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Abstract: The presence of seasonal snow cover in the cold season can significantly affect the thermal
conditions of the ground. Understanding the change of the snow–soil interface temperature (TSS)
and its environmental impact factors is essential for predicting subnivean species changes and carbon
balance in future climatic conditions. An improved Snow Thermal Model (SNTHERM) is employed
to quantify TSS in farmland of Northeast China (NEC) in a 39-year period (1979–2018) firstly. This
study also explored the variation tendency of TSS and its main influencing factors on grid scale. The
result shows that annual average TSS and the difference between TSS and air temperature (TDSSA)
increased rapidly between 1979 and 2018 in the farmland of NEC, and we used the Mann–Kendall
test to further verify the increasing trends of TSS and TDSSA on aggregated farmland of NEC. The
correlation analysis showed that mean snow depth (MSD) is the most pivotal control factor in 95%
of pixels and TDSSA increases as MSD increases. Snow depth can better predict the change of TSS

in deep–snow regions than average winter temperature (TSA). The results of this study are of great
significance for understanding the impact of snow cover on the energy exchange between the ground
and the atmosphere in the cold climate.

Keywords: snow cover; snow–soil interface temperature; climate change; SNTHERM; Northeast China

1. Introduction

Snow cover has a great impact on the thermal conditions of the soil due to its low
thermal conductivity and high albedo [1,2]. Snow cover maintains warmer soils allow-
ing infiltration and gas exchange during winter but also leads to permafrost thawing
and increased greenhouse gas emissions and further alters the continental global carbon
budget [3,4]. The presence of snow cover causes the reduction of soil heat loss and the
mitigation of soil–frost barrier formation, which significantly affects the shallow soil tem-
perature and protects plant roots and soil microbial populations [5–7]. However, climate
change has altered the duration of snow cover and snow depth [8,9]. Snow cover in the
Northern Hemisphere has significantly changed [10,11].

Surface ground temperature (TSG) is the result of physical and biological couplings
between the atmosphere and the ground, and snow cover is an important factor affecting
the change of TSG [12,13]. Some authors have defined the snow–soil interface as “subnivean
space” or “subnivean environment” [14,15]. The thermal insulation effect of snow cover
can prevent species from being affected by extreme winter temperatures. The change
of the snow–soil interface temperature (TSS) affects the severity of soil freezing and the
stability of the soil carbon pool [7,16]. Understanding the response of TSS is essential
for climate change. Snow cover affects the coupling between the air temperature (TNSA)
and TSG due to its insulating effect [17]. TSG is often higher than TNSA; for example, a
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maximum difference of 36.3 K was observed in the winter of 1988 at the Franklin Bluffs
area in northern Alaska [7]. Goncharova et al. [18] found that winter TSG has a great spatial
variability and a significant negative correlation with altitude. Furthermore, altitude also
affects the spatial distribution and thickness of snow cover [19,20].

The response of snow cover to climate change in China is complicated, and the number
of snow cover days and snow depth have large geographical heterogeneities [21,22]. It is
difficult to carry out field observations to obtain long–term and large–area observational
data. TSS has only been observed at Chinese meteorological stations since 2005, and it
is thus difficult to analyze the changes in TSS against the background of climate change
with global warming. Therefore, an effective alternative is to perform numerical simula-
tions [23,24]. At present, some authors use numerical simulations to simulate the long–term
trend of TSG and TNSA in the context of climate change. For example, 32 general circulation
models (GCMs) are used to simulate the past and future relationship between TSG and
TNSA in North America. In the CMIP5 (Coupled Model Intercomparison Project Phase 5)
model, the relationship between TSG and TNSA shows great variability and inconsistency
in GCM simulations on annual and seasonal timescales by the comparison of simulated
and observed values [25]. Bartlett [17] established a numerical model of snow–ground
thermal to reveal the effect of seasonal snow cover on the seasonal and annual variations
in TSG. It was found that snow cover caused TSG to be higher than TNSA. Additionally,
Zhang et al. [26] developed a multi–layer snow–soil scheme at EALCO (Ecological Assimi-
lation of Land and Climate Observations) to study the interaction between snow and soil
in the cold season and found that snow cover significantly affected surface energy flux, soil
temperature, and soil freezing depth. These studies have determined the response of snow
cover on the ground by analyzing changes in the depth of soil freezing and soil temperature
by model simulation or in situ observation at a point scale; however, it is not clear how
TSS changes at a regional scale in the context of climate change. Snow Thermal Model
(SNTHERM) is one of the most advanced multi-layer thermodynamic models available at
present and can be used to predict energy conversion between snow and soil. The model
can automatically identify and process snow melting and accumulation processes, and
some studies have proved its excellent simulation accuracy [27,28].

