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Abstract: Proper identification of different grape varieties by smart machinery is of great importance
to modern agriculture production. In this paper, a fast and accurate identification method based
on Canonical Correlation Analysis (CCA), which can fuse different deep features extracted from
Convolutional Neural Network (CNN), plus Support Vector Machine (SVM) is proposed. In this
research, based on an open dataset, three types of state-of-the-art CNNs, seven species of deep
features, and a multi-class SVM classifier were studied. First, the images were resized to meet the
input requirements of a CNN. Then, the deep features of the input images were extracted by a specific
deep features layer of the CNN. Next, two kinds of deep features from different networks were
fused by CCA to increase the effective classification feature information. Finally, a multi-class SVM
classifier was trained with the fused features. When applied to an open dataset, the model outcome
shows that the fused deep features with any combination can obtain better identification performance
than by using a single type of deep feature. The fusion of fc6 (in AlexNet network) and Fc1000 (in
ResNet50 network) deep features obtained the best identification performance. The average F1 Score
of 96.9% was 8.7% higher compared to the best performance of a single deep feature, i.e., Fc1000
of ResNet101, which was 88.2%. Furthermore, the F1 Score of the proposed method is 2.7% higher
than the best performance obtained by using a CNN directly. The experimental results show that the
method proposed in this paper can achieve fast and accurate identification of grape varieties. Based
on the proposed algorithm, the smart machinery in agriculture can take more targeted measures
based on the different characteristics of different grape varieties for further improvement of the yield
and quality of grape production.

Keywords: grape varieties identification; Support Vector Machine (SVM); Convolutional Neural
Network (CNN); deep feature fusion; Canonical Correlation Analysis (CCA); smart machinery

1. Introduction

Grape is one of the most popular fruits which can be used for wine production or
fresh food. There are many varieties of grapes in the world, with more than 10,000 varieties
and about 3000 cultivars. Through the improvement and screening of grape varieties, there
are dozens of wine grapes widely planted at present. Many wine producers need to mix a
larger number of different varieties of grapes to produce high-quality wines, such as the
“Blend D. Antónia”, which has more than 30 grape varieties. This means that more than one
grape variety is planted per parcel and even per row [1]. Although the basic management
methods of grapes are similar, the different varieties have their own characteristics, and
they have different requirements for pruning, spraying, fertilization, and harvest time.
Scientific and accurate field management is the key to the production of wine grapes of
high quality. With the development of modern agriculture, more smart machines are used
for pruning [2], spraying [3,4], and harvesting grapes [5]. Accurate identification of grape
varieties is necessary for the smart machinery to make more targeted decisions for different
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varieties. Therefore, it is important to develop reliable methods that could automatically
identify the varieties of grapes.

The traditional methods of grape variety identification mainly include manual and
chemical identification [6]. Manual identification requires a high level of experience
and expertise of the inspector and has disadvantages such as being time-consuming
and subjective. In contrast, chemical identification methods such as mass spectrometry,
chromatography, and fluorescence spectrometry are widely used, have demonstrated
great efficiency, and are considered to be reliable for identifying grape varieties [7–10].
However, it is not convenient to apply the chemical methods to smart machinery, and
these methods cannot produce real-time identification results for the real-time operation
of smart machinery. Machine vision, which only needs an image sensor, is very easy and
convenient to integrate into smart machinery. Thus, in this paper, the method of machine
vision was considered to identify grape varieties. With the development of machine
vision, image inspection as a non-destructive technology is widely used in industry [11,12],
agriculture [13,14], and fisheries [15,16], showing great application prospects.

In the agriculture field, machine vision-based methods are widely used for the clas-
sification or grading of agricultural products. Nasirahmadi et al. used a Bag of Features
(BoF) model to solve the classification problem of 20 kinds of almonds. In their research,
three classifiers (L-SVM, Chi-SVM, and kNN) based on five keypoint detectors and a SIFT
descriptor were investigated and achieved 79–87%, 83–91%, and 67–78% accuracy, respec-
tively [17]. Bhargava et al., aiming at the problem of apple (fresh, rotten), six different
varieties of apple (Fuji, York, Golden Crown, Red Crown, Granny Smith, and Jonagold)
were selected. Firstly, the fruit region in the image was segmented by grab-cut method
and Fuzzy C-Means Clustering, and then six features were extracted from feature space by
principal component analysis to train an SVM classifier, and finally, 98.42% classification
accuracy was obtained [18]. In [19], Ponce et al. focused on the variety identification of
olive fruits. Six different Convolutional Neural Networks were trained by 2800 images with
seven kinds of olive, and a top accuracy of 95.91% was obtained by Inception-ResnetV2.
In addition, there are also some studies about the identification of grape varieties based
on machine learning or deep learning. Bogdan et al. developed a model which is a combi-
nation of deep learning ResNet50 classifier model with multi-layer perceptron for grape
varieties identification. A well-known benchmark dataset, which provided the instances
from five different grape varieties taken from the field, was used for training and testing on
the developed model. The test results showed that the classification accuracy of the model
for different grape varieties can reach 99% [20]. El-Mashharawi et al. adopted a CNN for
the identification of grape varieties. A dataset provided by Kaggle, which contains 4565
images with six species of grapes, was used to train and test the network, and a validation
accuracy of 100% was achieved on the test set. The main reason for such high accuracy
could be attributed to that each image in the dataset contains only one grape grain, and the
background is pure white without any interference [21]. Besides, the AlexNet was trained
by Pereira et al. with 10 different generated datasets and the highest accuracy of 77.3% was
obtained with the four-corners-in-one preprocessed dataset [1].

