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Abstract: Soil organic matter (SOM) is one of the main sources of plant nutrition and promotes plant
growth and development. The content of SOM varies in different areas of the field. In this study, a
method based on pyrolysis and electronic nose combined with multi-feature data fusion optimization
was proposed to realize rapid, accurate and low-cost measurement of SOM content. Firstly, an
electronic nose was used to collect response data from the soil pyrolysis gas, and the sensor features
(10 × 6) were extracted to form the original feature space. Secondly, Pearson correlation coefficient
(PCC), one-way analysis of variance (One-Way ANOVA), principal component analysis algorithm
(PCA), linear discriminant analysis algorithm (LDA), and genetic algorithm-backpropagation neural
network algorithm (GA-BP) were used to realize multi-feature data fusion optimization. Thirdly,
the optimized feature space was used to train the PLSR models, and the predictive performance
of the models were used as an indicator to evaluate different feature optimization algorithms. The
results showed that the PLSR model with GA-BP for feature optimization had the best predictive
performance (R2 = 0.90) and could achieve accurate quantitative prediction of SOM content. The
dimensionality of the optimized feature space was reduced to 30 and there was no redundancy in the
sensor array.

Keywords: pyrolysis; electronic nose; soil organic matter; feature optimization; prediction model

1. Introduction

Soil organic matter (SOM) is all organic matter containing carbon present in the soil,
including plant and animal residues, soil microorganisms and the various organic sub-
stances they decompose and synthesize [1,2]. SOM is one of the important indicators of soil
nutrient supply capacity and fertility [3,4]. Understanding soil fertility information based
on SOM content is one of the most important elements in achieving precision agriculture
and promoting sustainable agricultural development. Therefore, there is an urgent need
for an accurate, fast, and low-cost determination method to detect the SOM content.

Traditional methods of measuring SOM include the dry burning method, wet burn-
ing method and potassium dichromate volumetric method, etc. [5–7]. The potassium
dichromate volumetric method is widely used for SOM content measurement because
of its accurate measurement results [8]. However, this method needs to be handled by
professionals in a chemical laboratory, and there are problems such as time-consuming and
laborious, complex operation and pollution. In recent years, near infrared spectroscopy
(NIRS) and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) have been
applied to the measurement of SOM content. NIRS allows for non-destructive, efficient,
real-time measurement of parameters in large numbers of soil samples [9–12]. However,
this method is affected by soil moisture, iron oxide and soil texture. Py-GC/MS is widely
used in the analysis of soil constituents because of its rapidity, sensitivity, and low sample
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requirement [13,14]. However, this method requires expensive equipment, complex opera-
tional procedures and many measurement indicators, which are not conducive to rapid
testing in agriculture [15,16].

Electronic nose technology is an integrated detection technology combining sensor
technology, signal processing, computer science and pattern recognition, which simulates
the process of perception, analysis and recognition of gases by the human olfactory sys-
tem [17–19]. Electronic nose technology is widely used in food safety, medical analysis, and
environmental testing [20–23]. Currently, this technique is used to detect soil characteriza-
tion and SOM [24–27]. In the practical application of the electronic nose, feature selection
and feature dimensionality reduction in the response data are required to better represent
the electronic nose response data. Feature optimization reduces non-linearity and correla-
tion between features and removes features that contribute little to modelling, resulting
in a feature space with strong recognition ability and less dimensionality [28,29]. Xv et al.
extracted the mean differential value, stability value, and area value of sensor response
curves to form a feature space and applied it to the pattern recognition of pecan aging
time [30]. Wei et al. used the “maximum value”, “area value” and “70th s value” methods
to extract feature data from the electronic nose response and applied the feature data to
peanut quality detection [31]. Cevoli et al. used PCA and four classical feature extraction
algorithms to optimize the e-nose response data and tested the classification ability of
these algorithms with artificial neural networks (ANN) [32]. Sun et al. used Wilks’ lambda
statistic, Mahalanobis distance, PCA, linear discriminant analysis and the genetic algorithm
to simplify the sensor array and improve the recognition rate for bacteria samples [33].
Zhang et al. used partial least squares regression (PLSR), principal component regression
(PCR) and support vector machine regression (SVR) methods to develop a regression model
for predicting the population density of Herbst in wheat [34]. Qiu et al. used multivariate
statistical methods (LDA and PLSR) and neural networks (random forests and support
vector machines) for qualitative classification and quantitative regression, which effectively
improved the prediction accuracy of e-nose (E-nose) for fruit juice [35]. Jiang et al. used
PCA to visualize the discrimination between pecans based on E-nose data and used the
BPNN model and PLSR model to predict pecan storage time and fatty acid content [36].