Northeast China (NEC) is regarded as the second–largest stable snow area in China,
with the number of snow cover days being 120–180 d. In this region, the snow depth and
the number of snow days are high and the average winter snow depth and maximum snow
depth are increasing [9,22]. In the present study, to understand the change of TSS in the
farmland of NEC, TSS with a 10 km grid resolution in farmland of NEC from 1979–2018 is
acquired through the improved SNTHERM model. The spatiotemporal variation of TSS
is analyzed and its main influencing factors are analyzed. NEC is the largest commercial
grain production base in China. The thermal insulation effect of snow cover creates a
suitable environment for overwintering crops and various soil microbes; therefore, it is of
great significance to understand the variation of TSS in farmland of NEC, and our study
can provide support for agriculture and animal husbandry production in NEC.

2. Materials and Methods
2.1. Meteorological Station Data in NEC

NEC is located between 38.42 and 53.36◦ N and between 115.24 and 135.12◦ E, with
a total area of 1.24 million km2. The land cover is dominated by farmland, forest, and
grassland. The three major mountain ranges from west to east are the Greater Khingan
Range, the Lesser Khingan Range, and the Changbai Mountains. The farmland in NEC is
mainly distributed on the Northeast China Plain. This plain, one of only three black soil
regions in the world, consists of the Sanjiang Plain, Songnen Plain, and lower Liaohe River
Plain. The Northeast China Plain has a large, cultivated area and wide distribution, which
is an important grain, soybean, and animal husbandry production base in China. The land
area of NEC accounts for 8.2% of China, with the cultivated land area accounting for 13.3%
of the national cultivated land area and the grain output accounting for 20.0% of China’s
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total grain output [29]. The climate of NEC is continental monsoon, and the average annual
rainfall is 460 mm. Winter is long and cold–arid, while summer is short and warm. The
annual average temperature of NEC is below 0 degrees. Additionally, NEC is one of the
three stable snow cover regions in China. The snow cover period lasts from November to
April of the following year. The region contains abundant snow resources and is of great
significance for agricultural irrigation.

The daily datasets of China’s surface climate provided by the National Meteorological
Science Data Center (air pressure, ground temperature, snow depth, snow pressure, wind
speed) (http://data.cma.cn/, accessed on 1 August 2021) were used in our study. Platinum
resistance thermometers were used to observe TSS at the Meteorological stations. The
observation surface condition is bare soil: half of the temperature sensor is buried in the
soil and closely bonded to the soil and half is exposed on the ground. Finally, the measured
minute data is averaged to obtain the daily average TSS [30]. Data between 2005 and
2018 from 36 stations whose underlying surface is farmland were selected from among 98
stations in NEC for this study (Figure 1).
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2.2. Datasets
2.2.1. Forcing Datasets

Due to the lack of long–term and large–scale meteorological observation data, it is
a good alternative to use a ground meteorological forcing dataset as the driving data of
the model. The China Meteorological Forcing Dataset (CMFD) was made through fusion

http://data.cma.cn/
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of remote sensing products, reanalysis dataset, and in situ observation data at weather
stations, with high time–resolution (3–hour step, [31]). CMFD from 1979 to 2018 include
air temperature, surface pressure, specific humidity, wind speed, downward shortwave
radiation, downward longwave radiation, and precipitation rate (http://www.geodata.cn,
accessed on 1 August 2021).

GLDAS–2.0 Data and GLDAS–2.1 Data of 0.25-degree spatial resolution and 3-h time
resolution were also used, which provides a temporally consistent series from 1948 to 2014
of GLDAS–2.0 Data and 2000 to the present of GLDAS–2.1 Data. Soil temperature and
humidity data of GLDAS–2.0 Data from 1979 to 2013 and of GLDAS–2.1 Data from 2013 to
2018 were used in this paper.

