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Abstract: The longhorn date palm stem borer, Jebusaea hammerschmidtii (Reiche), is a highly destructive
beetle of edible date palm Phoenix dactylifera L. The flight capabilities and dispersal potential of this
beetle are unknown, which hinders the planning for its proper management in date palm groves. In
this study, the flight propensity of this insect pest was investigated using a computerized flight-testing
system. The flight system consisted of a flight mill, a digitally controlled testing chamber, and a
data logging and processing unit with a USB digital oscilloscope connected with a laptop. A total of
40 field-collected beetles of unknown sex and mating history were used in the experiments; about
34% of this number failed to fly on the flight mill. The relationship between temperature treatments
(◦C) and flight speed (m/min), cumulative flight time (min), and cumulative flight distance (km)
of the test beetles were studied using regression equations with correlation coefficients (R2) of 0.91,
0.98, and 0.98, respectively. The maximum cumulative distance flown by the beetle was 11.5 km at a
temperature of 35 ◦C, and a minimum distance of 2.4 km was recorded at 45 ◦C. The flight threshold of
the beetle was 20 ◦C, at which flight activities ceased utterly. The velocity of the beetle increased with
increasing temperature and reached a maximum of 107 m/min at 40 ◦C, before starting to decline. The
obtained information on the flight characteristics of the J. hammerschmidtii may aid in understanding
the dispersal of this pest in date palm plantations and in setting up management strategies.

Keywords: longhorn; date palm; flight mill; dispersal; control; graphical user interface; regression
model

1. Introduction

The edible date palm Phoenix dactylifera L. is widely cultivated under arid conditions
and has many economical, aesthetical, and ecological values [1]. Globally, date palm suffers
from many stresses that seriously weaken growth and reduce yield quantitatively and
qualitatively. In addition, numerous insect pests inflict serious damage on date palms. How-
ever, only a few species cause economic damage that necessitates adopting management
measures [2]. The longhorn date palm borer (LHB) Jebusaea hammerschmidtii (Coleoptera:
Cerambycidae) (Reiche 1878) is a major pest of date palm grown in the Middle East and
North Africa that causes serious damage [3–8]. This beetle belongs to the family Ceramby-
cidae in the order Coleoptera, which has a relatively large body of ~30–45 mm long and
is characterized by having a very long antennae that may exceed the length of the body
in the males [7]. The mitochondrial of the LHB has been announced recently; it includes
15,619 bp and contains 13 protein-coding, 22 transfer RNAs, and two ribosomal RNAs
genes. Phylogenetically, the LHB belongs to the subfamily Cerambycinae with gene content
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and organization similar to other Cerambycid beetles [9]. The LHB is geographically found
in Bahrain, Kuwait, Qatar, Libya, United Arab Emirates, Yemen Arab Republic, Iraq, Saudi
Arabia, Algeria, Oman, Iran, and India [10]. The LHB is a true pest on date palm, so far,
with no other known hosts [11–13]. The larva is the destructive stage that makes tunnels
into the trunk of the date palm and can eventually lead to its death [14]. The LHB has only
one generation per year (univoltine), and the adult beetles appear in the field in late April
and early May for a very short time (15–20 days) [7].

Infestation by the J. hammerschmidtii begins when the gravid females lay their eggs
at the base of palm petiole, on the cracks on the trunks, and on the young offshoots.
Immediately after hatching, the developing larvae excavate undulating, intermingled, and
irregular feeding galleries in the palm trunk [4]. The overall impact of LHB infestation
results in shortening the date palm life span and reducing palm yield [15]. In addition, the
tunnels made in the palm stem by the larvae reduce the aesthetic and quality value of the
palm wood. The number of emergence holes and the presence or absence of live beetles
affects the monetary value of the date palm orchards in Iraq [16]. Young offshoots (small
side shoots or pups) are highly susceptible to infestation by the LHB [4]. The infestation of
the offshoots tremendously limits the commercialization of such planting materials, which
eventually reduces farmers’ revenues. Like other cerambycid beetles, the LHB can be easily
introduced into new uninfested areas through commercialization and transportation of
infested palms intended either for plantations or landscaping purposes [17,18]. In addition
to human-assisted dispersal, the LHB can disperse naturally in and between date palm
plantations. Therefore, understanding the flight capabilities of J. hammerschmidtii is essential
for designing management strategies. Flight mill is a valuable tool that has been used for
a long time to quantify distance flown by insects [19,20]. Recently, computerized flight
mills have been developed and used extensively by entomologists to study insects’ flight
behavior under laboratory conditions [19,21]. Although flying insects tethered to a flight
mill arm and under a controlled environment differ significantly from flight under natural
conditions, this practice provides clues and insights into the potential flight capabilities of
the test insect [19]. Unfortunately, to our knowledge, no documented studies have been
made on the flight capabilities of this beetle. The present investigation aims to study flight
characteristics of J. hammerschmidtii, such as flight velocity and distance flown using a
computerized flight mill under a controlled temperature.