The authors’ group developed a method for measuring the content of soil total nitrogen
based on thermal cracking and an artificial olfactory system [37]. Sample rejection methods
(MCCV and K-means LOOCV) and feature reduction algorithms (PCA and GA-BP) were
applied to solve the problem of prediction accuracy of STN based on manual olfaction, and
the results showed that the PLSR prediction model showed the best predictive performance,
after optimizing the treatment of the feature space using MCCV and GA-BP methods.
However, the method was unable to achieve quantitative prediction of SOM content. In this
work, a method based on pyrolysis and electronic nose combined with multi-feature data
fusion optimization was proposed to realize the measurement of SOM content. Firstly, the
pyrolysis chamber was used to rapidly pyrolyze soil samples. Electronic nose was used to
collect response curves of pyrolysis gas from different soil samples, and six features of the
sensor response data were extracted to form the original feature space. Secondly, two single
feature selection algorithms (PCC, One-Way ANOVA) and three feature dimensionality
reduction algorithms (PCA, LDA and GA-BP) were used to optimize the feature space.
Thirdly, optimized feature space was used to train the PLSR model and the effectiveness of
different feature optimization algorithms were evaluated using the predictive performance
of the model as an evaluation metric.

2. Materials and Methods
2.1. Study Area and Soil Samples

The 121 soil samples were collected from different areas of Jilin Province. Jilin province
belongs to the central part of Northeast China, bordering Russia and North Korea, in the
geographic center of Northeast Asia on the east side of mid-latitude Eurasia. Figure 1
shows the location of Jilin Province and the soil sample sampling locations.
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Figure 1. Location of study area and soil sample sampling locations.

To ensure the validity of the soil samples, the sampling sites avoided roadsides, ditch
edges and areas where decaying material and manure had accumulated. Sixteen soil
samples were collected at a depth of 0–20 cm using an S-shaped spread sampling method
and then mixed well. According to the quartering method, 1 kg of soil sample was retained
for each sample. The soil samples, stripped of debris such as animal and plant remains
and stones, were left to dry indoors in a ventilated place for 3–5 days. The air-dried soil
samples were ground and passed through a 1 mm aperture sieve. Depending on the needs
of the experiment, each soil sample was split into two, one measured by the potassium
dichromate volumetric method and the other by pyrolysis and the electronic nose method.

2.2. Chemical Testing of Soil Samples

The potassium dichromate volumetric method is the standard method for measuring
the SOM content. In this study, the organic matter content of 121 soil samples was first
measured using the potassium dichromate volumetric method. Each sample was measured
three times, and the results were averaged. The SOM content was based on the results of
the potassium dichromate method, which was used for subsequent predictive modelling.
The measurement results of soil samples were statistically described by SPPSS 24 software
(Figure 2). The organic matter of arable soils can be divided into six classes according to
their content, i.e., greater than 40 g/kg, 30–40 g/kg, 20–30 g/kg, 10–20 g/kg, 6–10 g/kg
and less than (equal to) 6 g/kg. Generally, the best standard for organic matter content
in the field is 30–50 g/kg. As shown in Figure 2, the SOM content of 121 soil samples
ranged from 6.32 to 78.81 g/kg, the mean value was 31.40 g/kg, the standard deviation was
14.95 g/kg, and the coefficient of variation was 47.61%. The organic matter content of the
soil samples approximately obeyed a normal distribution and showed a large variability,
which provided a solid basis for establishing a robust model.
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2.3. Pyrolysis and Electronic Nose Detection System
2.3.1. Structure of the System