Two kinds of methods were mainly adopted in the above studies: (1) SVM-based
models for classification and (2) deep learning-based models for classification. SVM-based
classifiers have a simple classification idea, i.e., to maximize the interval between samples
and decision surfaces. Thus, using kernel functions to map features to high-dimensional
space to solve nonlinear classification problems can often achieve excellent results [22,23].
However, the classification effect often depends on the class, number, and robustness of the
selected features, which is often specific to the research and limited by their experience, and
thus, the performance of classifiers trained by different people often has large performance
differences. Compared to traditional machine learning methods, deep learning often
could achieve better performance by the application of a Convolutional Neural Network
(CNN), which consists of a variety of filters, nonlinearities, and pooling operators. The
filters with different sizes are used for learning. A nonlinear operator such as hyperbolic
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tangents, rectified linear units, or logistics sigmoid are added to improve the nonlinear
fitting ability of the model. Convolution and nonlinearities are usually followed by a
pooling operator such as subsampling, average pooling, or maximum pooling. The CNN
model can automatically discover features, and as the number of CNN layers increases, the
feature discovered becomes more advanced. Compared to handcraft features by manual
selection, deep learning can automatically learn the hierarchical features hidden into the
images, which is not only more effective but also avoids the tedious features selection
procedure.

However, when dealing with a small dataset, it is difficult to train a CNN from scratch.
Based on the discussion in the previous section, it is natural to carry out a method that
can train the SVM model with deep features to make full use of the advantages of the
two techniques. The literature reports that this method has been applied in agriculture
and achieved good performance. In [24], Sethy et al. evaluated the classification perfor-
mance of a Support Vector Machine classifier for rice disease identification. The features
adopted for SVM classifier training were extracted by 13 pre-trained CNN models (AlexNet,
Vgg16, Vgg19, Xception, Resnet18, Resnet50, Resnet101, Inceptionv3, Inceptionresnetv2,
GoogLeNet, Densenet201, Mobilenetv2, shufflenet). The use of pre-trained models can not
only ensure that the model could extract effective features, but at the same time, it avoids
the need for large datasets and computational resources to train a CNN. The results show
that the classifier trained by features extract by ResNet50 is superior to other models, and
the F1 Score is 0.9838. In the same year, this method was used by the team to detect nitrogen
deficiency of rice, and the classifier of ResNet50 + SVM achieved the best classification ac-
curacy of 99.84% [25]. In addition, Jiang et al., adopting the same idea as [24,25], developed
an SVM classifier for rice leaf diseases diagnosis, and an average correct recognition rate of
96.8% was obtained. The above studies show that training an SVM classifier with the deep
features extracted by a CNN model can achieve classification results that are not inferior to
those of applying the corresponding deep model directly. Moreover, the computational
resources, as well as the training time, are significantly reduced compared with training a
deep network from scratch. However, the currently proposed methods of deep features
plus SVM have two problems. (1) The dimensionality of the deep features is usually very
large; for example, the dimensionality of fc6, fc7, and fc8 of AlexNet are 4096, 4096, and
1000, respectively. The high-dimensional features may affect the classification performance
since the SVM model is more suitable for dealing with low-dimensional features. (2) The
research mainly focuses on evaluating the classification performance of an SVM classifier
trained by deep features of a specific layer of a single CNN model to find the best deep
feature for classification.

With all the above, the objective of this research is to develop a new method for
training the SVM classifier with CCA fused deep features for the identification of different
varieties of grapes and thereby to overcome the problems with the current SVM+ deep
feature methods. Inspired by Haghighat et al. [26] and Sun et al. [27], which demonstrated
the outstanding performance by the fused feature with Canonical Correlation Analysis
(CCA) fusion techniques, and considering working with small datasets, we hypothesize
that a method can be developed that can fuse two kinds of deep features and reduce the
dimensionality of fused deep features to improve the classification performance and reduce
the training time. Thus, our new method would train the SVM classifier with CCA fused
deep features for the identification of different varieties of grapes. By utilizing two CNNs to
extract the deep features of the training set, and then CCA to fuse the obtained deep features
and train the SVM with the fused features, we expect to deliver a better classifier for grape
variety recognition. We also address the following specific hypotheses. (1) Compared with
the deep feature extracted by a single CNN model, the fused deep feature from different
networks can make the SVM classifier learn more features to improve the classification
performance. (2) The CCA algorithm can eliminate redundant and invalid information
when fusing different deep features, and significantly reduce the feature dimensionality to
alleviate the problem that the model performance is affected when the SVM model learns
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high-dimensional features, and the reduction of feature dimensionality helps to speed up
the model training speed.

The remainder of the article is organized as follows. In Section 2, the studied dataset
and models and the proposed method are given. Then, in Section 3, the experiment results
of different models are presented. Further, in Section 4, a comprehensive discussion based
on the experiment results and the other studies are presented. Finally, a conclusion of the
research is given in Section 5.

