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Abstract: This research illustrates the technical efficiency of the pan-India paddy cultivation status
obtained through a stochastic frontier approach. The results suggest that the mean technical efficiency
varies from 0.64 in Gujarat to 0.95 in Odisha. Inputs like human labor, mechanical labor, fertilizer,
irrigation and insecticide were found to determine the yield in paddy cultivation across India (except
for Chhattisgarh). Inefficiency in the paddy production in Punjab, Bihar, West Bengal, Andhra
Pradesh, Tamil Nadu, Kerala, Assam, Gujarat and Odisha in 2016–2017 was caused by technical
inefficiency due to poor input management, as suggested by the significant σ2U and σ2v values
of the stochastic frontier model. In addition, most of the farm groups in the study operated in
the high-efficiency group (80–90% technical efficiency). No specific pattern of input use can be
visualized through descriptive measures to give any specific policy implication. Thus, machine
learning algorithms based on the input parameters were tested on the data in order to predict the
farmers’ efficiency class for individual states. The highest mean accuracy of 0.80 for the models
of all of the states was achieved in random forest models. Among the various states of India, the
best random forest prediction model based on accuracy was fitted to the input data of Bihar (0.91),
followed by Uttar Pradesh (0.89), Andhra Pradesh (0.88), Assam (0.88) and West Bengal (0.86). Thus,
the study provides a technique for the classification and prediction of a farmer’s efficiency group
from the levels of input use in paddy cultivation for each state in the study. The study uses the DES
input dataset to classify and predict the efficiency group of the farmer, as other machine learning
models in agriculture have used mostly satellite, spectral imaging and soil property data to detect
disease, weeds and crops.

Keywords: paddy; stochastic frontier; machine learning; k-nearest neighbour (KNN); support vector
machine (SVM); random forest (RF)

1. Introduction

Of the many facets of agrarian distress in India, the input management factor carries
the highest weight among all. Input management is the process of employing inputs, such
as chemicals, in optimal quantities to increase yield and destroy pests, etc. The published
agriculture statistics of India’s Government show an apparent disparity among the major
paddy producing states with regard to their input application rates and productivity
over the years (Department of Economics and Statistics (DES), Ministry of Agriculture,
GoI, reports on the Cost of Cultivation Surveys). With the advent of the 21st century,
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agriculture has witnessed technological growth like all other sectors of the economy [1].
India got its share of technological augmentation in the agricultural sector in the “Green
Revolution,” which spanned from the 1960s to the 1990s, with long-term effects on the
productivity growth of major crops like wheat and paddy. Rice, which is the final product
of paddy crop, is the staple food of the majority of the population in Asia and half of
the world’s population. Asia accounts for 90 percent of global rice consumption (https:
//ricepedia.org/rice-as-food/the-global-staple-rice-consumers (accessed on 20 January
2021)) and the demand continues to rise. Paddy cultivation covers nearly 43 million
hectares of arable land, which is almost 27 percent of the total 159 million hectares of arable
land in India; rice is the staple food grain for nearly 50 percent of the Indian population [2],
and it covers all of the states and agroclimatic zones. Thus, it is one of the most important
crops for food security, with the income of about 59 percent of the Indian population [2]
engaged in agriculture. The productivity of this crop has steadily increased decade by
decade from 1961 to 2001; however, after 2001, there was stagnation in productivity, and
a productivity plateau can be observed after the year 2005 [2]. The cost of cultivation
per hectare of paddy has seen a steep growth from 2001–2002 to the latest 2016–2017, as
estimated by the DES, Government of India. In 2016–2017, the total production of paddy
was 109 million tonnes, of which 67 percent came from seven major producing states out of
the 31 states on which DES collected data.

Furthermore, 37 percent of paddy production in India came just from West Bengal,
Uttar Pradesh and Punjab, which incidentally covers 34 percent of the country’s total
paddy area [3]. Thus, the major production is concentrated in certain country regions due
to their technological and policy advantages. Regional productivity figures demonstrate
that certain regions in the country are far better than other regions for paddy farming.
The northern plains recorded a productivity average of 2831 kg per hectare, followed by
2665 kg per hectare in the southern states, 2286 kg per hectare in the eastern states, and
the lowest productivity was observed in the northern hilly regions, at 2133 kg per hectare.
Thus, regional disparity plays a crucial role in determining future strategies for sustainable
paddy farming across India. Capital intensive agriculture should have penetrated all states
after the green revolution in the States of Punjab and Haryana. However, certain states still
practice labor-intensive practices, and subsistence agriculture thus has low productivity
figures. Thus, an empirical approach should be taken to ascertain the causes of yield
stagnation, which could cause food security issues in the future.

