theory
and the sliding mode control theory to design the control law for the formation of the
combine harvester group and the control law for the path tracking, which realized the
high-precision follow-up operation of the agricultural machinery [14,15]. Xu Guangfei
designed a master–slave follower controller for tractors combined with the model predictive
control algorithm [16]. On the basis of ensuring the master–slave follower of agricultural
machinery, it can effectively deal with factors such as environmental uncertainty and
interference. However, both SMC and MPC algorithms have a large computational burden
and require high perform controllers, so it is currently difficult to apply them to real vehicle
scenarios on a large scale. Lee uses the vision system to realize the forward synchronization
of the two vehicles and uses the PID control system to control the steering but does not
consider the control delay caused by the sensor delay [17]. Luo uses the master–slave
cooperative control method and considers the response delay of the actuator to solve
the problem that the two vehicles are not driving in the same straight line in the WSIC
operation mode [18]. ZHU adopts the LQR controller to solve the problem of maintaining
the lateral distance of the tractor queue and realizes the precise tracking of the straight path
and the curved path of the tractor queue [19]. Vougioukas developed a distributed control
framework for coordinating the movements of teams of autonomous agricultural vehicles
operating in the same field [20].

Command-type master–slave collaborative operation means that the remote moni-
toring platform issues the overall task and commands each agricultural machine to go to
a specific area to perform the task. Among them, in the representative GOTO mode [10],
HAO et al. used two robots to verify a collaborative scheme between the harvester and
the grain truck owner-slave indoors [21]. The harvester, as the leader, can decide the
behavior of the grain truck; as a follower, the grain truck can adjust its position and heading
according to the pilot’s instructions, and Martin et al. developed an order-based master–
slave cooperative job path planning system, one slave using Dijkstra algorithm to plan the
optimal path, providing collaboration service for two masters [22].
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The above research has carried out in-depth research on the two operation modes of
multi-machine cooperation, especially for the follow-up master–slave cooperative oper-
ation, and a variety of control methods have been proposed. Most of the above control
algorithms do not introduce the sensor delay and cause the system to respond slowly;
at the same time, the vehicle-following strategy basically adopts a fixed-distance vehicle-
following strategy. When faced with application scenarios such as grain trucks following
crop harvesters to unload grain, the vehicle distance cannot be adjusted in time to eliminate
crop accumulation, which is obviously insufficient in flexibility. At the same time, the algo-
rithm has high requirements on the computing power of the controller and uses too many
devices, which is not conducive to large-scale popularization. Affected by the application
scenarios of agricultural machinery and the educational level of users, the control system
of intelligent agricultural machinery equipment must be simple in structure and easy to
build and implement. In this paper, considering the dynamic change of the weight of the
grain transport vehicle and the control delay, a dynamic distance following strategy of
the grain transport vehicle combined with the traditional constant time headway policy
is proposed, and a follow-up master–slave cooperative controller for the grain transport
vehicle is designed based on the nonlinear feedback algorithm.

2. Grain Truck Controller Strategy

Under the autonomous farm operation circumstances [23–26], the grain truck auto-
matically moves with the crop harvester and completes the storage and transfer operations,
which is a common form of agricultural machinery collaborative operation [27,28], as
shown in Figure 1a.
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2.1. Crop Harvester and Grain Truck Follow-up Operation Model

In this paper, crop harvester and grain truck longitudinal straight line following
operation as the research object, lateral control is not considered. The grain truck is the
controlled object, and the crop harvester is the following target. The following diagram is
shown in Figure 1b.

In Figure 1b, a fixed base station differential centimeter-level positioning system fused
with inertial group information is used to provide centimeter-level positioning accuracy
for the two vehicles. The mobile station installed at the center point of the front axle of
the grain truck and crop harvester obtains its own position relative to the base station,
heading angle, velocity, acceleration, and other information. The following distance of
the vehicle is based on the relative distance of the positioning system. The grain truck
obtains the positioning and driving information of the crop harvester through the workshop
communication equipment. ∆x is the longitudinal distance between the grain truck and the
crop harvester; ∆y is the lateral distance between the grain truck and the crop harvester; XOY
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is the geodetic coordinate system of the main base station; x1o1y1 is the body coordinate
system of the grain truck; x2o2y2 is the body coordinate system of the crop harvester; The
x-axis of the body coordinate system points to the vehicle’s driving direction parallel to the
ground, the y-axis of the coordinate system points to the left side of the vehicle body, and
the z-axis of the coordinate system points to the top of the vehicle body through the center
of mass of the agricultural machine, θ represents the heading angle of the agricultural
machine in the geodetic coordinate system, the true north direction is zero degrees. The
parameter’s geometric relationship can be obtained in Figure 1b.