2. Materials and Methods
2.1. Dataset

One publicly available grapes image dataset named WGISD was adopted to evalu-
ate the performance in this study, which can be downloaded from https://github.com/
thsant/wgisd (accessed on 10 June 2021). The WGISD dataset consists of 300 images
(2048 × 1365 pixels) with 5 different varieties (Chardonnay, Cabernet Franc, Cabernet
Sauvignon, Sauvignon Blanc, and Syrah), and the detailed distribution of the dataset is as
shown in Figure 1. In the experiment, the dataset was randomly split into 70:30 for training
and testing, respectively.

Figure 1. The varieties distribution of WGISD dataset.

2.2. Network Architecture and Deep Features Layers

In this research, the deep feature of three state-of-the-art CNN models, i.e., AlexNet [28],
GoogLeNet [29], and ResNet [30], were adopted to evaluate the performance of the pro-
posed method. The deep features are extracted from fully connected layer of a CNN model.
Generally, a CNN may include several different fully connected layers (deep feature lay-
ers). For example, AlexNet consists of three deep feature layers, namely fc6, fc7, and fc8.
Then, in this research, some typical deep feature layers were examined, and the detailed
information of the selected layers was listed in Table 1.

Table 1. The deep feature layer and feature vector of the studied CNN.

CNN Model Feature Layer Feature Vector

AlexNet
fc6 4096
fc7 4096
fc8 1000

GoogLeNet loss3-classifier 1000
ResNet18 Fc1000 1000
ResNet50 Fc1000 1000
ResNet101 Fc1000 1000

2.2.1. AlexNet

AlexNet was first proposed by Alex Krizhevsky et al. in the ImageNet competition
and won first place in 2012. AlexNet is a deepening of the layers of the network based
on LeNet, which enables it to learn richer and higher dimensional features. The proposal
of AlexNet is the beginning of deep learning. It is a basic, simple, and effective CNN

https://github.com/thsant/wgisd
https://github.com/thsant/wgisd


Agriculture 2021, 11, 869 5 of 16

architecture, which is mainly composed of cascade stages, namely a convolutional layer,
pooling layer, rectified linear unit (ReLU) layer, and fully connected layer. Specifically,
the AlexNet consists of 5 convolutional layers, as shown in Figure 2, with pooling layers
behind the first, second, third, and fourth layer, and 3 fully connected layers behind the fifth
layer. The success of AlexNet can be attributed to some practical strategies, such as using
ReLU nonlinear layers instead of sigmoid function as activation functions, using dropout
to suppress overfitting, and using multi-GPU training. ReLU is a half-wave rectification
function that can significantly accelerate the training phase and prevent overfitting. In
addition, the dropout can be considered as a regularization to reduce the co-adaptation
of neurons by setting the number of input neurons or hidden neurons to zero at random,
which is usually used in the fully connected layers of AlexNet architecture. In this research,
the deep features of fc6, fc7, and fc8 (which could be observed in Figure 2) of AlexNet were
adopted to evaluate the performance of the SVM classifier.

Figure 2. The architecture of AlexNet.

2.2.2. GoogLeNet

GoogLeNet, as shown in Figure 3, is a new deep learning structure proposed by
Christian Szegedy in 2014. Before that AlexNet, VGG, and other networks obtained
affordable performance by increasing the depth of the network (layers), but the increase
in layers brought many negative effects, such as overfitting, gradient disappearance, and
gradient explosion. To address this issue, a new module, Inception, was proposed by
Szegedy et al. to construct the GoogLeNet network. The architecture of Inception is shown
in Figure 4, which puts multiple convolutions or pooling operation together to form a
single network unit. The proposal of Inception is to improve the performance from another
perspective: it can use computing resources more efficiently and can extract more features
with the same amount of calculation.

When designing a network that does not adopt the inception, we tend to use only
one operation in a layer, such as convolution or pooling, and the size of the convolution
kernel for the convolution operation is also fixed. However, in practical situations, for
different sizes of images, different sizes of convolution kernels are needed to make the
best performance, or, for the same image, different sizes of convolution kernels behave
differently because they have different receptive fields. Therefore, we want to let the
network choose by itself, and Inception can meet such needs. An Inception module
provides multiple convolutional kernels in parallel, and the network chooses to use them
by adjusting the parameters during training. In our research, the last fully connected layer
(as shown in Figure 3) was chosen as the feature extraction layer. This layer is named
“loss3-classifier” in the Deep Learning Toolbox of MATLAB and is usually chosen as the
feature extraction layer of GoogLeNet for different applications [24,31,32].
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Figure 3. The architecture of GoogLeNet.

Figure 4. The Inception module proposed by GoogLeNet.

2.2.3. ResNet

As the network deepens, there is a decrease in the accuracy of the training set, and it
is certain that this is not caused by overfitting (the accuracy should be high enough in the
case of overfitting). To address this problem, He et al. proposed a new network named
deep residual network (ResNet), which introduces a residual block structure, as shown in
Figure 5, to solve the problem degradation in deep networks while allowing the network to
be as deep as possible. The X Identity in Figure 5 is called “shortcut connection” and is the
significant difference between the deep residual network and other networks. Two kinds
of mapping were proposed by ResNet, the one is identity mapping and the other one is
residual mapping. The output of a residual block is y = F(x) + x (do not consider nonlinear
activation), and identity mapping refers to the input itself, which is x in the equation, while
residual mapping refers to the F(x) part. If the network has reached the optimum, even
if the network deepens, the residual mapping will be pushed to 0, leaving only identity
mapping, so that the network is always in an optimum state and the performance of the
network will not decrease as the layers increase.
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Figure 5. Residual block.