2.2.2. Snow Depth Dataset

In this study, we used a snow depth dataset (http://data.tpdc.ac.cn/zh-hans/, ac-
cessed on 1 August 2021) spanning the period from 1979 to 2018 to retrieve the change of
the average snow depth (MSD) in NEC. Daily passive microwave brightness data (SMMR,
SSM/I, SSMI/S) were used for the inversion of snow depth in this dataset. The brightness
temperature of different sensors was inter-calibrated before the derivation of snow depth
to ensure the temporal consistency of the brightness temperature [32]. The dataset was
based on the modified Chang algorithm to retrieve snow depth to obtain the daily snow
depth in China with a spatial resolution of 0.25 degrees [20].

2.2.3. Land Cover

The land cover between 2000 and 2015 was used in this paper, which was retrieved
from the Resource and Environment Data Cloud Platform (http://www.resdc.cn/, accessed
on 1 August 2021) with a 1-km spatial resolution. Land cover was mainly interpreted
from Landsat–TM/ETM and Landsat 8 remote sensing images to distinguish farmland,
forest, grassland, and water. In order to match the regional reanalysis data, land cover
were regridded into 0.1◦ cells in this study.

2.3. SNTHERM Model Description and Calibration

SNTHERM is a one-dimensional mass and energy balance model developed by the
US Army Cold Regions Research and Engineering Laboratory (CRREL) to predict the
temperature distribution of snow and frozen soil [33]. The model is intended for seasonal
snow covers and addresses conditions found throughout the winter, from initial ground
freezing in the fall to snow ablation in the spring. This model is suitable for the simulation
of various winter meteorological conditions such as snowfall, sleet, rainfall, freeze–thaw
cycles, and snow cover. Patankar’s volume control method is adopted in SNTHERM to
subdivide the snow layer and the soil layer into horizontal infinite layers (each layer is
considered as a node) to obtain numerical solutions (Figure 2), each of which conforms to
energy-conservation equation and mass-conservation equation [34,35].

http://www.geodata.cn
http://data.tpdc.ac.cn/zh-hans/
http://www.resdc.cn/
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Snow and soil are both porous media, the unfrozen water coexists in equilibrium
with ice at temperatures below 0 ◦C. In the SNTHERM code, mass liquid water fraction
( fl [kg·m−3/kg·m−3]) within a given medium is a single-valued function of temperature
and has a freezing curve characteristic of the snow–soil properties in SNTHERM. Thus, the
semi-empirical function is introduced for each node in SNTHERM for fl [33]:

fl =
γl
γw

=
1− 0.75Jp

γd
γw

1 + (a1TD)
2 +

0.75Jp
γd
γw

1 + (a2TD)
4/3 (1)

where γl is the bulk density of liquid water (kg·m−3); γw is the bulk density of the combine
liquid water and ice constituents (kg·m−3); Jp is the plasticity index; γd is the soil density
(kg·m−3); a1 and a2 are defined as 0.2/

(
0.01 + Jp

)
and 0.01/

(
0.1 + Jp

)
, respectively; TD is

the depression temperature (K), defined as 273.15–T, and T is the node temperature (K).
γl and γw are further specified in the SNTHERM model:

γk = θkρk (2)

where k represents v, l, i, a, or d for water vapor, liquid water, ice, air, or the dry soil
solids, respectively. θk is the volume fraction of constituent k (m3·m−3), ρk is the density of
constituent k, ρa is the density of air at 0 ◦C and 1000 mb (1276 kg·m3), ρi is the density of
ice (917 kg·m3), and ρl is the density of liquid water (1000 kg·m3).

Taken over the five possible constituents in the medium, the sum of the volume
fraction is unity, or

∑
k

θk = 1 (3)

The sum of the constituent bulk densities is the density ρ of the total medium,
written as:

ρ = ∑
k

θkρk = ∑
k

γk (4)

A melt function Pmelt is introduced in SNTHEM to obtain the node temperature,
defined as the change in γl with temperature over the time step in which the γw is held
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constant at the time of t. A melt function Pmelt is further derivatived as follows according
to Equation (1):

Pmelt = γw
t[ f1

(
Tt, γw

t)− f1
(
Tt−∆t, γw

t)]
= γw

t f t
l −

γw
t−0.75γd Jp

1+[(a1TD)2]
t−∆t −

0.75γd Jp

1+
[
(a2TD)4/3

]t−∆t ≈ γw
tF∆T (5)

where F is the temporal average on ∆t of F(F = ∂ fl/∂T) in temperature evaluated for
the current water content on ∆t;

Noda temperature is then expressed in SNTHEM:

Tt = gvPt
melt + gk (6)

where Tt is the node temperature at time of t, gv = 1/γw
tF, and gv = Tt−∆t.