∆Xd= Xd2−Xd1
∆Yd= Yd1−Yd2

(1)

[
∆x
∆y

]
=

[
sin θ − cos θ
cos θ sin θ

][
∆Xd
∆Yd

]
(2)

2.2. Grain Truck Following Strategy

In this paper, the traditional constant time headway model is introduced to control
the velocity of the grain truck and the distance relative to the crop harvester [29]. On this
basis, to eliminate the accumulation of crops and so that the grain truck can adapt to the
change of load weight load to adjust the distance, the quality parameter is introduced in
the vehicle strategy, as in Equation (3).{

dd = d0 + tdv− k ∗ INT[M
m ]

k ∗ INT[M
m ]+0.5 ≤ A

(3)

Where dd is the grain truck desired following distance; d0 is the minimal following
distance; td is the time headway; v is the velocity of the grain truck; M is the grain mass
from the harvester; m is the crops of unit mass set based on grain truck with different loads;
k is the mass distance factor in meter; INT is the rounding functions; and A is the length of
the grain truck.

Equation (3) can be transformed into a desired velocity function V(h) based on the
current following distance h.

The advantage of the above following strategy is that, on the one hand, the grain
truck can adjust the velocity based on the relative distance from the crop harvester in real
time; on the other hand, the grain truck’s desired following distance can be adjusted by
the load of the vehicle, the position of the grain transport carriage is adjusted in an orderly
manner to avoid single point accumulation of crops in the grain transport carriage, thereby
improving the utilization rate of the carriage. The initial position of the output port of the
crop harvester is located at the front of the grain truck. When the velocity of the grain truck
decreases, the following distance between the grain truck and the crop harvester increases,
and the position of the discharge port moves to the front of the grain truck, causing crops to
spray out of the carriage. To avoid the above situation in the initial position or end position.
The maximum adjustment distance between the outlet and the compartment is less than
the length of the grain truck compartment 0.5m.

3. Design of Follower Controller for Grain Truck

In this paper, the velocity controller of the grain truck is designed by combining the
following strategy, velocity error, crop harvester acceleration, and system delay, such as
in Equation (4). At the same time, the controller introduces an integral term to eliminate
the response error caused by soil resistance and soil softness. Generally, the system delay
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is caused by the wireless communication cycle, the main program control cycle, and the
action response of the actuator.

.
v0(t).
e(t)

.
h1,0(t)

 =

Zp
.
e(t− τ) + Zie(t− τ) + Zv

.
h1,0(t− τ) + Za

.
v1(t− τ)

V(h1,0(t))− v0(t)
v1(t)− v0(t)

 (4)

.
v0(t) is the acceleration of the grain truck;

.
h1,0(t) is the grain truck and harvester

relative velocity;
.
v1(t− τ) is the harvester velocity without controller delay;

.
e(t) is the

error of the grain truck desire and actual velocity; e is the grain truck following distance
error; h1,0(t) is the current distance of the harvester and grain truck; Zp, Zi, Zv, Za is the
gain coefficients.

The dots above the symbols represent the differentiation with respect to time.
When the crop harvester is operating at a constant velocity, it is driving at a constant

speed vc and distance hc with the grain truck. When the crop harvester velocity changes
actively or passively, it can be seen as velocity fluctuation based on a constant velocity, the
fluctuation amount is set as

ṽ1(t) = v1(t)− vc h̃1,0 = h1,0(t)− hc (5)

The following distance error of the grain truck is obviously also affected.
ec is the following distance error when the grain truck operates at a constant velocity;

ẽ(t) = e(t)− ec (6)

Since the grain truck changes with the crop harvester, the grain truck will also fluctuate.
Substituting Equations (5) and (6) into Equation (4), the new fluctuation model is obtained.