2. Materials and Methods
2.1. Adult Beetles

Being a univoltine (one generation per year) with short-lived adults coupled with
a relatively long larval stage (~1 year) makes J. hammerschmidtii challenging to rear in
the laboratory for obtaining a sufficient number of adults for the trials. Therefore, adults
were collected in June 2021 from the field of the Date Palm Research Center of Excellence,
King Faisal University at Al-Ahsa, Kingdom of Saudi Arabia (Latitude: 25.268528◦ N,
Longitude: 49.707218◦ E) using an automated solar-powered light trap [22]. The traps
were fitted with ultraviolet (UV-A) black light fluorescent tubes (BLF) with 350–400 nm
wavelength (Mohammed et al., 2018). The captured beetles were brought to the laboratory
in large plastic boxes provided with fresh-cut bases of date palm leaves to keep the boxes
humid. The collection of the beetles from the traps was carried out in the early morning
hours before sunrise, to avoid the beetles being killed by the hot temperatures. The adult
beetles of J. hammerschmidtii are very sensitive to high ambient temperature. They cannot
withstand temperatures above 45 ◦C and, accordingly, they are usually found dead in
the light traps if the collection is delayed until after sunrise [8]. The mating history and
age of the field-collected beetles used in the trials were unknown. To our knowledge, no
information or observation is available on the feeding biology or source of adult feed for
this beetle, or whether they feed in the adult stage or not. Thus, the satiation status of the
flown beetles can not be specified.
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2.2. Computerized Flight Mill

The computerized flight mill used in this study was designed by the second author [21]
(Figure 1). Some modifications were made to the system to promote the fight of LHB under
a controlled atmosphere condition. In addition, some preliminary experiments were carried
out to verify the system’s performance concerning mill operating accuracy and controlling
in the microclimate of its testing chamber. Figure 2 shows the main components of the
computerized flight-testing used to study the flight parameters of the LHB.

Agriculture 2022, 11, x FOR PEER REVIEW 3 of 12 
 

 

the field-collected beetles used in the trials were unknown. To our knowledge, no infor-

mation or observation is available on the feeding biology or source of adult feed for this 

beetle, or whether they feed in the adult stage or not. Thus, the satiation status of the flown 

beetles can not be specified. 

2.2. Computerized Flight Mill 

The computerized flight mill used in this study was designed by the second author 

[21] (Figure 1). Some modifications were made to the system to promote the fight of LHB 

under a controlled atmosphere condition. In addition, some preliminary experiments 

were carried out to verify the system’s performance concerning mill operating accuracy 

and controlling in the microclimate of its testing chamber. Figure 2 shows the main com-

ponents of the computerized flight-testing used to study the flight parameters of the LHB. 

 

Figure 1. Image of the computerized flight system used to study the flight propensity of J. ham-

merschmidtii [21]. 

The first part of the system was the flight mill which had an arm that could be rotated 

and whose function was counting the rotation number when the LHB was tethered to its 

flight arm, and allowed to fly freely. The flight mill consisted of a box with 20 cm length, 