Jp is an important feature that characterizes the physical properties of soil and directly
affects the accuracy of soil and snow temperature simulation from Equations (1) and (5).
The Jp for snow is 0 and the ranges from 0 to 0.3 for soils. The default Jp of SNTHERM is
0.2. The Jp of the model is modified to suit the soil characteristics of the farmland in NEC.
The calibrated model parameters are shown in Table 1.

Table 1. The SNTHERM parameters.

Parameters Values Unit

Plasticity index 0.28 /
Density of dry minerals in material 2700 kg/m3

Bulk density of dry material 1600 kg/m3

Heat capacity of dry material 800 J/kg·K
Thermal conductivity for dry bulk material 0.113 W/m·K

Snow albedo 0.78 /
Irreducible water saturation for snow 0.04 /

The input data required by the SNTHERM are three parts: meteorological drive data,
initial soil and snow parameters, and empirical parameters. The outputs of the SNTHERM
are the predicted TSS and predicted surface ground temperature (TST). There is no snow
cover when TSS is equal to TST in the model. Therefore, we obtained actual TSS when
the tolerance between TSS and TST is greater than 0 ◦C and Snow depth greater than 0
(Equation (7)).{

i f (|TSS − TST | = 0 & Snow depth = 0)
i f (|TSS − TST | > 0 & Snow depth > 0)

TSS = sur f ace ground tempereture
TSS = snow− soil inter f ace tempreture

(7)

The original SNTHERM only can simulate at a single point. In this study, multi-point
simulation can be carried out by improving the model. Finally, the 10 KM resolution map
of TSS is formed. The following steps describe our simulation process:

(1) Grid-by-grid reading of temperature and precipitation data from September 1 to
May 31 from ITPCAS forcing data (no snowfall will occur in NEC from June to August). It
is considered to snowfall when the temperature is less than 0 ◦C and the precipitation rate
is greater than 0 mhr−1. First day of snowfall (FDS) was marked as the initial runtime of
the model.

(2) At each grid, set the number of soil layers to 6 layers, initial soil temperature and
humidity at −5 cm, −10 cm, −15 cm, −30 cm, −50 cm, −80 cm is obtained by reading
GLDAS forcing data on the FDS. The number of snow cover layers on the FDS is set to be
2 layers, in which thicknesses are initialized at 0.01 and 0.02 and the bulk water density are
150 kg·m3 respectively. The initial snow grain diameter is set to 0.0005 m. Furthermore,
meteorological parameters with 3 h step (air temperature, relative humidity, wind speed,
incident solar radiation, reflection solar radiation, precipitation) in ITPCAS between FDS
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and May 31 were read grid by grid, where reflected solar radiation are the default value of
9999 due to missing data.

(3) Combined with the soil texture of NEC and the verification analysis of the model,
the Jp of SNTHERM was set to 0.28 and other general parameters adopt the model default
values. SNTHERM model is run year by year to obtain the snow and soil parameters of the
farmland of NEC from the FDS to May 31 with a resolution of 10 km with 3 h step.

(4) Superimposing land cover information to extract regions that have always been
farmland in NEC from 1979 to 2018, we obtained the long-term predicted temperature and
other parameters in the whole farmland of NEC.

BIAS and root mean square error (RMSE) were used to assess the performance of the
SNTHERM model in NEC. The calculation formula is as follows:

BIAS = ∑N
n=1

(Tmod,n − Tmea,n)

N
(8)

RMSE = ∑N
n=1

(Tmod,n − Tmea,n)
2

N
(9)

where Tmod,n represents the simulated TSS by the model on the n–th day, Tmea,n represents
the observed value at the meteorological station on the n–th day, and N is the total number
of days that snow cover exists.