.
ṽ0(t).
ẽ(t)

.

h̃1,0(t)

 =

Zp
.
ẽ(t− τ) + Zi ẽ(t− τ) + Zv

.

h̃1,0(t− τ) + Za
.
ṽ1(t− τ)

f h̃1,0(t)− ṽ0(t)
ṽ1(t)− ṽ0(t)

 (7)

Here f = 1/td, there will be velocity fluctuations when the agricultural machinery
operating. Taking the velocity fluctuation of the crop harvester as the input quantity and the
velocity fluctuation of the grain truck as the output quantity, performing Laplace transform
on the Equation (7) under the zero initial condition, and obtaining the Equation (8).

G0,1(s) =
Ṽ0(s)
Ṽ1(s)

=
Zvs2 + Zp f s + f Zi + Zas3

s3eτs + (Zp + Zv)s2 + ( f Zp + Zi)s + f Zi
(8)

4. Stability Analysis of Following System for Grain Truck and Crop Harvester

The necessary and sufficient conditions for the following stability of grain trucks and
crop harvesters are

|G0,1(iw)| < 1 ∀w > 0 (9)

The velocity fluctuation of the crop harvester will be reduced when it is transmitted
to the grain truck. It is obvious to see from Equation (9) that there is a special fluctuation
frequency that 

|G0,1(iw1)| = 1
|G0,1(iw1)|′ = 0
|G0,1(iw1)|′′ < 0

(10)

w1 is the maximum critical frequency. From the Equation (10), the stability region of
the following system of the grain truck can be obtained.
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To simplify the operation, use the equivalent form of Equation (9)

T(w) = |G0,1(iw)|2 < 1 (11)

Substituting Equation (8) into Equation (11), deforming Equation (12)
T(w) = a1w6 + a2w5 − a3w4 + a4w3 + a5w2 − Zi

2 − 2 f Zi
2 − f 2Zp

2 − 2 f 2ZpZi − 2 f ZpZi (12)

In the Equation
a1 = Za

2 − cos2(τω)− sin2(τω)

a2 = 2Zp sin(τω) + 2Zv sin(τω)

a3 = 2ZpZv + Zp
2 + 2 f ZpZa

a4 = −2 f Zi sin(τω)− 2 f Zp sin(τω)− 2Zi sin(τω)

a5 = 2ZpZi + 2ZiZv + 2 f Zp
2 + f 2Zp

2 + 2 f ZpZi + 2 f ZpZv

If Equation (12) reaches its maximum value when w1 = 0, Equation (12) can be simpli-
fied to

T(w1) = −Zi
2 − 2 f Zi

2 − f 2Zp
2 − 2 f 2ZpZi − 2 f ZpZi (13)

From Equation (11) and Equation (13), the parameters must be Zp > 0 and Zi > 0.
Set the parameters Zi and Za as 0.2 and 0.25, respectively, and take the delay time as 0.2

s. According to Equation (8), (10) and (11), draw the stability region of the multi-machine
following system of agricultural machinery, as shown in Figure 2a. This area is delineated
by blue dots, and the parameters in this area satisfy the stability condition of the system.
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Figure 2. (a) Grain truck and crop harvester follow system stability; (b) Bode diagrams of stability at
different boundaries.

Three parameters are selected from Figure 2a to plot the stability, as shown in Figure 2b.
Point A is selected from the interior of the stability interval, point B is selected from the
boundary of the stability area, and point C is selected from the outside of the stability area.

Comparing the three points A, B, and C, it can be seen from Figure 2b that the
magnitude of the two points A and B are always less than or equal to 0, which matches
the multi-machine driving stability conditions of agricultural machinery. The velocity
fluctuation of any frequency of the crop harvester will be reduced during the transfer to
the grain truck. The magnitude of point C is greater than 0, and the system is unstable
during high-frequency fluctuations. From the above analysis, it can be proved that the
drawn stability reference area map meets the multi-machine driving stability requirements.