For economists and policymakers across India, the policy challenge is to delineate a
strategy to augment yield levels from the current stagnation and enhance the shrinking
profit margin. Even in states like Punjab, which reaped the benefits of the green revolution,
the intensive resource exploitation, the partial adoption of production technology, and
the ineffective policy formulation have led to stagnation in paddy cultivation [4]. The
new economic policies that proposed the removal of subsidies on crucial farm inputs, like
fertilizer, have put upward pressure on the cost of cultivation and can lead to wash-off
profits from paddy production. The high input requirement, rising cost of inputs and slow
increase in assured prices cumulatively lead to the lower profit margins of the farmer. In
such a technological setup, the only thing that remains under the control of farmers is the
efficient use of input to obtain the maximum potential yield. Against the backdrop of these
studies, an attempt has been made to examine the paddy cultivation status across all of
the major growing states of India. The stochastic frontier analysis provides ample scope to
minutely analyze the states’ efficiency dynamics in paddy cultivation and the provision
of improving efficiency and yield levels to the highest possible levels at the present level
of technology.

Some major efficiency studies on paddy farming in India show the non-profitable
status across various states of India. In Rajasthan, the share of operational and fixed costs
increases in the same proportion in the total cost of cultivation [5]. The pivotal factors for
the increase in operational cost were the high wage rates, the increased mechanization,
and the steep increases in seed and fertilizer prices. In a pan-India study, it was found
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that of the seven-time periods under study, only in two periods could farmers make some
profit over the total cost of cultivation, namely C2, considering both the fixed and variable
cost components per crop [6]. The reports of the Commission of Agriculture Cost and
Prices (CACP) accentuated the fact that in some of the major paddy-producing states like
Kerala, Tamil Nadu and Odisha, profitability hovered around ten percent in 1999–2000 and
2010–2011; the varying degree of loss was reported in other periods [7]. In Andhra Pradesh,
a trend of higher input use with an increase in farm size was reported [8]. In recent studies,
the higher incidence of farmer suicides has been attributed to higher production costs and
low profits due to low prices [9–12].

Efficiency studies in crop production help us to understand the current production
system’s potential yield levels and thus improve the actual yield, e.g., how to achieve
better productivities without increasing input application [13–15], or how to better use the
current technology and institutional reforms to accommodate innovations and investment
in rural infrastructure to increase production growth [16]. A national study designed
to compare the production efficiency among various pre-classified farm categories can
give policymakers an outline to properly allocate resources for the achievement of the
maximum productivity potential. These studies are essential to exploit the potential of
current technologies and bring productivity reforms [13]. According to Kalirajan et al. [17],
developing countries face a two-fold problem: scarce resources and a lag in technological
growth. In such a setup, efficiency studies provide an excellent base to achieve productivity
growth through the improvement of current technologies and avoiding costly technological
reforms in the short run. As Shanumugan et al. [18] proposed, it is possible to raise crops’
productivity without raising the input application. On the backdrop of this research, an
efficiency study for the rice crop will have pivotal implications to improve productivity by
improving current technology and acquiring knowledge about the status of technologies
in different Indian states.

Smart decision making in agriculture is based on four key areas, namely (a) optimal
natural resource management, (b) the conservation of the ecosystem, (c) the development
of adequate services, and (d) the utilization of modern technologies [19]. Various studies
use different kinds of datasets, from satellite to multispectral images and generic field
observation to extract information for smart agriculture applications. There are important
studies for soil fertility prediction [20], soil moisture [21–23], clay prediction by portable
multispectral cameras [24], prediction for the condition of indoor plants through partial
least squares [25], disease detection [26–28], and weed detection [29,30]. These models use
an array of machine learning algorithms, including artificial neural networks (ANN), SVM,
RF, KNN, multiple linear regression (MLR), etc., for various crops to predict, including
ANN, SVM, RF, KNN, and MLR, etc., for various crops to predict their yield. Specifically
for paddy/rice crop yield prediction, RGB and UAV data [31–33]; satellite spectral data [34];
weather data [35,36]; weather and soil data [37,38]; and weather, irrigation, planting, and
fertilizer data [39,40] have been used in various studies. Random forest models [33,38–40],
SVM models [34,39,40] and KNN models [39,40] have been suggested in notable studies
for yield prediction in paddy crops. However, no notable studies used these models to
predict the efficiency level of the farmers based on inputs like human labor, machine
labor, irrigation, fertilizer, crop area and size group. The classification of farmers through
efficiency levels helps us to understand the levels of input utilization and the level of
technology that the farmers are rendering. The further analysis helps us to know the
farmers’ size groups, which provides us the scope to improve the achievable efficiency by
suggesting changes in the input management. The research problem of classifying farmers
into different technical efficiency levels is addressed herein through a Stochastic Frontier
Approach [20,21]. Furthermore, three machine learning models—i.e., k-nearest neighbors
(KNN), support vector machine (SVM), and Random Forest (RF)—have been used to
predict the efficiency group of the farmer based on the input variables and size group.
The relatively accurate prediction model will be suggested for each state of the nation in
order to advise on the appropriate policy measures for each state on input management.
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Thus, the study proposes to study the regional disparity in paddy cultivation across India,
and to establish that the input management capacity of the farmers across various states
plays a pivotal role in determining the productivity and efficiency difference. In addition,
the study aims to build an efficiency group classification cum prediction model for each
state individually, in order to help policymakers decide on an effective input management
strategy to keep the farmers at the highest level of efficiency.