The device used in the paper was a SOM detection system based on pyrolysis and
electronic nose, as shown in Figure 3. The system consists of a pyrolysis chamber and
electronic nose system. The pyrolysis chamber consists of a pyrolysis furnace, vacuum
flange, quartz boat and quartz tube, etc. The electronic nose system is mainly composed a
of gas reaction chamber (internally mounted gas sensor array), signal processing circuit, NI
data acquisition card and a computer. The gas reaction chamber is rectangular in shape,
and it has a volume of 400 cm3. The gas reaction chamber is made of polypropylene resin,
which has good chemical stability and corrosion resistance. The pyrolysis furnace was
manufactured by Thermo Scientific Lindberg, USA. The products after soil pyrolysis mainly
include alkanes, olefins, aromatics, nitrogen-containing compounds, fatty acids, lignin,
phenolic substances, polysaccharides, chitin and other substances [38]. Therefore, 10 kinds
of oxide semiconductor gas sensors produced by Figaro were selected to form the gas
sensor array. Table 1 shows the names and main parameters of e-nose sensors.
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Table 1. Gas sensor model and parameters.

Senor Number Model Detection of Gas Types Measuring Range
(ppm)

S1 TGS826 Ammonia 30–300
S2 TGS2602 Ammonia, VOC, hydrogen sulfide, etc. 1–30
S3 TGS2610 Butane, LP gas 500–10,000
S4 TGS2620 Ethanol, organic solvent 50–5000
S5 TGS821 Hydrogen 100–1000
S6 TGS2603 Trimethylamine, methyl mercaptan, etc. 1–10
S7 TGS2611 Methane, natural gas 500–10,000
S8 TGS823 Ethanol 50–300
S9 TGS2600 Hydrogen, alcohol, etc. 1–30
S10 TGS2612 Methane, propane, isobutane 3000–9000

2.3.2. Detection Method

When the detection system was working, a quartz boat was used to hold 1.68 g of
the soil sample and placed it in the center of the quartz tube. The vacuum flange was
closed to keep the pyrolysis chamber in a sealed state. The pyrolysis temperature was
set to 384 ◦C, and the pyrolysis time was 2 min 41 s. After completion of pyrolysis, the
LabVIEW detection program was started, the vacuum flange was opened, and the flow
rate of the vacuum pump was set at 1 L/min, so that the cracking gas in the cracking room
entered the gas reaction room, and the response data of the sensor array to the cracking
gas were collected. The acquisition time was 60 s, and the acquisition frequency was 10 Hz.
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When data acquisition was complete, the reaction chamber and interconnecting pipes were
cleaned with 3 L/min clean air for 2 min to complete the sensor reset, and the quartz boat
and quartz tube were washed with water. The measurement was repeated three times for
each sample. This system takes 10 min to test a soil sample, half the time of the potassium
dichromate volumetric method.

2.3.3. The Response of Sensor Arrays to SOM

In order to verify whether the sensor array composition was reasonable, pyrolysis
gas data were selected with a SOM content of 6.32 g/kg and 78.71 g/kg, respectively,
and Figure 4 was obtained. As shown in Figure 4, the sensor stabilization time was 40 s.
In addition, each sensor showed a large difference in response to different soil gases
simultaneously, indicating that the array had good sensitivity to the difference in pyrolysis
gases and the sensor array was reasonable.
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2.4. Feature Selection

The appropriate features extracted from the response curves of the sensor array
are beneficial for building predictive models with strong generalization ability and high
coefficient of determination. The paper extracted the mean value (Vmean), the maximum
gradient value (Vmgv), the maximum value (Vmax), the response area value (Vrav), the
3rd-second transient value (V3s), and the mean differential coefficient value (Vmdc) of the
sensor response data to construct a feature space. The feature space contained the transient
value, the stable value, the dispersion, the overall strength and the change rate of sensor
array response curves, which could characterize the response curves of gas sensors. The
formula of Vmean, Vmgv, Vrav and Vmdc are as follows:

Vmean =

n
∑

i=1
Xi

n
(1)

Vmgv =
Ximax − X0

i
(2)

Vrav =
N

∑
i=1

Xi4 t (3)

Vmdc =
1

N − 1

n−1

∑
i

Xi+1 − Xi
4t

(4)

where Xi is the i-th data of the sensor data, Ximax is the maximum value in the sensor data,
and X0 is the initial value of the sensor data, ∆t is the interval time between two adjacent
collection points, taking 0.1 s, N is the total number of sensor data.