10 cm width, and 10 cm height, with a thickness of 0.05 cm made from the galvanized 

sheet, a rotating part, and a digital counter. The rotating part consisted of an opaque plas-

tic disc with ten equidistant holes on its periphery mounted on the spindle shaft light-

weight. The spindle shaft diameter was 0.04 cm, and made from aluminum to decrease 

the rotating friction. The rotating arm was made from highly flexible spring steel with 30 

cm total length, 0.05 cm thickness, and 0.4 cm width to allow vertical free motion of the 

tested LHD. The rotating arm was attached to the spindle shaft, and LHB rotated it on the 

spindle rotation axis. When the LHD was suspended in this arm and left to fly freely, the 

arm and the rotor were rotated, and the holes of the opaque disk interrupting the IR (in-

frared light) of the attached optoelectronic switched to generate the signal. The output 

signals of the optoelectronic switch were wired with the comparator circuit to switch the 

output voltage from a low to a high state. Then the output signal of the comparator circuit 

was connected with the flight mill counter circuit. The second part was a testing chamber 

provided by digital controllers to control its inner temperature and relative humidity by 

a 300 W electric air heater with an automatic temperature controller and an ultrasonic 

humidifier with an automatic relative humidity controller. This testing chamber was 

made from 6-mm-thick PVC (polyvinyl chloride transparent sheets) with a length of 50 

cm, a width of 50 cm, and a height of 62 cm. The third part was the processing and data 

logging unit, which consisted of a digital oscilloscope connected with a laptop via USB 

(model: Hantek6022BE, Hantek Electronic Co., Ltd., Qingdao, China). The graphical user 

interface of the Hantek digital oscilloscope was installed on the laptop for real-time data 

Figure 1. Image of the computerized flight system used to study the flight propensity of J. hammer-
schmidtii [21].

The first part of the system was the flight mill which had an arm that could be rotated
and whose function was counting the rotation number when the LHB was tethered to its
flight arm, and allowed to fly freely. The flight mill consisted of a box with 20 cm length,
10 cm width, and 10 cm height, with a thickness of 0.05 cm made from the galvanized sheet,
a rotating part, and a digital counter. The rotating part consisted of an opaque plastic disc
with ten equidistant holes on its periphery mounted on the spindle shaft lightweight. The
spindle shaft diameter was 0.04 cm, and made from aluminum to decrease the rotating
friction. The rotating arm was made from highly flexible spring steel with 30 cm total
length, 0.05 cm thickness, and 0.4 cm width to allow vertical free motion of the tested
LHD. The rotating arm was attached to the spindle shaft, and LHB rotated it on the spindle
rotation axis. When the LHD was suspended in this arm and left to fly freely, the arm and
the rotor were rotated, and the holes of the opaque disk interrupting the IR (infrared light)
of the attached optoelectronic switched to generate the signal. The output signals of the
optoelectronic switch were wired with the comparator circuit to switch the output voltage
from a low to a high state. Then the output signal of the comparator circuit was connected
with the flight mill counter circuit. The second part was a testing chamber provided by
digital controllers to control its inner temperature and relative humidity by a 300 W electric
air heater with an automatic temperature controller and an ultrasonic humidifier with an
automatic relative humidity controller. This testing chamber was made from 6-mm-thick
PVC (polyvinyl chloride transparent sheets) with a length of 50 cm, a width of 50 cm, and a
height of 62 cm. The third part was the processing and data logging unit, which consisted
of a digital oscilloscope connected with a laptop via USB (model: Hantek6022BE, Hantek
Electronic Co., Ltd., Qingdao, China). The graphical user interface of the Hantek digital
oscilloscope was installed on the laptop for real-time data logging and processing for flight
time, and output signal count. The graphical user interface (GUI) designed and achieved by
Mohammed et al. [21] was used to immediately find the actual flight time, rotation speed,
flight speed, flight distance, mean flight speed, and cumulative distance. This GUI was
installed on the laptop for real-time data processing of the LHB flight parameters (Figure 3).
These flight parameters were determined based on the input data of actual flight time,
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target duration, rotation radius, and rest time based on the number of the signal recorded
directly by the data of the USB digital oscilloscope, or by the counter of the flight mill.
When the required data was entered, the results of the flight parameters were shown in a
required form for total time, flight speed, and cumulative distance of the LHB flight based
on the selected parameter by the slider. It was also possible to upload or import an excel
file containing the flight data.
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Figure 3. The graphical user interface (GUI) window for estimating J. hammerschmidtii flight parame-
ters [21].