As shown in Equation (1), if the dimensions of x and F(x) are different, a linear
projection W should be adopted on x such that the dimensions of x could match the
dimensions of the F(x).

y= F(x,{Wi})+Wxx. (1)

In our study, three widely used ResNet architectures, i.e., ResNet18, ResNet50, and
ResNet101, were chosen as the deep feature extraction network. Similar to the “loss3-
classifier”, the fully connected layer before each ResNet was chosen as the deep feature
extraction layer. These layers are named “Fc1000” in their respective networks and have
also been wildly adopted for deep feature extraction for different applications [24,31,32].

2.3. Fusion of Deep Features by Canonical Correlation Analysis

In this research, two kinds of deep features extracted by the different networks of
different deep feature layers were fused into a single feature vector by using a feature
fusion technique based on Canonical Correlation Analysis (CCA) [27]. The fused feature
is more discriminative than any of the input feature vectors. The Canonical Correlation
Analysis (CCA) has been widely adopted to analyze associations between two sets of
variables. The detailed mathematical derivation of CCA is shown in Appendix A.

As defined in [27], the deep features extracted by different CNN models could be
fused by summation of the transformed features (canonical variates X∗ and Y∗), and the
fusion equation is shown in Equation (2).

Z = X∗+Y∗= WT
x X + WT

y Y =

(
Wx
Wy

)T( X
Y

)
, (2)

where X∗ and Y∗ are the transformation of original extracted deep features X and Y by
matrices WT

x and WT
y , respectively. Through matrix transformation, the matrices X and Y,

whose dimensionalities are not necessarily equal, become equal. Further, the fused deep
features Z can be obtained through numerical summation of corresponding positions of X∗

and Y∗.

2.4. Proposed Methodology

The processing flow of the proposed method is illustrated in Figure 6.
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Figure 6. The processing flow of the proposed method.

Firstly, we resize the image to make it fit the input requirement of the CNN mod-
els. The CNN models used in this article were AlexNet, ResNet (18, 50, and 101), and
GoogLeNet, and their input requirements are 227× 227× 3, 224× 224× 3, and 224 × 224 × 3,
respectively.

Second, we input the image to the pre-trained CNN model to extract the deep fea-
tures on specific layers of the CNN model. A typical CNN usually consists of two parts:
convolutional base and classifier. The convolutional base is mainly used to automatically
learn hierarchical features representations of the input image. Models trained with large
datasets often have stronger feature learning abilities than trained with a small dataset.
This means that a model pre-trained by a large dataset to extract deep features probably
captures statistics of natural images much better than could have been learned from the
WGISD dataset because of its limited size. Therefore, all the CNNs adopted for deep
features extraction are pre-trained by ImageNet, which is a famous public dataset that
contains 14 million images with 20 thousand classes.

Third, fuse the deep features extracted from different CNN models by Canonical
Correlation Analysis (CCA) algorithm. The Canonical Correlation Discriminant Features
is more discriminative than any of the input feature vectors. Compared with directly
concatenating the deep features extracted from different CNN models, CCA can effectively
eliminate the invalid features and reduce the feature dimensionality, which can avoid
overfitting training and reduce the training time and computational resources of the SVM
classifier.

Finally, the fused deep features were fed into a well-trained SVM classifier, then the
SVM classifier could distinguish the grape variety and output the result. In the training
stage, the function of “fit class error correcting output codes” (fitcecoc) was used, which
could train a multi-class SVM classifier. The function of “fitcecoc” uses K(K−1)/2 binary
SVM model with One-Vs-All coding design, which enhances the classification performance
of the classifier.

2.5. Experiment Environment

The experiment computer is a Dell-T7920 (Austin, TX, USA) workstation running on
Windows 10, and the hardware configuration is 2 Intel Xeon Gold 6248R CPUs, 64GB of
RAM, and 2 Nvidia Quadro RTX 5000 graphics cards with 32 GB memory. The software
environment is MATLAB 2020b (Netik, MA, USA), which supports the operation of CNN
models such as AlexNet, GoogLeNet, and ResNet by installing the DeepLearning toolbox.
In addition, the network parameters of AlexNet, GoogLeNet, and ResNet (18, 50, and 101)
are pre-trained by ImageNet and have powerful feature extraction capability.

2.6. Performance Evaluation Metrics

To evaluate the performance of the proposed method, four metrics have been applied,
i.e., accuracy [33], recall [33], precision [33], and F1 Score [33], which are most widely
used to evaluate the performance of classification. The accuracy represents the ratio of the
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number of correctly classified samples to the total number of samples. The recall represents
the ratio of the number of true positive samples to the positive samples. The precision
represents the ratio of the number of true positive samples to the number of the samples
predicted as positive, and the F1 Score is a harmonic metric, which takes into account both
the recall and precision of the classification model. The equation of the adopted metrics is
shown in Equations (3)–(6).

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1Score = 2× recall × precision
recall + precision

(6)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

3. Results

In the experiment, in order to obtain more reliable experiment data, 10 independent
runs of training and validation of each SVM classifier were made on the dataset, and the
mean of results and deviation on the test set was adopted to represent its performance.
Besides, since the standard deviations of the results of each model are very small, only the
mean of the results were discussed.