The sensor array was composed of 10 gas sensors and 6 features of each sensor
response curve were extracted, combined into a 121 × 10 × 6 original feature space.
Table 2 shows the correspondence between each feature and feature number. In order to
eliminate the influence of order of magnitude and dimension on modeling, the z-score
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standardization method was used to standardize the extracted features. This method
allowed the feature space to satisfy the standard normal distribution and is suitable for
situations where there are outliers in the sequence that are outside the range of values. The
conversion formula is as follows:

zi =
Vi − µ

σ
(5)

where Vi is the feature value (Vmean, Vmgv, Vmax, Vrav, V3s and Vmdc), µ is the mean value
of a feature value of a sensor, and σ is the standard deviation of a feature value of a sensor.

Table 2. The correspondence between each feature and feature number.

Feature Parameters Sensor Number Feature Number

Vmean S1, S2, S3, . . . S9, S10 E1, E2, E3, E4, E5, E6, E7, E8, E9, E10
Vmgv S1, S2, S3, . . . S9, S10 G1, G2, G3, G4, G5, G6, G7, G8, G9, G10
Vmax S1, S2, S3, . . . S9, S10 M1, M2, M3, M4, M5, M6, M7, M8, M9, M10
Vrav S1, S2, S3, . . . S9, S10 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10
V3s S1, S2, S3, . . . S9, S10 V1, V2, V3, V4, V5, V6, V7, V8, V9, V10

Vmdc S1, S2, S3, . . . S9, S10 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10

2.5. Training Set and Testing Set Division

In order to build a model that can accurately predict the content of the SOM, the
sample set needed to be divided into a training set and a testing set. The training set was
used to construct the prediction model and the testing set was used to verify the prediction
performance of the model. The Kennard Stone algorithm, which divides the training
and testing sets based on Euclidean distance, is an excellent method for dividing sample
sets [39,40]. A total of 121 soil samples were collected in this study, and the Kennard–Stone
method was used to divide the 85 samples into a training set and the 36 samples into a
testing set.

2.6. Feature Optimization Algorithms
2.6.1. Single Feature Ranking Algorithms

The single feature ranking algorithms rank the features according to their importance,
remove the unimportant features in turn, and finally obtain the best feature subset. In
this study, Pearson correlation coefficients and analysis of variance were used to rank the
features of the feature space according to the importance of features.

Pearson correlation coefficient (PCC) is used to measure the correlation between
variable X and variable Y, and its value range is −1–1 [41]. When PCC is 1, it indicates that
X and Y are positive linear correlation, and all data points fall on a straight line. When PCC
is −1, it indicates that X and Y are negative linear correlation. When PCC is 0, it indicates
that there is no linear relationship between X and Y.

Analysis of variance (ANOVA), also known as “analysis of variance”, was used to
test the significance of the difference between the mean of two or more samples [42]. It
determines the influence of controllable factors on the research results by analyzing the
contribution of variation from different sources to the total variation. In this work, one-way
analysis of variance (One-Way ANOVA) was used to analyze the relationship between
feature and SOM content.

2.6.2. Feature Dimensionality Reduction Algorithms

In this study, three feature dimensionality reduction algorithms were used to reduce
the dimensionality of the feature space in order to obtain a set of features with high
recognition ability and low redundant features.

Principal component analysis algorithm (PCA) is one of the most widely used unsu-
pervised dimensionality reduction algorithms. The main idea of PCA algorithm is to map
n-dimensional features onto k-dimensional. The reconstructed k-dimensional orthogonal
feature based on the original n-dimensional feature is called the principal component [43].
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PCA reduces the dimensionality of the feature space by retaining only those features that
contain most of the variance and ignoring those that contain almost zero variance.