2.3. Experimental Setup

A total of 40 adult unsexed beetles of unknown age and mating status were flown on
the flight mill to obtain flight metrics such as distance flown, flight velocity, and frequency
and length of flight bouts. The morphometric characteristics of each beetle, such as mass,
body length, width, thickness, calculated volume, density, and wing area, were measured
before tethering on the flight mill. These measurements were used to calibrate the flight
mill based on the flight coefficient, flight force, the moment of inertia, and the optimum
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suspension angle according to the described method by Mohammed et al. [21]. Then, the
experimental beetles were tethered on the flight mill by their thoraxes, and they were
attached dorsally to an “L”-shaped metal plate flattened at one end to facilitate insect
adhesion. A small drop of Gorilla Super Glue Brush & Nozzle was applied on the dorsal
side of the beetle thorax. The flattened end of the metal plate was then immersed into
the glue for 45 s to dry. The beetle was then fixed to the rotating arm of the flight mill by
the distal part of the metal plate [19]. Before the experiment, the tethered beetles were
carefully examined to make them move their wings and legs freely. Then, each test beetle
was allowed to fly on the mill until it died.

To elucidate the effect of temperature on LHB flight characteristics, six different
treatment temperatures of 20, 25, 30, 35, 40, and 45 ◦C were applied. Three replicates of
each temperature were used under a controlled relative humidity of 35%. Therefore, 18 LHB
were used through 18 workdays, since only one insect was tested daily. This number was
chosen from 41 insects, as some insects did not fly after being suspended.

2.4. Statistical Analysis

The statistical analysis was conducted using one-way analysis of variance (ANOVA)
by the statistical software package IBM SPSS (SPSS Inc., Version 24, Chicago, IL, USA).
In addition, Tukey’s multiple range tests were used to find means significantly different
between the different treatment temperatures of 20, 25, 30, 35, 40, and 45 ◦C with three repli-
cates at p < 0.05. The regression models and the correlation coefficients were determined
using Microsoft Excel (Microsoft 365).

3. Results
3.1. Morphometric Parameters of the Test Beetles

The mass, body size, volume, and density of 40 LHB are presented in Table 1. These
data are essential, and upon which the angle of tethering the beetle was based for the
flight mill arm, as well as the beetle counterbalance weight on the opposite end of the
arm. Additionally, based on the measurements of the morphometric characteristics, the
flight coefficient of 1.13 and the suspension angle of 40◦ for the tested LHB were applied
to compensate for friction force between the rotating parts and reduce the circular flight
motion resistance effects.

Table 1. Mean, standard deviation (Std), minimum, and maximum values (n = 40) of some morpho-
metric characteristics of the tested J. hammerschmidtii.

Morphometric Characteristic

Mass
(g)

Body Length
(mm)

Body Width
(mm)

Body Thickness
(mm)

Calculated
Volume (mm3)

Density
(g/cm3)

Wing Length
(mm)

Wings Area
(mm2)

Mean 0.65 31.29 8.71 5.80 831.4 0.79 22.45 230.3
Std 0.08 1.82 0.29 0.37 117.3 0.07 0.64 6.5

Max 0.76 34.50 9.10 6.30 980.3 0.93 23.20 240.1
Min 0.53 29.20 8.20 5.10 646.9 0.72 21.35 220.1

3.2. Effect of Temperature on Flight Characteristics

Figure 4 shows the effect of atmosphere temperature on the ability of the insect to
rotate the flight arm of the flight mill. There was a significant difference between the mean
revolution per minute of the flight arm at the tested temperatures (ANOVA, F5, 17 = 182.9,
p < 0.001). The flight arm’s revolution was much higher at 35 to 45 ◦C than 25 ◦C. The flight
arm never moved at 20 ◦C, and no significant difference was observed between the mean
value of the flight arm revolution (RPM) at the tested temperatures of 30, 35, 40, and 45 ◦C.
In comparison, there was a significant difference between these means and the mean value
at 25 ◦C using Tukey’s test. As shown in the trend line in Figure 1, the following regression
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model was obtained for the effect of atmosphere temperature on the arm revolution per
minute with a correlation coefficient (R2) of 0.905.

Re = −0.1 x2 + 7.77 x − 58.31

where Re is the flight arm revolution (RPM) and x is the atmosphere temperature ◦C.
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Figure 4. Effect of atmosphere temperature treatments on the J. hammerschmidtii ability to rotate the
flight arm of the computerized flight mill at RH of 35%. The different superscript letters show a
significant difference between the means values (p < 0.05).