In order to analyze the influence of different delay parameters on the stability region,
assume Zi = 0.4, Za = 0.6, and draw the stability region, as shown in Figure 3.
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Figure 3. Stable region diagram under the influence of delay parameters τ. (a) τ = 0.1; (b) τ = 0.15
(c) τ = 0.2.

From the analysis of Figure 3, it can be seen that the influence of delay parameters
on stability is as follows: the longer the delay time, the smaller the stability interval. The
calculation period of the controller algorithm is 20 ms, the signal of the positioning system
is delayed by 50 ms, the response delay of the hardware controller of the grain truck is
50 ms, and the time delay of the whole system is approximately 0.15 s, which meets the
system stability requirements.

Set the relevant parameters Zi = 0.4, τ = 0.15, other parameters remain unchanged,
adjust the value of Za and draw a part of the stability area as shown in Figure 4. It is found
that with the increase of Za value, the stability range first increases and then decreases.
This shows that a suitable Za will increase the stability parameter selection range of the
system, and if the value is too large, the range of the system stability region will be reduced.
The stable range is greatest when Za is close to 0.4.
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and the time delay of the whole system is approximately 0.15s, which meets the system 
stability requirements. 
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Figure 4. Stability region diagram under the influence of parameters Za. (a) Za = 0.2; (b) Za = 0.4;
(c) Za = 0.6; (d) Za = 0.8.

In order to verify the influence of a single variable on the system stability region,
Za = 0.6, τ = 0.15 are remained, and Zi is taken as 0.1, 1, and 1.9, while the other parameters
remain unchanged, and the range of part of the stability region is drawn as shown in
Figure 5.

It can be seen from Figure 5 that as the value of Zi increases, the stability region shows
a trend of gradually shrinking, and when Zi is close to 0.1, the stability region is the largest,
and the selection range of other parameters is wider at this time. Similar analysis above is
carried out on Zp and Zv, and the range of parameter selection parameters satisfying the
following stability of agricultural machinery can be obtained. As the value of Zp increases,
the stability region first increases and then decreases, and the stability region of Zp is the
largest around 0.7; while the value of Zv is between 0 and 1, the stability region is the largest
and does not change significantly, and after 1 The stability region gradually decreases. In
summary, after determining the values of some parameters, the optimal interval of other
parameters can be obtained to ensure the stability of the system.
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5. Simulation and Vehicle Testing
5.1. Simulation Analysis

In order to verify the feasibility of the algorithm, a simulation operation scene is built,
the crop harvester is in the front, and the grain truck is in the back. According to the
previous stability analysis results, the simulation settings are Zp = 0.6, Zi = 0.2, Zv = 0.7,
Za = 0.3, τ = 0.15, k = 0. The two vehicles initially maintain a constant velocity balance,
the velocity is 1 m/s, and the velocity of the crop harvester jumps to 2 m/s at 15 s. The
simulation results are shown in Figure 6a, the grain truck catches the harvester’s velocity
at time 25 s, achieving new velocity balance. In order to further verify the response time of
velocity fluctuations, the adjusted Zp values were selected to be 0.2 and 1, and the response
time of the velocity change of the grain truck was observed. The results are shown in
Figure 6b,c, respectively. A new dynamic balance is reached at 35 s and 28 s. It can be
seen from the results in Figure 6 that the algorithm proposed in this paper can realize the
controlled vehicle to follow the driving stably, and at the same time, by adjusting the size
of the control parameters, the response time of the velocity change can be changed. It can
be seen from the following distance error diagram in Figure 6 that the expected vehicle
distance error of the crop harvester can converge to 0 after the velocity step change, so
it can be seen that the algorithm in this paper can effectively follow the expected vehicle
distance change caused by the velocity change.
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In order to verify that the algorithm also has good following performance under
continuous velocity disturbances, the parameter Zp = 0.6 is set, and velocity disturbances
of different frequencies and magnitudes are applied to the crop harvester, respectively. The
other control parameters are as above. The simulation is consistent, and the simulation
results are shown in Figure 7. Figure 7a,b are high-frequency high-magnitude velocity and
high-frequency low-magnitude velocity diagrams. It can be seen from the two figures that
in the face of high-frequency velocity disturbance, the grain truck adjusts the velocity within
a certain period of time. It can keep the same frequency change with the crop harvester,
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and for the velocity fluctuations of different magnitudes, the algorithm can ensure that
the crop harvester can achieve stable follow-up status. Figure 7c,d are the low-frequency
velocity diagrams with different magnitude, which can be obtained from the figure. Grain
trucks can also achieve a stable following. Analysis of the above shows that the algorithm
has strong resistance to velocity disturbance, and the high-amplitude and high-frequency
velocity disturbance of the crop harvester does not affect the normal operation of the grain
truck. At the same time, it is observed that the velocity fluctuation of the grain truck in
the image is smaller than the velocity fluctuation of the crop harvester, which is in line
with the stability condition of multi-vehicle driving of agricultural machinery. In summary,
this paper obtains the parameter selection interval of the algorithm based on the stability
analysis to ensure that the control strategy has a certain robustness and that the algorithm
can meet the field operations in most scenarios.
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Figure 7. Following simulation diagram under the influence of velocity magnitude fluctuation.
(a) Low magnitude high frequency; (b) High magnitude high frequency; (c) Low magnitude low
frequency; (d) High magnitude low frequency.