3.1. Performance Analysis Based on Single Type of Deep Feature

The classification results and training time of the SVM classifier trained with a single
type of deep feature are shown in Table 2. It is observed that the Fc1000 layer of ResNet101
obtained the best classification performance among all the examined deep layers, and
the average accuracy, precision, recall, and F1 Score are 87.7%, 88.4%, 88%, and 88.2%,
respectively. Besides, the fc6 of AlexNet can achieve better performance than fc7 and fc8,
which was also indicated by other studies [24,34], reporting that the deep feature of fc6 is
more distinguishable than that of fc7 and fc8. Then, in the following sections, the fc6 deep
feature of AlexNet is considered only. Figure 7 shows the visualization of same sample
with different deep feature. In addition, the training time of an SVM classifier with the fc6
layer of AlexNet is the longest, with an average of 2.5 s, while the average time of all other
single type deep features was within 0.5 s. The dimension of the fc6 deep feature is 4096,
and all the others are 1000, which may be the reason why the training time of fc6 is longer
than that of other deep features.

Table 2. Performance metrics and training time of SVM classifier with a single deep feature (bold font shows the best
performance).

Metrics
AlexNet GoogLeNet ResNet18 ResNet50 ResNet101

fc6 fc7 fc8 Loss3-Classifier Fc1000 Fc1000 Fc1000

Accuracy (%) 86.3 ± 1.1 81.5 ± 1.8 79.3 ± 0.9 72.5 ± 2.7 79 ± 2.4 83.4 ± 2 87.7 ± 1.2
Precision (%) 87.8 ± 0.9 83.8 ± 1.4 81.4 ± 0.7 75.2 ± 2.8 80.9 ± 2.7 84.4 ± 2 88.4 ± 1.4

Recall (%) 86.8 ± 1.1 82.3 ± 2 79.7 ± 1 73.3 ± 2.7 79.7 ± 2.2 84.1 ± 1.9 88 ± 1.2
F1 Score (%) 87.3 ± 0.9 83.1 ± 1.7 80.6 ± 0.8 74.2 ± 2.7 80.3 ± 2.4 84.3 ± 1.9 88.2 ± 1.2

Training time (S) 2.5 ± 0.39 0.4 ± 0.32 0.1 ± 0.04 0.09 ± 0.04 0.1 ± 0.02 0.1 ± 0.04 0.2 ± 0.27
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Figure 7. Visualization of different deep feature with the same sample: (a) fc6; (b) fc7; (c) fc8; (d) loss3-classifier; (e) Fc1000
of ResNet18; (f) Fc1000 of ResNet50; (g) Fc1000 of ResNet101.

3.2. Performance Analysis Based on CCA Fused Deep Features

Table 3 shows the performance of the SVM classifier trained by CCA fused deep fea-
tures extracted from different CNNs on the test set. It can be observed that the combination
of fc6 and ResNet50 (Fc1000) achieves the best classification performance, and the accuracy,
precision, recall, and mean F1 Score are 96.5%, 97.0%, 96.7%, and 96.8%, respectively. The
combination of GoogLeNet (loss3-classifier) and ResNet18 (Fc1000) obtained the worst
performance, and the mean accuracy, precision, recall, and F1 Score are 90.6%, 91.1%, 91%,
and 91.1%, respectively. For all the fused deep features, the dimensionality is 211 and the
training times are usually within 0.1 s, which seems to verify the speculation about the
relationship between training time and feature dimensionality in the previous section.

Table 3. Performance metrics and training time of SVM classifier with fused deep features (bold font shows the best
performance).

Fused Features Accuracy (%) Precision (%) Recall (%) F1 Score (%) Train Time (S) Dimension

fc6 + GoogleNet 94.5 ± 2.4 95.2 ± 2.1 94.7 ± 2.3 95.0 ± 2.2 0.07 ± 0.02 211
fc6 + ResNet18 92 ± 1.6 92.5 ± 1.3 92.2 ± 1.8 92.4 ± 1.5 0.06 ± 0.001 211
fc6 + ResNet50 96.5 ± 1.4 97.0 ± 1.2 96.7 ± 1.5 96.8 ± 1.3 0.06 ± 0.007 211
fc6 + ResNet101 96.1 ± 1 96.6 ± 0.9 96.2 ± 0.9 96.4 ± 0.9 0.07 ± 0.02 211

GoogleNet + ResNet18 90.6 ± 0.9 91.1 ± 0.7 91 ± 1 91.1 ± 0.8 0.07 ± 0.04 211
GoogleNet + ResNet50 92 ± 0.8 92.8 ± 0.5 92.1 ± 0.9 92.4 ± 0.6 0.09 ± 0.03 211

GoogleNet + ResNet101 95.2 ± 1.2 95.7 ± 1.1 95.4 ± 1 95.5 ± 1.1 0.05 ± 0.006 211
ResNet18 + ResNet50 92.2 ± 1.2 92.9 ± 1.3 92.3 ± 1.5 92.6 ± 1.4 0.07 ± 0.005 211

ResNet18 + ResNet101 92.7 ± 1 93.1 ± 0.8 92.9 ± 0.8 93.0 ± 0.7 0.07 ± 0.02 211
ResNet50 + ResNet101 96.1 ± 1 96.4 ± 1 96.2 ± 0.9 96.3 ± 1 0.18 ± 0.008 211

Table 4 shows the performance comparison between the proposed fused deep features
and a single feature. The first row in the table is the best performance obtained by the fused
deep features, while the second row is the worst performance, the third row is the best
performance obtained by a single deep feature, and the fourth and fifth are the components
of the fused deep features in the first row. Since the calculation of F1 Score combines
precision and recall, we analyze the performance differences with mean F1 Score in this
section.