3. Results
3.1. SNTHERM Model Validation

The SNTHERM model performances are shown Table 1. We firstly used simulated
TSS of 36 weather stations from 2005 to 2018 with a three-hour step. In order to match
the measured TSS, we process the simulated TSS into the daily average TSS and verify the
accuracy of the simulated data and the measured data at the site. Figure 3a shows the
scatterplots of the measured daily average Tss and model simulation results of 36 farmland
weather stations from 2005 to 2018. The overall BIAS value is 0.43 ◦C, and RMSE value
is 3.48 ◦C. In most stations, the BIAS of the simulated TSS is higher than that of in situ
observations, with BIAS ranging from −2.32 to 1.65 ◦C. Our results also indicate non-
significant relationships between snow depth and the simulation accuracy of TSS, while the
accuracy of TSS is more affected by land cover type. The larger RMSE values are mainly
concentrated in regions with mixed pixels, where land cover is predominantly forest and
grassland with less farmland. The model has a good performance in other regions (mainly
concentrated in the Sanjiang Plain, Songnen Plain, and lower Liaohe River Plain), where
the underlying surface is homogeneous farmland and is less affected by other factors.
There are many positive TSS in both simulations and observations in Figure 3a, which
mainly concentrated during periods of snow ablation. When the snow cover is melting,
the TSS will remain at about 0 ◦C, and more than freezing point occurs which leads to
soil cooling. The calculation results of the Pearson correlation coefficient show that the
trends of year-to-year fluctuations between the model and the actual measurement are
consistent during 2005 to 2018 (Figure 3b). The improved SNTHERM model has a superior
applicability in NEC and can simulate the trend of TSS in the Northeast.
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3.2. Spatiotemporal Variations of TSS and TDSSA

The accumulative total of TSS and TDSSA (the difference between TSS and air tem-
perature) from September 1 to May 31 is divided by the number of days when snow
exists to obtain annual average TSS and TDSSA respectively. TSA and MSD were defined
as the average value from December 1st to March 31st. The linear trend of the annual
average TSS and TDSSA in NEC from 1979 to 2018 were showed in Figure 4. 99% of TSS
increased in the farmland of NEC, 80% of which passed the significance test (p < 0.05).
The Sanjiang Plain and Songnen Plain have a significant and rapid positive increase of
TSS (0.06–0.21 ◦C/annual [◦C/a], Figure 4a). Similarly, it was found that TDSSA increased
in 98% of the farmland in NEC, with 69% of the pixels passing the significance test (p < 0.05).
A rapidly increasing trend of TDSSA also occurred in most pixels of the Sanjiang Plain and
Songnen Plain, with a growth rate between 0.06 and 0.22 ◦C/a (Figure 4b). In the lower
Liaohe River Plain, a lower and non-significant growth occurred in TSS (0.00–0.06 ◦C/a)
and TDSSA (0.00–0.06 ◦C/a). Both TSS and TDSSA showed a non-significant decline in the
southern coastal area and the west of NEC (Figure 4a,b). Additionally, the Mann–Kendall
(M–K) trend analysis method further proved that an overall increasing trend of TSS and
TDSSA occurred in the farmland of NEC at a confidence level of p < 0.05, with the linear
trend indicating rapid increases at a rate of 0.10 and 0.09 ◦C/a, respectively, (Figure 4c,d).
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Deep snow has better thermal insulation effects on the ground in the Sanjiang Plain
(R2 = 0.35, p < 0.01, Figure 4b). Therefore, although TSA non-significant decreased from 1979
to 2018 (R2 = 0.01, p = 0.92), TSS still exhibited a rapid increasing trend in the Sanjiang Plain
(R2 = 0.46, p < 0.01, Figure 4a). Although TSS and TSA of the Songnen Plain are increasing
rapidly, TDSSA still increased rapidly (R2 = 0.35, p < 0.01, Figure 4d), the changes of TSS
are less affected by TSA accordingly. In the lower Liaohe River Plain, TSS and TDSSA both
increased at a slow rate (TSS: R2 = 0.29, p < 0.01; TDSSA: R2 = 0.13, p < 0.01; Figure 5e,f).We
also found snow cover has a very weak thermal insulation effect on the ground and even
has a cooling effect at certain times due to the shallow snow.