Take k = 1, m = 360 kg, and the other parameters are consistent with the simulation
settings above. The simulation sets the crop harvester to spit out 20 kg of grain per second,
and the max of sprayed grain is 360 kg. It can be seen from Figure 8 that the crop harvester
is in front of the first 5 s, the grain transporter is behind, and the grain transporter gradually
follows the velocity of the crop harvester. After 5 s, the dynamic tracking balance is reached.
After the grain truck accumulates standard quality crops in about 18 s, the following
strategy is triggered. The grain truck starts to increase the velocity, adjust the distance
between the two vehicles, and reaches a new balance after 25 s, which verifies the proposed
method in this paper.
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5.2. Real-Vehicle Test

The purpose of this paper is to realize the cooperative following operation of agricul-
tural vehicles. To realize the cooperative follow-up operation of agricultural vehicles, in
order to verify the effectiveness of the proposed control algorithm, a real-vehicle test is
carried out combined with two small electric vehicles modified independently, as shown
in Figure 9a. Considering that the robot has great differences in power and maximum
speed compared with the real tractor, the verification experiment in this paper limits the
experimental conditions to flat and firm roads with low-speed marching. At the same time,
the experimental site is located on an open and flat road, which meets the requirements of
receiving stable GPS satellite signals, and also minimizes the interference of the robot itself
to the verification experiment in the experiment, set the parameter as Zp = 0.6, Zi = 0.2,
Zv = 0.7, Za = 0.3, τ = 0.15, k = 1.
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velocity.

The test vehicle used in this paper only controls the velocity precisely, without ac-
celeration control. To control the acceleration of the controlled vehicle, the algorithm
needs to obtain the relationship between acceleration and velocity. Therefore, through the
velocity change test of the vehicle, the relationship between velocity and acceleration is
calibrated, and the conversion relationship between acceleration and velocity is obtained in
Figure 9b. The vehicle acceleration and deceleration controls obtain the control command
by interpolating the current vehicle velocity and the expected acceleration look-up table.

Figure 10 shows the velocity response of the following vehicle when the preceding
vehicle is traveling at a velocity of about 0.75 m/s. The target vehicle accelerates in the first
5 s and accelerates to 0.9 m/s in the 5 s; then decelerates; at the 13th second, it decelerates
to a minimum velocity of 0.6 m/s, and then periodically accelerates and decelerates. The
desired distance between the two vehicles in the first 25 s is 2 m, and the expected following
distance is adjusted to 1.85 m in the 25 s. It can be observed from the diagram that although
the velocity response curve of the controlled vehicle lags behind the velocity curve of
the target vehicle, the lag time difference is very short and does not affect the movement
of the controlled vehicle following the target vehicle. In addition, there is no obvious
excessive response to the velocity of the controlled vehicle, which indicates that the velocity
fluctuation of the target vehicle does not have the phenomenon of fluctuation amplification
when it is transmitted to the controlled vehicle, which satisfies the following stability.
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Figure 10. Following velocity diagram.