Table 4. Performance comparison between the fused deep features and a single feature. (Bold font shows the best
performance).

Fused Features Accuracy (%) Precision (%) Recall (%) F1 Score (%) Fusion Time (S) Train Time (S) Dimension

fc6 + ResNet50 96.5 ± 1.4 97.0 ± 1.2 96.7 ± 1.5 96.8 ± 1.3 0.05 ± 0.008 0.06 ± 0.007 211
GoogleNet + ResNet18 90.6 ± 0.9 91.1 ± 0.7 91 ± 1 91.1 ± 0.8 0.03 ± 0.002 0.07 ± 0.04 211

ResNet101 87.7 ± 1.2 88.4 ± 1.4 88 ± 1.2 88.2 ± 1.2 - 0.2 ± 0.27 1000
fc6 86.3 ± 1.1 87.8 ± 0.9 86.8 ± 1.1 87.3 ± 0.9 - 2.5 ± 0.39 4096

ResNet50 83.4 ± 2 84.4 ± 2 84.1 ± 1.9 84.3 ± 1.9 - 0.1 ± 0.04 1000

The best classification performance is obtained by the fusion of deep feature extracted
from fc6 of AlexNet and ResNet50 (Fc1000), and the mean F1 Score is 96.8%, which is
8.6% higher than the best single deep feature. Further, the mean F1 Score of the worst
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fused deep features reaches 91.1%, which is also 2.9% higher than the best single feature.
For fc6 and ResNet50 (Fc1000), the mean F1 Score of the fused deep feature is 9.5% and
12.5% higher than that of the single deep feature before the fusion, which indicates that the
method proposed in this paper could improve the classification performance significantly.
In addition, the training time plus feature fusion time of the proposed method is not more
than the training time of a single feature, indicating that the proposed method is helpful to
shorten the model training time.

Although the proposed method achieved satisfactory performance on the entire test
set, the identification performance of the classifier on each variety of grape in the dataset
is not clear. We further obtained the confusion matrix of the classifier’s (fc6 deep feature
+ Fc100 of ResNet50) 10 independent runs on the test set, as shown in Table 5. The
confusion matrix is a tool to evaluate the performance of supervised learning classification
algorithm. In our research, each row of the confusion matrix represents the actual variety of
grapes while each column represents the predicted variety, and the value on the diagonal
represents the correct classification of each variety. It can be intuitively observed that
the classifier achieved the best classification effect for Syrah. All 140 samples of Syrah
were correctly identified. Following is Cabernet Sauvignon, for which all 164 samples
were also correctly identified, but some other varieties were misidentified as Cabernet
Sauvignon. However, the classification effect on the other three varieties cannot be directly
observed from the confusion matrix, so we calculate the F1 Score of the classifier for each
variety. The mean F1 Score of Syrah, Cabernet Sauvignon, Cabernet Franc, Sauvignon
Blanc, and Chardonnay are 1, 0.982, 0.9738, 0.9399, and 0.9394, respectively. Therefore, we
can obtain the actual ranking of the classification effect on each variety of grape by the
classifier: Syrah > Cabernet Sauvignon > Cabernet Franc > Sauvignon Blanc > Chardonnay.
Furthermore, through the intuitive observation of the test set, we seem to find that the
closer the grape clusters to the camera, the better the classification performance. This
gives us some inspiration that the camera should be as close to the grapevine as possible
to capture the more clear clusters of grapes to improve the identification performance
in practice.

Table 5. The confusion matrix of the 10 independent runs on the test set with fc6 + Fc1000 (ResNet50)
fused deep features.

Grape Varieties Cabernet Franc Sauvignon Blanc Chardonnay Cabernet Sauvignon Syrah

Cabernet Franc 187 2 0 5 0
Sauvignon Blanc 0 180 12 1 0

Chardonnay 3 8 178 0 0
Cabernet

Sauvignon 0 0 0 164 0

Syrah 0 0 0 0 140

3.3. Performance Comparison with Using Deep Network Directly

Further, the performance of the proposed method (fused deep features plus SVM)
was compared with the performance obtained by using CNNs directly. Commonly, the
number of classification classes of the original CNN is often inconsistent with the number
of classification classes we study, which makes it impossible for us to directly apply the
original network to our applications. Therefore, the meaning of directly using CNN in this
article essentially refers to directly using the classification output of a CNN. In order to
make a CNN suitable for our study, the parameter of the final “softmax” (the classifier in
CNN) should be adjusted to be 5 (number of grape varieties in the WGISD). Table 6 shows
the training parameters for the examined CNN models. In the experiment, “stochastic
gradient descent with momentum” (sgdm) was selected as the optimization algorithm
(solver), and the parameters of “MiniBatchSize” (the number of samples utilized in one
iteration), “InitialLearnRate”, and “MaxEpochs” (the number of passes of the entire training
dataset) were 20, 1e-3, and 50, respectively. Moreover, because the workstation has two GPU,
the parameter of “ExecutionEnvironment” was set as “multi-gpu” to speed up the training.
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Table 6. Training parameters of the examined CNN models.