Table 2 further reveals the impacts of TSA and MSD on TSS in the Sanjiang Plain,
Songnen Plain, and lower Liaohe River Plain. The main reason for the change in TSS in the
Sanjiang Plain is the MSD. Although TSA decreased slowly, TSS underwent a significant
increase due to the large contribution of MSD to TSS between 1979 and 2018. Additionally,
both TSA and MSD made a great contribution to the change in TSS in the Songnen Plain,
where TSS experienced the fastest increase under the impact of increasing TSA and MSD.
A rapid increasing trend of TDSSA also occurred in areas with deep snow in the Sanjiang
Plain and Songnen Plain (Figures 4b and 5b,d). In the lower Liaohe River Plain, TSA
increases faster than the Sanjiang Plain and Songnen Plain while MSD rises slowly. Under
the influence of TSA and MSD, the TSS and TDSSA in the lower Liaohe River Plain increased
slowly between 1979 and 2018 (Figure 5e,f, Table 2).
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Figure 5. The linear trend of the annual average TSS and TSA from 1979 to 2018 in the Sanjiang Plain (a), the Songnen Plain
(c), and the lower Liaohe River Plain (e). Also shown are the linear trend of the annual average TDSSA from 1979 to 2018
in the Sanjiang Plain (b), the Songnen Plain (d), and the lower Liaohe River Plain (f). (a,c,e) show the MSD over the years
1979–2018 in three regions.

Table 2. The slopes between anuual average MSD, TSA, and TSS in three plains in NEC and the contribution of MSD and TSA

to TSS in each region of NEC from 1979 to 2018.

Region Slope Contribution

TSS (◦C/a) TSA (◦C/a) MSD (cm/a) TSA MSD R2

Sanjiang Plain 0.11 ** –0.01 0.13 0.20 0.74 ** 0.44
Songnen Plain 0.12 ** 0.01 0.15 0.36 ** 1.08 ** 0.55
Lower Liaohe

River Plain 0.05 ** 0.02 0.01 0.30 0.72 ** 0.26

** p < 0.01.

3.3. The Response of TSS to TSA and MSD

We selected MSD and TSA as explanatory variables and calculated the correlation
coefficient between TSS and TSA as well as MSD to analyze the factors that cause TSS to
change at the grid–scale (Figure 6). The majority of pixels (83%) exhibited a positive trend
of MSD in farmland, with a faster growth trend (0.06–0.31 cm/a) in the northeast of NEC
(mainly the Songnen Plain and Sanjiang Plain). We observed a decreasing trend in MSD
in the southeast (including Parts of the Lower Liaohe River Plain), north (mainly forest),
and west (mainly grassland) of NEC (Figure 6a). The long-term change of TSA in farmland
of NEC is complicated; however, the majority of pixels (78%) show an increasing trend.
As shown in Figure 6b, the areas with a rapid increase of TSA are mainly concentrated in
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the southern coastal area of NEC and the southeast and southwest of the Songnen Plain
(0.04–0.09 ◦C/a). In the middle of the Songnen Plain and the northern Sanjiang Plain, TSA
had a decreasing trend, especially in parts of the Sanjiang Plain, where a rapid decline of
TSA was observed (−0.08–−0.02 ◦C/a).
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The results show that TSA and TSS have a widespread negative correlation. For exam-
ple, in the Songnen Plain and some parts of the Sanjiang Plain, TSS unexpectedly exhibits
an increasing trend when TSA decreases (Figures 4a and 6b). Therefore, we analyzed the
relative importance of TSA and MSD to the change in TSS in each pixel (Figure 7, Table 3)
according to the approach of Zhu et al. [36]. The results show that MSD was more im-
portant to the change of TSS; with increasing MSD, TSS also increased, especially in the
Sanjiang Plain (95% of increasing TSS) and Songnen Plain (99% of increasing TSS). At
the same time, TSS and TDSSA in these regions underwent rapid growth (0.06–0.22 ◦C/a,
Figure 4a,b). The main reason for this is that the significant influence of the rapid increase
of MSD (0.06–0.31 cm/a) counteracts the negative effect of the decrease in TSA on TSS,
which makes TSS and TDSSA experience a rapid increasing trend (Figures 4 and 7c). There is
a stronger correlation between TSS and TSA in part of the lower Liaohe River Plain (Table 3).
When a decrease in MSD co–occurred with an increase in TSA, an increase of TSS was
observed. The pixels for which increasing TSA had a stronger effect on TSS offset the slow
decrease of MSD, causing the TSS to increase at a slower rate in these areas (0.00–0.06 ◦C/a,
Figures 4a, 6, and 7c). Moreover, for the pixels in the northwest of NEC and the southern
coast of NEC, approximately 1% of TSS decreased between 1979 and 2018 (Figure 4a), where
the decrease of MSD and TSA simultaneously appears.
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(c) is the relative importance of TSA and MSD for TSS ((|RMSD|−|RMSAT|)/(|RMSD|+|RMSAT|)); this ratio varies from 1
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Table 3. The percentage of Pearson correlation coefficient analysis of TSA and TSS (RMSAT) greater
than (less than) MSD and TSS (RMSD) in three plains in NEC.