Linear discriminant analysis algorithm (LDA) is a classical linear learning method and
a supervised learning technique for dimensionality reduction [44]. LDA projects the data
in a low dimension. After projection, it is hoped that the projection points of each category
of data are as close as possible, while the distance between the category centers of different
categories of data is as large as possible.

The GA-BP is a combination algorithm of genetic algorithm (GA) and back propagation
neural network algorithm (BPNN). GA is a method for searching for optimal solutions by
simulating the natural evolutionary process, and it is very suitable for dealing with complex
and non-linear optimization problems that are difficult to solve with traditional search
algorithms. BPNN has nonlinear mapping ability, adaptive ability and generalization
ability, but it is very sensitive to the initial weights and tends to converge to local minima.
GA is used to perform a global search for the weights and thresholds of the BPNN and
combined with the ability of the local search of the BPNN, the global optimal solution of
the problem can be obtained.

2.7. PLSR Model

In this work, partial least squares regression algorithm (PLSR) was selected to establish
the regression prediction model of SOM content. PLSR is a multivariate regression analysis
method that combines PCA, multiple linear analysis and typical correlation analysis.

2.8. Assessing the Model Performance

The model’s performance was evaluated by root mean square error (RMSE), coefficient
of determination (R2) and residual prediction deviation (RPD). The RMSE (Equation (6))
reflects the error between model predictions and observations. The R2 (Equation (7)) and
RPD (Equation (8)) both reflect the variation in the response variable explained by the
model; however, RPD predicts better for non-linear models compared to R2 and can be
used to further measure the predictive performance of the model [45].

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (7)

RPD =

√√√√∑n
i=1 (yi − yi)

2

∑n
i=1 (yi − ŷi)

2 (8)

where yi is the observed SOM content, ŷ is the predicted SOM content, y is the mean of
observed SOM content, n is the number of data points in the dataset.

3. Results and Analysis
3.1. Feature Optimization Results
3.1.1. The Result of Single Feature Ranking Methods

PCC and One-way ANOVA were used to analyze the correlation between features and
SOM content, and the features were ranked in descending order of correlation, as shown in
Table 3.
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Table 3. Feature importance ranking in single feature ranking methods.

Analytical Method Feature Importance Ranking

PCC

M6, D6, D2, D8, M8, D7, E1, M1, R1, M2, D1, D4,
D9, E6, M10, R10, D3, E9, R9, R6, D10, E2, M4, R2,
M9, E4, E10, R4, E8, R8, M5, E5, R5, D5, E7, R7,

M3, G1, G4, V1, G9, G7, G3, V6, V10, M7, V5, G10,
E3, R3, V3, V2, V7, G6, V8, V4, G8, G2, V9, G5

One-way ANOVA

D4, D6, D9, E1, R1, M6, D8, V2, V1, D10, G10,
M2, E2, R2, M5, V6, M4, E6, R6, M1, M9, D7, G2,
M8, D2, D1, M10, M3, R5, E5, M7, G1, V9, R9, E9,
E4, R4, E10, R10, D3, V10, R8, E8, V3, G9, D5, V7,
V5, G7, G6, E3, R3, V4, R7, E7, G4, G5, V8, G8, G3

According to the importance of features, the prediction accuracy of PLSR prediction
models established by different single feature ranking methods was obtained, as shown in
Figure 5.
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When fewer features were used, the prediction accuracy of the PLSR model established
by One-Way ANOVA was higher than that of PCC. When more than six features were
used, the prediction accuracy of the PLSR model tended to increase first and then stabilize
as the number of features increased. When the number of features selected was 40, the
prediction accuracy of the PLSR model established by PCC was the highest. When the
number of features selected was 42, the prediction accuracy of the PLSR model established
by One-Way ANOVA was the highest.