Parameters Value

solver sgdm
MiniBatchSize 20

InitialLearnRate 1e-3
MaxEpochs 30

ExecutionEnvironment multi-gpu

The performance comparison between the method proposed in this article and using
the CNN directly is obtained in Table 7. On the one hand, from the perspective of classifica-
tion performance, the mean F1 Scores of the AlexNet, GoogLeNet, ResNet18, ResNet50,
and ResNet101 are 87.0%, 94.2%, 90.7%, 88.5%, and 82.3%, respectively. The mean F1
Scores of the proposed method are 9.8%, 2.6%, 6.1%, 8.3%, and 14.5% higher than AlexNet,
GoogLeNet, ResNet18, ResNet50, and ResNet10, respectively, which indicate that, for the
identification of grape varieties, the proposed method has better classification performance
than using CNN directly. However, the CNN often contains a large number of parameters,
which requires a large number of samples to train and fine tune the parameters. Therefore,
we believe that the small number of samples of the public dataset studied in this paper is
the reason why it is difficult to obtain better classification performance by using the CNN
directly. It is not recommended to train a deep network with small datasets to avoid the
problem of overfitting. However, the method proposed in this paper can still achieve good
classification performance (the mean F1 Score is as high as 96.8%) with the small dataset,
showing obvious advantages. On the other hand, the training time also improved with
respect to the experimental environment of our study. To sum up, the results indicate that
the method proposed in this paper have advantages both in identification performance
and training time compared with using CNN directly.

Table 7. Performance comparison between the proposed method and using CNN directly (bold font shows the best
performance).

Method Accuracy Precision Recall F1 Score Train Time

AlexNet 85.7 ± 1.3 88.4 ± 1.2 85.7 ± 1.1 87.0 ± 0.9 4228 ± 53
GoogLeNet 93.8 ± 0.8 94.6 ± 0.9 94.0 ± 1.1 94.2 ± 1.0 4222 ± 47
ResNet18 89.8 ± 1.3 91.6 ± 1.2 90 ± 1.1 90.7 ± 1.2 4247 ± 38
ResNet50 87.7 ± 1.1 89.1 ± 1.2 88.0 ± 1.4 88.5 ± 1.3 4310 ± 51

ResNet101 81.6 ± 1.4 83.0 ± 1.3 81.7 ± 1.5 82.3 ± 1.3 4377 ± 63
Fused deep features

(proposed by this study) 96.5 ± 1.4 97.0 ± 1.2 96.7 ± 1.5 96.8 ± 1.3 0.06 ± 0.007

4. Discussion

In this study, a new method based on the CCA feature fusion algorithm plus SVM
was proposed. Donahue et al. [35] and Razavian et al. [36] demonstrated the outstanding
performance of the pre-trained CNN features in various recognition tasks. Although the
model trained from scratch may achieve comparative or better performance, it will be more
time-consuming. Besides, one potential limitation is that the amount of dataset used in our
research is not particularly large, so training the network directly from scratch may cause
over-fitting problems, which may cause degrading of the performance. Therefore, the
pre-trained CNN models were adopted to extract features. Haghighat et al. [26] and Sun
et al. [27] demonstrated an outstanding performance by the fused features with CCA fusion
techniques. In our experiment, we also tried the fusion methods of direct concatenation
and concatenation based on PCA, but there is a certain performance margin compared with
CCA. Therefore, the CCA was selected to fuse the deep feature, which can find the most
relevant features based on the two sets of features, so that better features can be used to
extract further features from the comparative poorer features to enhance the performance.
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The given CCA scheme is different from other fusion techniques (e.g., ensemble learning
and concatenation). To be specific, ensemble learning and concatenation does not consider
the correlations between the two input items from the perspective of features and may lose
some valuable information. The experiment results on the public WGISD show that the
proposed method could achieve satisfactory performance. However, there are many fusion
algorithms in practice. In the future, more studies should be focused on selecting a more
effective feature fusion algorithm to further improve the performance.

Furthermore, we compared our experimental results with some of the existing litera-
ture on grape varieties identification. Bogdan et al. cascaded the output of ResNet50 into
a multi-layer perceptron, which can improve the classification accuracy, but this method
needs to train two models. The evaluated dataset literature [20] is the same as ours, but the
background was removed and each cluster of grapes was extracted separately for training
and testing and an accuracy of 99% was obtained. However, in [22], when the background
was not removed (the dataset is exactly the same as ours), the accuracy dropped by 26%,
from 99% to 63%. This phenomenon suggests that (1) compared with their method, our
proposed method can achieve higher classification results, and That (2) the preprocessing,
the removal of the background, also plays a key role in the classification effect of the model.
Pereira et al. used AlexNet to identify grape varieties collected under natural conditions.
Although it carries out a variety of preprocessing on the dataset (does not include the
removal of background), the accuracy obtained is 77.3%, which is 19.2% lower than ours.
However, when this preprocessing was adopted to another popular Flavia leaf dataset, an
accuracy of 89.75% was achieved, which indicates that a different dataset also has a large
difference in results. This shows that although our approach has great advantages over
theirs, the impact of different datasets on the results cannot be ignored. El-Mashharawi
et al. also adopted a CNN for grape varieties identification, and an accuracy of 100% was
achieved on a public dataset from Kaggle. Each image on the dataset only contains one
grape grain and the background is pure white (the background pixels are all in white
color). Based on the influence of background processing on classification performance
in the above discussion of literature [20], we believe that the clear background is also an
important reason for such high accuracy. In summary, the method proposed in this study
could obtain satisfactory performance for grape varieties identification with the images
collected under natural conditions. However, image preprocessing should be considered
to improve the performance of our method. In addition, although the proposed method in
this paper has made promising progress with the method of single deep feature + SVM, a
satisfactory result was achieved on the WGISD dataset. As mentioned above, datasets also
play an important role in classification performance. The method that we propose needs to
be verified on different datasets to prove its versatility.