Region Number of Pixels
Percentage (%)

MSD TSA

Sanjiang Plain 605 95 5
Songnen Plain 1510 99 1

Lower Liaohe River
Plain 344 74 26
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4. Discussion
4.1. The Environmental Impact of TSS Changes

We simulated TSS from 1979 to 2018 using SNTHERM and analyzed its relationship
with several environmental factors. Some studies considered that winter air temperatures
are the primary effects on soil frost. In addition, these studies are conducted at several
locations over the short term [37–39]. Our analysis indicates that MSD and TSA have an
important control on the change TSS in the farmland of NEC and that the impact of MSD
on TSS is more significant at larger scales. The results of this study show that TSA is not a
good measure of climate change in deep-snow regions, where the MSD affected TSS more.
Due to the effect of snow cover on the ground-atmosphere transmission, it changes the
surface energy balance [18]. In deep-snow regions, the high reflectivity of snow cover to
solar radiation causes the ground to absorb less heat, and the low thermal conductivity
of snow hinders surface heat dissipation, causing TSS to be more affected by snow cover.
Similarly, in shallow snow regions, snow cover reduces the absorption of solar shortwave
radiation, allowing snow cover to cool the underlying soil (Figures 5 and 7).

Snow cover is a natural insulator and reduces the heat exchange between the soil and
the atmosphere [18]. Gold [40] concluded that snow cover is the principal reason that the
mean annual ground temperature can be many degrees warmer than the mean annual
temperature in cold regions. Additionally, the difference between ground temperature
and air temperature during the frozen period with snow cover is greater than that for the
period of frozen ground without snow [36]. The thickness of the snow cover greatly affect
the energy exchange on the ground [41]. Some studies have shown an increasing trend of
the annual cumulative snow depth and maximum snow depth in NEC [22,42]. Therefore,
it is very essential to understand the changes in TSS.

Our study found that the MSD in the farmland of NEC increased from1979 to 2018
in the majority of pixels (Figure 6a). This will alter the radiation balance of the earth-
atmosphere system and, which can explain the increasing trend of TSS in this region
and may exacerbate the degradation process of permafrost in NEC (Figure 5, Table 2).
Furthermore, TSS will affect the evolution of snow parameters in turn, which will lead
to the continuous change of snow thermal conductivity, thus affecting the exchange of
material and energy between atmosphere and snow cover and soil [43].

Zhang [7] reported that the heat preservation of snow cover gradually increases with
increasing snow depth before the snow cover reaches the optimal thickness. The presence
of snow cover has a significant impact on soil frost penetration [44]. We also found that
snow cover has a good insulation effect when the MSD of Songnen Plain and Sanjiang Plain
is 5.02 cm and 8.54 cm, respectively (Figure 5b,d). In shallow snow areas such as lower
Liaohe River Plain, the presence of snow has a certain cooling effect. Higher temperatures
in these regions lead to faster snow melting, and the existence of shallow snow reduces the
absorption of solar shortwave radiation by the surface. At the same time, the melting of
snow cover requires a certain amount of heat to be absorbed, leaving the TSS below the
TSA (Figure 5f).

In the Northern Hemisphere, snow cover provides a refuge for many terrestrial
organisms during winter [15]. Increased TSS creates a more suitable environment for
subnivean species and plants to overwinter. Increasing TSS can also promote plant activity,
especially during late winter or early spring. Starr and Oberbauer [45] found that a higher
TSS makes the air temperature much higher than the critical point of photosynthesis,
thereby promoting plant photosynthesis and the metabolic activity of soil microbes in early
spring. However, the increase of TSS may have a negative impact on some microbes. For
example, a higher TSS will increase the metabolic rate of overwintering caterpillars living
above the snow cover by altering the frequency of freezing, thus reducing the creatures’
adaptability to the environment [46]. Moreover, the change of TSS has a great impact on
low temperature–adapted microbial flora beneath the snow cover. This microbial flora
plays a role in a certain soil temperature range and is highly sensitive to warming or
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cooling outside this range. Increased TSS leads to changes in the soil respiration rate of the
microbial flora, thus affecting the rate of soil carbon sequestration [47].