The predictive performance of the PLSR models established by the single feature
ranking algorithms for SOM content on the training and testing sets is summarized in
Table 4. The observed and the predicted SOM content are shown in Figure 6. The model
prediction results showed that the R2 of training and testing sets of the PLSR prediction
model established by single feature ranking algorithms was not less than 0.83, RMSE was
not more than 7.48, and RPD was not less than 2.28, indicating that the model had the
ability to quantitatively predict SOM content. Compared to the One-Way ANOVA, the
testing set of the PLSR prediction model established by PCC showed 1.75% improvement
in R2, 3.93% improvement in RPD and 3.78% reduction in RMSE, indicating that the model
built with PCC was more effective in prediction.

Table 4. The predictive performance of PLSR models established by single feature ranking algorithms.

Single Feature Ranking Method Dimension of Feature Space
Training Set Testing Set

R2 RMSE RPD R2 RMSE RPD

PCC 40 0.83 5.75 2.40 0.84 7.19 2.37
One-Way ANOVA 42 0.84 5.51 2.51 0.83 7.48 2.28
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Figure 6. The prediction plots of SOM content by the PLSR model established by (a) PCC;
(b) One-Way ANOVA.

According to the prediction performance of the model and the dimension of feature
space, PCC is the best feature optimization method in single feature ranking algorithms.
However, the single feature ranking algorithms ignore the connection and correlation
between individual features, resulting in a certain amount of redundant information in
modelling, which is not conducive to building an efficient and accurate predictive model.

3.1.2. The Result of Feature Dimensionality Reduction Algorithms

PCA was used to optimize the feature space, and the cumulative contribution rate of
variance information was set to 95%. The cumulative contribution result of the principal
components was obtained, as shown in Figure 7.
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The variance information contribution rate of the first principal component (α1), the
second principal component (α2), the third principal component (α3), etc., and the tenth
principal component (α10) were 52.28%, 17.85%, 8.08%, 5.22%, 4.31%, 2.49%, 2.03%, 1.56%,
1.14% and 1.07%, respectively. The cumulative contribution of the variance information of
the first 10 principal components reached 96.02%, indicating that 10 principal components
can reflect the basic information of the feature space.

The PLSR model was built using the feature space optimized by PCA algorithms, and
the predictive performance of the model for SOM content on the training and testing sets is
summarized in Table 5. The observed and the predicted SOM content are shown in Figure 8.
The R2 of the training and testing set of the PLSR prediction model established by the PCA
algorithm was not less than 0.82, RMSE was not more than 7.74, and RPD was not less than
2.20, indicating that the model had the ability to quantitatively predict SOM content. In
the testing set, when the SOM content was high, the prediction results were lower than
the actual values. The reason was that there were relatively few samples with high SOM
content in the training set, and soil samples in this content range did not allow the model
to be adequately trained, resulting in a reduction in the generalization ability of the model.
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Table 5. The predictive performance of PLSR models built with PCA algorithm.

Dimension of Feature Space
Training Set Testing Set

R2 RMSE RPD R2 RMSE RPD

10 0.82 5.99 2.31 0.83 7.74 2.20
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The SOM data in this study were continuous regression data. To obtain the best
dimensionality reduction for LDA, soil samples were divided into 5, 7, 9 and 11 categories
according to the SOM content. The predictive performance of the PLSR model established
by LDA algorithm for SOM content on the training and testing sets is summarized in
Table 6. The observed and the predicted SOM content are shown in Figure 9.

Table 6. The performance parameters for PLSR models established by LDA algorithm.