Figures 5–7 display the effect of atmospheric temperature on the flight speed (m/min),
cumulative flight time (min), and cumulative flight distance (km) of the LHB using the
computerized flight mill system. There was significant difference between the mean
flight speed (RM ANOVA, F5, 17 = 182.6, p < 0.001), cumulative flight time (RM ANOVA,
F5, 17 = 50.92, p < 0.001), and the cumulative flight distance (RM ANOVA, F5, 17 = 36.31,
p < 0.001) of the LHB under temperature treatments of 20, 25, 30, 35, 40, 45 ◦C. The LHB
stopped flying at 20 ◦C, and a normal flight was noted from 25 to 40 ◦C. Based on these
results, the temperature of 35 ◦C is considered optimal for flying the LHB with a high
cumulative flight distance of 11.20 ± 2.4 km. However, the maximum flight speed of
107.05 ± 7.1 m/min was achieved at 40 ◦C.

The following regression equations express the relationship between temperature
treatments (◦C) and flight speed (m/min), cumulative flight time (min), and cumulative
flight distance (km) of the tested LHB with a correlation coefficient (R2) of 0.905, 0.981, and
0.98, respectively.

S = −0.11 x2 + 8.78 x − 65.91

T = −0.44 x2 + 28.81 x − 390.04

D = −0.066 x2 + 4.44 x − 63.73

where S is the LHB flight speed (m/min), x is the atmosphere temperature ◦C, T is the
cumulative flight time (min), and D is the cumulative flight distance (km).
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4. Discussion

Knowledge of the flight and dispersal capacities of cerambycid beetles is essential for
establishing quarantine zones, setting survey boundaries, studying key factors affecting the
species’ survival, and modeling the potential spread of the exotic or alien pest. The flight
potential of insect species might provide essential data for management decisions [23,24].
Nevertheless, the flight capacity, dispersal, and mobility patterns of J. hammerschmidtii
populations in date palm groves are unknown. Several factors, including habitat structure,
climatic conditions, and other biotic factors, could significantly affect the beetle in-groves
and long-distance dispersal. In addition, the sizes of individuals in populations might
affect the speed of flight and distance flown. In this respect, Hanks et al. [25] reported that
adult individuals of the cerambycid Phoracantha semipunctata Fabricius with larger sizes
dispersed for longer distances than smaller ones. In the present study, we attempted to
reveal some flight characteristics of this important date palm insect pest in the laboratory
using a computerized flight mill under controlled conditions.

Our results revealed that the flight threshold for a J. hammerschmidtii adult was 20 ◦C,
and ambient temperature in the flight system should be well above this threshold to initiate
flight activity in this species. Above the flight temperature threshold, the beetle flight
activity increased with increasing temperature until it reached the optimum temperature
of 35 ◦C, where the maximum flight occurred. The relationship between temperature and
flight parameters, notably flight speed (m/min), cumulative flight time (min), and cumula-
tive flight distance (km) was significant. This reflects the impact of ambient temperature on
the flight characteristic of this insect. Being ectothermic animals, insects depend mainly
on the temperature of the surrounding environment [26], and increasing temperature to
the thermal optima increases the metabolism and eventually the insect activities, includ-
ing flight. Under semi-field conditions, the optimum temperature for adult emergence
of J. hammerschmidtii in Iraq ranged between 33 and 34 ◦C [7], which conforms with our
study. Hanks et al. [25] reported that the dispersal of P. semipunctata declines sharply as
the temperature falls below 22 ◦C, whereas Keena [27] stated that the cerambycid beetle
Anoplophora glabripennis Motschulsky could not fly at the temperature of 15 ◦C, and 95% of
test beetles flew at the temperature of 30 ◦C.
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Methods other than flight mills used to estimate the flight capabilities of cerambycid
beeltes include mark-recapture and radio-tracking (telemetry). For example, Drag and
Cizek [24] studied the dispersal ability of the great Capricorn beetle, Cerambyx cerdo L.
that damages oak trees using a radio-tracking approach and a mark-recapture method.
They reported that the beetle flew 1498 m and 1080 m in one day for males and females,
respectively. The radio-tracking approach revealed that the beetle has a high dispersal
ability, whereas the mark-recapture method suggested a low dispersal tendency and seden-
tary behavior. In general, the mark-recapture method underestimates insect movement
compared with the radio-tracking method [28].