Climate change can lead to complex changes in snow cover, which can alter the
exchange of net radiation energy between snow and soil and the loss of energy on the soil
surface [26]. For example, the increase of MSD in the farmland of NEC leads to a rapid
increase in TSS, which may change the freeze–thaw cycle and conductive heat flow to the
atmosphere [48–50]. Changes in these factors also affect patterns of CO2 fluxes, as they are
controlled by many biological, chemical, and physical factors such as snow accumulation,
freeze–thaw cycles, soil temperature, and soil moisture [51].

4.2. Model Limitations and Uncertainties

There are some important uncertainties and limitations in our modeling analysis
due to the model physics, inputs, and parameterization. It is necessary to set the initial
number of soil layers as well as the soil moisture content and soil temperature of each layer
when deriving the model. Because we cannot obtain the in situ soil parameters on each
node layer of farmland in NEC in the gridding process, our research only used existing
products, such as GLDAS data. Although we regard the first ten days of the model as the
stable period and discard these data, the accuracy of GLDAS data will inevitably affect
our results. Additionally, the initialization of the SNTHERM model requires the input
of snow parameters, such as the number of snow layers, the snow grain diameter, the
snow density, and the snow temperature of each layer. These data are currently without
gridded products and in situ data. Therefore, the empirical value can only be set according
to the characteristics of snow cover in NEC and model principle. Furthermore, TSS is
highly sensitive to Jp in the SNTHERM model. Because the soil properties of each pixel
cannot be obtained, we adopted empirical values based on the soil texture data. These
uncertain factors may have a greater impact on the simulation precision of the model.
The underlying surface type also affects the model accuracy. The inversion accuracy of
SNTHERM decreases in mixed pixels, forests, and grassland.

Additionally, although we analyzed the impact of several environmental factors on
changes in TSS, other environmental factors may also have a strong influence. For example,
the decrease in snow depth or increase of snow density reduces TSS [15]. However, due to
the lack of snow density data, we did not discuss the changes in snow density and their
impact on TSS. Future developments may enable the use of data assimilation methods
to merge in situ data with satellite–based snow products and snow inversion models.
Finally, in our research, snow depth products are retrieved using passive microwave data.
However, due to the properties of passive microwaves, a low inversion accuracy is obtained
when the snow depth is shallow [19].

5. Conclusions

In this study, the single–point SNTHERM model was improved according to snow
cover and soil characteristics of farmland in NEC. The improved SNTHERM model was
used to simulate TSS in each grid point from 01 September to 31 May between 1979 and
2018, while GLDAS forcing data were used to provide the initial attribute information of
each node layer and ITPCAS forcing data as the meteorological driving data. In this paper,
the interface temperature under snow cover, also known as TSS, was extracted, the changes
in TSS and TDSSA were quantitatively analyzed, and the specific factors that caused the
increase of TSS in farmland in NEC were deeply explored.

The improved SNTHERM model employed observational data from 36 meteorological
stations located in farmland in NEC from 2005 to 2018 to compare with the simulation
results. The results showed that the SNTHERM model can adequately simulate TSS. We
identified that 99% of annual average TSS and 98% of TDSSA showed an increasing trend.
The results indicated that the snow depth is critical to the thermal insulation effect of snow
cover. TDSSA is higher in areas with greater snow depth, such as the Sanjiang Plain and
Songnen Plain. There are small gaps between TSS and TSA in areas with shallow snow,
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such as the lower Liaohe Plain. The calculation of the contribution of MSD and TSA to TSS
further showed the influence of these two factors on TSS in different regions. The results
revealed that MSD is the pivotal factor affecting the trend of TSS. TSS are more strongly
correlated with MSD than TSA. For example, in the Sanjiang Plain, the rapid increase of
TSS between 1979 and 2018 is mainly affected by MSD. Some areas of NEC, such as in the
Songnen Plain, show significant rapid increases of TSS under the dual impact of increasing
snow depth and increasing air temperature. In the areas, such as in the lower Liaohe River
Plain, TSS is mainly affected by MSD and TSA from 1979 to 2018, and smaller changes in
MSD causes TSS to increase slowly.

Our research provides a simulation of the trend of TSS in farmland in NEC under the
background of climate change. The results show that the variations of snow depth and
temperature have a strong correlation with the rise of TSS.
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