SOM Category Dimension of Feature Matrix
Training Set Testing Set

R2 RMSE RPD R2 RMSE RPD

5 4 0.81 6.19 2.23 0.81 8.57 1.99
7 6 0.84 5.56 2.48 0.84 7.02 2.42
9 8 0.88 4.86 2.84 0.88 5.88 2.89

11 10 0.87 5.08 2.72 0.86 6.35 2.68

When the soil samples were classified into five categories according to SOM content,
the model built with the training set was R2 = 0.81, RPD = 2.23, RMSE = 6.19, and the testing
set R2 = 0.81, RPD = 1.99, RMSE = 8.57, indicating that the model had a low predictive
performance. The predictive performance of the model was significantly improved when
the soil samples were divided into seven categories, with a 3.17% improvement in R2,
11.31% improvement in RPD and 10.16% reduction in RMSE for the training set, 3.76%
improvement in R2, 22.00% improvement in RPD and 18.03 reduction in RMSE for the
testing set. When the soil samples were classified into 9 classes, the model built with the
training set was R2 = 0.88, RPD = 2.84, RMSE = 4.86, and R2 = 0.88, and the testing set
R2 = 0.88, RPD = 2.89, RMSE = 5.88. The model achieved the best prediction performance,
and the feature space was reduced to 8 dimensions. Compared to 9 classes, when the soil
samples were classified into 11 classes according to SOM content, with 1.24% reduction in
R2, 4.22% reduction in RPD, and 4.40% improvement in RMSE for the model built with the
training set, 2.04% reduction in R2, 7.30% reduction in RPD, 7.87% improvement in RMSE
for the testing set, indicating that the prediction performance of the model decreased due
to over-fitting as the number of features per sample increased.
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GA-BP was used to optimize the feature space, and the population size was set to
50. The individual length was set to 60, and the output condition was set to 100 iterations.
After 27 iterations, the best fitness value of the feature space remains unchanged, and the
electronic nose feature space achieved the best dimensionality reduction effect. In this case,
the selected optimal feature numbers were E1, E2, E3, E6, E7, E8, E10, G6, G8, G9, M1, M4,
M6, M9, M10, R1, R2, R4, R5, R6, R8, R9, V2, V3, V4, V8, D1, D3, D6, D7, and the dimension of
the feature was reduced from 60 to 30.

The PLSR model was built using the feature space optimized by GA-BP algorithms,
and the predictive performance of the model for SOM content on the training and testing
sets is summarized in Table 7. The observed and the predicted SOM content are shown in
Figure 10. The R2 of training and testing set of the PLSR prediction model established by
GA-BP algorithm was not less than 0.90, RMSE was not more than 5.98, and RPD was not
less than 2.84, indicating that the model could accurately predict the SOM content.

Table 7. The predictive performance of PLSR models built with GA-BP algorithm.

Dimension of Feature Space
Training Set Testing Set

R2 RMSE RPD R2 RMSE RPD

30 0.90 4.60 3.00 0.90 5.98 2.85
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3.2. Comparison of the Results of Different Feature Optimization Algorithms

After optimization by different algorithms, the dimension of feature space and the
prediction performance of the PLSR model are shown in Table 8. The single feature ranking
methods (PCC and One-way ANOVA) optimized the highest dimension in the feature
space (40 and 42, respectively), with PCC optimization being more effective than One-way
ANOVA. PCA mapped the 60-dimensional data in feature space to the 10-dimensional
space, and the model had R2 = 0.83, RPD = 2.20, RMSE = 7.74, indicating that the prediction
accuracy of the model was better than PCC. LDA used supervised learning to reduce the
feature space to 8 dimensions, and the model had R2 = 0.88, RPD = 2.89, RMSE = 5.88,
indicating that the prediction accuracy of the model was better than PCA algorithm. GA-BP
reduced the dimensionality of the feature space to 30 by using the global search capability
of GA and the non-linear mapping capability, strong adaptive capability and generalization
capability of BPNN, and the model had R2 = 0.90, RPD = 2.85, RMSE = 5.98, indicating that
the model predicted the best results and could achieve the quantitative prediction of SOM
content. From the above analysis, the GA-BP-optimized feature space performed best.

Table 8. Comparison of optimized results of different feature optimization algorithms.