Future studies are required to answer the questions concerning the flight periodicity
of the J. hammerschmidtii. Hoddle et al. [29] studied the flight periodicity of the palm weevil,
Rhynchophorus palmarum L. on a flight mill. They concluded that flight periodicity data
should be taken with caution, as weevils on a flight mill lose tarsal contact with a substrate.
This could terminate flight and obtain different information from what has been reported.
The time when the flight mill studies commence would determine the initiation of flight
activities due to the loss of contact of tethered insects with a substrate [29]. The cerambycid
beetle P. semipunctata was forced to fly during the day, although it is well known as a
nocturnal flyer [25]. They further stated that this forced day flight subjected the beetle to
predation by birds. The experimental design, including the weight of the rotating arm,
the resistance of friction, and the angle with which the beetle was tethered to the rotating
arm, greatly influenced insect flight activity. Using smart traps with pheromones could
solve the problem of the longhorn beetle flight periodicity. However, a sex or aggregation
pheromone has not yet been discovered for J. hammerschmidtii. Most of the cerambycids
in the temperate regions are day flyers (diurnal), whereas those in the tropics are night
flyers (nocturnal) [30]. The diurnal beetles are faster in flight than the nocturnal ones,
which are more readily attracted to artificial light [31]. Several investigators reported that
adults of J. hammerschmidtii are nocturnal, strong flyers, and strongly attracted to artificial
light [4,7,32,33].

The results of the present investigation revealed that J. hammerschmidtii can potentially
fly an estimated cumulative distance of ~11.5 km. The maximum velocity recorded for
this beetle on the flight mill was 107 m/min. Compared with other cerambycid beetles,
the estimated maximum distance flown by Monochamus carolinensis (Olivier) on a flight
mill was 10.3 km [34]. The maximum distance flown by the cerambycid Asian longhorn
beetle Anoplophora glabripennis was approximately 14 km/day [35,36]. They also reported
that beetle age and mating status affected the flight propensity of this invasive beetle.
Other cerambycids can still fly longer on flight mills; for example, the cerambycid beetle
Monochamus galloprovincialis flew an estimated maximum distance of 62.7 km [37]. The
mean velocity of the Asian longhorn beetle A. glabripennis using a harmonic radar was
108 m/min, and the maximum velocity was 318 m/min [38]. However, flight mill data
indicated that the beetle had a 66 m/min velocity, which was slower than when the beetle
was allowed to fly freely. In comparison with the red palm weevil, Rhynchophorus ferrugineus,
it has been reported that sex had no significant effect on total distance flown and mean
flight velocity by male and female [39,40]. However, Armes and Cooter [41] reported that
mating significantly decreased flight duration in the cotton bollworm Helicoverpa armigera
(Hübner). Mating status was reported to have no effect on flight activity of the tarnished
plant bug Lygus lineolaris (Palisot de Beauvois); however, gravid females flew more than
ungarvid ones [42]. From the aforementioned discussion, it seems that the influence of sex,
age, and mating status on the flight parameters of the J. hammerschmidti need to be further
investigated in future studies. The data on the flight propensity of the J. hammerschmidtii
presented in this investigation reflects the capacity of this beetle to disperse in date palm
plantations in the absence of human-assisted movement of infested date palms intended
for cultivation or use in landscape designs. This data could also be used in setting up date
palm in-grove management strategies and the demarcation of quarantine boundaries.
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5. Conclusions

Flight mill data showed that the J. hammerschmidtii is a strong flyer and can potentially
fly for long distances. Air temperature greatly influences the beetle flight parameters, such
as fight velocity, flight time, and distance flown. It is more challenging to determine flight
periodicity on a flight mill, due to the loss of tarsal contact to the substrate of the tethered
insect, which usually initiates flight. The preliminary results presented in this study may
pave the way for more future investigations on the effect of sex, age, mating status, and
season on the flight characteristics of J. hammerschmidti. Such information on the flight
behavior of this beetle is needed for designing management strategies for this pest.
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