Agriculture is rapidly evolving towards a new paradigm—Agriculture 4.0, and digital
technology, artificial intelligence (AI), and automation will play a particularly important
role at this stage. Traditional manual machinery is gradually being replaced by smart
machinery. To make the machinery smart like a human being as much as possible, an
intelligent algorithm is necessary because different varieties of grapes have different har-
vesting time, nutrient requirements, and susceptibility to diseases and insect pests. With
the help of the proposed algorithm, the smart machinery could carry out more scientific and
reasonable operations for harvesting, fertilization, and management of different varieties
of grapes, reducing input and improving grape quality and yield at the same time. In
addition, the algorithm proposed in this paper is not only suitable for grapes but it can also
be used for the identification of other fruits or vegetables for a more extensive application.
However, there are still a lot of efforts that need to be made to enable our algorithm to be
adopted in smart machineries. (1) The algorithm is an independent module, and when
it is mounted on the smart machinery, it needs to consider the interconnection with the
front-end image sensor and the back-end actuator. This way, only the proposed algorithm
will have practical significance. (2) The image sensors are easily affected by the changeable
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field environment, and further affect the performance of the algorithm. More efforts should
be adopted to deal with such problems.

5. Conclusions

In this research, a new method was proposed for the identification of different varieties
of grapes based on small datasets. Our results showed that public WGISD datasets can
be successfully used for identification of grape varieties and indicated that the fusion of
two kinds of deep features by CCA can not only produce more distinguishable features for
improving the classification performance, but can also eliminate redundant and invalid
information, and thereby speed up the model training. Based on the proposed algorithm,
smart machinery will have the potential of taking more targeted measures according to
the different characteristics of different varieties of grapes, thus further improving their
performance that involves grape varieties recognition. However, to apply more effectively
the proposed algorithm to smart machinery, more images should be collected in the future
for different varieties from different vineyards with various conditions to make the model
more versatile. In addition, a complete software should be implemented, which includes
not only the grape varieties identification module but also all the functional modules.
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Appendix A

Suppose that two different methods used to extract the p dimensional and q dimen-
sional deep features of each sample, and two matrices, X ∈ Rp×n and Y ∈ Rq×n, are
obtained, where n is the number of samples (the number of samples trained in training
phase, or the number of test samples in testing phase). In other words, a total of (p+q)
dimensional features are extracted for each sample.

Let Sxx = Rp×p and Syy = Rq×q denote the within-sets covariance matrices of X and Y,
and Sxy = Rp×q denote the between-sets covariance matrix between X and Y. The matrix
S shown below is the overall (p + q)× (p + q) covariance matrix, which contains all the
information on associations between the pairs of deep features.

S =

(
cov(x) cov(x, y)

cov(y, x) cov(y)

)
=

(
Sxx Sxy
Syx Syy

)
. (A1)

However, the correlation between these two sets of deep feature vectors may not
follow a consistent pattern, and therefore, it is difficult to understand the relationship
between these two sets of deep features from this matrix [37]. The aim of CCA is to find a
linear transformation,X∗= WT

x X and Y∗= WT
y Y, and to maximize the pair-wise correlation

between the two datasets:

corr(X ∗, Y∗) =
cov(X ∗, Y∗

)
var(X ∗

)
·var(Y ∗

) , (A2)
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where cov(X ∗, Y∗) = WT
x SxyWy, var(X ∗) = WT

x SxxWx and var(Y ∗) = WT
y SyyWy. The co-

variance between X∗ and Y∗ (X∗, Y∗ ÎRd×n are known as canonical variables) is maximized
by Lagrange multiplier method, and the constraint condition is var(X ∗) = var(X ∗) = 1.
Further, the linear transformation matrix Wx and Wy can be obtained by solving the
eigenvalue equation as below [37]:{

S−1
xx SxyS−1

yy SyxŴx= Λ2Ŵx

S−1
yy SyxS−1

xx SxyŴy= Λ2Ŵy
, (A3)

where Ŵx and Ŵy are the eigenvectors and Λ2 is a diagonal matrix of eigenvalues or
squares of the canonical correlations.

The number of non-zero eigenvalues of each equation is d = rank(Sxy) ≤ min(n, p, q),
further arranged in descending order, λ1 ≥ λ2 ≥ · · · ≥ λd. The transformation matrix Wx
and Wy are composed of eigenvectors corresponding to sorted non-zero eigenvalues. For
the transformed data, the form of the sample covariance matrix defined in Equation (7) is
as follows:

S∗ =



1 0 · · · 0
0 1 · · · 0
...

. . .
0 0 · · · 1

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
0 0 · · · λd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
0 0 · · · λd
1 0 · · · 0
0 1 · · · 0
...

. . .
0 0 · · · 1


. (A4)

As shown in the above matrix, the upper left and lower right identity matrices indicate
that the canonical variates are uncorrelated within each dataset, and canonical variates
have non-zero correlation only on their corresponding indices.
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