Feature Selection Algorithms Dimension of Feature Space
Prediction Performance of PLSR

R2 RMSE RPD

PCC 40 0.84 7.19 2.37
One-way ANOVA 42 0.83 7.48 2.28

PCA 10 0.83 7.74 2.20
LDA 8 0.88 5.88 2.89

GA-BP 30 0.90 5.98 2.85

3.3. Results of Feature Optimization Based on GA-BP Algorithm

After optimization by GA-BP, the sensors were ranked according to the contributing
feature dimensions and the results are shown in Table 9. The contributions of the six feature
parameters to the feature space were as follows: Vrav > Vmean > Vmax > Vmdc = V3S > Vmgv,
and provided 7, 6, 5, 4 and 3-dimensional features, respectively. The dimension contribution
of the Vmgv was smallest. The Vrav, Vmean and Vmax were important features reflecting the
internal relationship between the electronic nose system and the SOM content.

In addition, different sensors contribute different dimensions to the feature space. The
TGS2603 sensor provided 5-dimensional features, the TGS826 sensor provided
4-dimensional features, the TGS821 sensor and the TGS2612 sensor provided 2-dimensional
features, the TGS2602 sensor provided only 1-dimensional features, and the rest of the
sensors provided 3-dimensional features. The gas sensors used in this work all contributed
to the composition of the electronic nose feature space, indicating that the sensor array was
effective and non-redundant for the detection method of SOM content based on pyroly-
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sis and electronic nose. Different sensors had different sensitivities to soil pyrolysis gas,
indicating that various gases constituted pyrolysis gas with different concentrations. The
TGS2603 sensor and TGS826 sensor contributed the most to the feature space, indicating
that ammonia, trimethylamine, methyl mercaptan, etc., had higher concentrations in the
pyrolysis gas, and the concentrations of these gases could best represent the SOM content.
The results can provide a reference for the further optimization of subsequent sensor arrays.

Table 9. The corresponding relationship between sensor model, feature number and feature parame-
ters after GA-BP optimization.

Sensor Type Feature Number Feature Parameters

TGS2603 E6, G6, M6, R6, D6 Vmean, Vmgv, Vmax, Vrav, Vmdc
TGS826 E1, M1, R1, D1 Vmean, Vmax, Vrav, Vmdc

TGS2610 E3, R3, V3 Vmean, Vrav, V3s
TGS2620 R4, V4, D4 Vrav, V3s, Vmdc
TGS2611 E7, G7, D7 Vmean, Vmgv, Vmdc
TGS823 E8, R8, V8 Vmean, Vrav, V3s

TGS2600 G9, M9, R9 Vmgv, Vmax, Vrav
TGS821 M5, R5 Vmax, Vrav

TGS2612 E10, R10 Vmean, Vrav
TGS2602 V2 V3s

4. Conclusions

This paper proposed a method of soil organic matter (SOM) content detection based
on pyrolysis and electronic nose combined with multi-feature data fusion optimization.
Two single feature ranking algorithms (PCC and One-Way ANOVA) and three feature
dimensionality reduction algorithms (PCA, LDA and GA-BP) were used for multi-feature
data fusion and optimization. The PLSR prediction model was established through the
optimized feature space, and the predictive performance of the model for SOM content
was used as an evaluation metric. The main conclusions were as follows:

(1) Among the two single feature ranking algorithms (PCC, One-Way ANOVA), the
feature space optimized by PCC could improve the model prediction performance.
The PLSR prediction model established by PCC had R2 = 0.84, and the dimension of
the feature space was 40.

(2) Among the three feature dimensionality reduction algorithms (PCA, LDA, and GA-
BP), the feature space optimized by GA-BP could best improve the model prediction
performance. The PLSR prediction model established by the GA-BP algorithm had the
best prediction performance (R2 = 0.90, RPD = 2.85, RMSE = 5.98), and the dimension
of the feature space was 30.

(3) Among the feature space optimized by GA-BP, the response area value (Vrav), the
mean value (Vmean) and the maximum value (Vmax) were important features that
reflected the internal relationship between the detection system and SOM content.
The TGS2603 sensor and TGS826 sensor contributed the most to the electronic nose
feature space, which indicated that ammonia, trimethylamine, methyl mercaptan, etc.
had higher concentrations in the pyrolysis gas, and the concentrations of these gases
could best represent the level of SOM content. The results can be used as a reference
for the further optimization of the sensor array.
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