The following distance between the two vehicles is shown in Figure 11. Combining
Figures 11a and 11b, it can be seen that the following distance of the two vehicles overshoots
from 0 to 13 s, the maximum overshoot is 0.219 m, and then the vehicle tends to be stable,
the steady-state following error is 0.12 m, after 25 s, the expected vehicle distance affects
strongly, overshoot occurs again, the maximum overshoot is 0.138 m, the following distance
between 33 s and 35 s tends to be stable, the steady-state error is less than 0.1 m, and after
35 s, the expected vehicle distance is 1.85 m. The fluctuation tends to be stable.
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The real-vehicle test results show that the system is affected by the velocity fluctuation
of the preceding vehicle, the rear vehicle can effectively follow the preceding vehicle, and
the stability is good. When the desired distance changing, at first, some overshooting
increases and then tends to be stable. The system has robustness.

The velocity response effect of the algorithm proposed in this paper is verified in real
vehicles, and the velocity diagrams of the two vehicles are shown in Figure 12. The driving
process of the target vehicle is divided into two stages, the first stage is the variable velocity
driving stage, and the second stage is the constant velocity driving stage. It can be seen
from the figure that the target vehicle frequently accelerates and decelerates from 0 to 15 s
and gradually accelerates to the desired velocity of 1 m/s after 15 s. After stabilization,
the vehicle velocity fluctuates around 1 m/s. In the process of variable velocity driving,
although the velocity of the controlled vehicle lags behind the target vehicle, it can keep
up with the velocity change of the target vehicle. After 20 s, the target vehicle began to
drive at a constant velocity, and the velocity of the target vehicle fluctuated slightly, and
the controlled vehicle could follow. The actual vehicle following effect is consistent with
the theoretical analysis, and it is preliminarily verified that the algorithm in this paper can
realize the stable following of the controlled vehicle to the target vehicle on the real road.
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To verify the control effect of the algorithm in real land, use the modified New Holland
1404 (CNH Industrial N.V. London, United Kingdom) as the test tractor to conduct the
virtual tractor real-vehicle test of the charged tractor following the preceding vehicle, set
the parameter as Zp = 0.6, Zi = 0.2, Zv = 0.7, Za = 0.3, τ = 0.15, s initial distance between
vehicles is 4 m. Set the virtual tractor speed as shown in Figure 13. the virtual tractor
initial speed is 1 m/s, accelerate at time 25 s, when the time hits 30 s, the speed increased
to 1.5 m/s; the speed starts to decelerate from 50 s, after 5 s the speed decelerate to 1 m/s.
From the figure, we can see that, from the beginning 5 s, to keep the same speed as the
virtual tractor, the controlled tractor has a large speed overshoot at the initial stage of
acceleration; in about 5 s, the controlled tractor keeps up with the speed change of the
virtual tractor. At 25 s, due to the virtual tractor speed change, the controlled tractor keeps
up with the front tractor slowly, also no overshooting during the process. Finally, after the
deceleration procedure, the tractor keeps 1 m/s speed, following the virtual tractor. The
actual vehicle test results show that the tractor following effect is in line with the theoretical
analysis. The validity of the parameter selection method of the algorithm in this paper is
verified, and the controlled tractor can follow the virtual tractor stably on the real soil.
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6. Conclusions

Aiming at the problem of cooperative operation between grain transporter and crop
harvester, a vehicle following controller is designed with grain transporter as the controlled
object. The conclusion follows below.

According to the operating characteristics of grain trucks and crop harvesters, a follow-
up strategy for agricultural machinery that can adaptively adjust the following distance
based on the weight of grain trucks is proposed. The experimental results show that the
follow-up strategy is feasible.

By establishing the kinematics differential equation and combining it with the vehicle
following strategy, an agricultural machinery following control algorithm considering
vehicle load change and control delay is designed. By constructing the transfer function,
the influence of each parameter on the stability region is analyzed in detail, and the optimal
interval of the parameter is obtained.
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The simulation experiment and real-vehicle test results show that the following strat-
egy and algorithm designed in this paper have certain stability and robustness, and the
parameter selection method has certain feasibility and effectiveness.
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