2. Data and Methodology
2.1. Data Acquisition

The study used data published by the Department of Economics and Statistics (DES)
under the Ministry of Agriculture and Farmers Welfare of the Government of India. The
data was collected at state nodal centers under the scheme ‘Cost of Cultivation of Principal
Crops of India’ [41]. The data used in this study came from the 2016–2017 period, the
latest available one. The data is a plot-level summary of selected farmers in each state
encompassing input use in paddy cultivation. The workflow for the study is illustrated in
the workflow diagram below.

A three-stage stratified random sampling coupled with a probability proportional
sampling method was used to collect the data. A detailed description of the complex
sampling techniques can be found in the Manual of Cost of Cultivation Surveys; (2008)
published by the DES, Government of India [42]. The unique feature of those data is that
the farmers record and collect it carefully during the production process, so that the data
accuracy remains high. The data covers varying land sizes across states as 10 farmers
from each tehsil (township) of the considered states, so the bigger the state is or the higher
the number of tehsils is, the larger the sample size. The farmers in the data are classified
according to their farm size, and there are five size categories: Marginal (<1 ha), Small
(1–2 ha), Semi-Medium (2–4 ha), Medium (4–6 ha) and Large (≥6 ha).

2.2. Data Pre-Processing

Data cleaning was performed before their use in this study. The plot-level summary
data was first summarized to a farm level, which was used in our study. This study also
used the cost of cultivation. We then described the methodological framework of this study,
aiming to identify the loopholes in paddy cultivation technology across different Indian
states and suggest appropriate mitigation measures.

The model for each state represents the technology level. They are not readily compa-
rable because they represent the technology frontier for the respective state. For each input
used by farmers in paddy production, the corresponding variable in our model is zero if
that input type is not used, or the variable is removed from the model if the input is not of
common use (>90% of the cases). For cases where the input is 0, we have put 0.01 because
the stochastic frontier model uses a log-linear form, and a logarithm of 0 is impossible.
Then, the variables are filtered again through the Ramsey Reset Test validity to obtain a
well-fitted model for each Indian state.

2.3. Stochastic Frontier Algorithm

Firstly, the individual farm-level technical efficiency was estimated through the
stochastic frontier approach. The model was theorized by Meeusen and Van Den Broeck,
and Aigner, Lovell and Schmidt in two different seminal papers published in 1977 [43,44].
The stochastic frontiers model was then developed and applied to many sectors, including
the agricultural sector, and a model based on these studies was applied to this study. The
stochastic frontier models are not affected by the outliers or the extreme observations, as
they require normalized logarithmic values for the estimation procedure [44].

Various researchers have carried out considerable improvements in the model since
then. According to Battese and Coelli, applying stochastic frontier models to cross-sectional
and panel data models to estimate individual farm level efficiency is very important. The
specification of this model is such that model the error term (Ei) is divided into a stochastic
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term (vi) and an inefficiency term (ui) [45,46]. This inefficiency term is of prime importance
for this study. The R Frontier package 1.1–8 [47] was used in the stochastic frontier model
estimation to predict individual farm efficiencies.

Generally, a Cobb–Douglas production function is represented by the following equation:

Y = β0 ×
n

∏
i=1

Xβi
i × eu (1)

where

Y = the yield or any variable representing the productivity per unit area.
Xi = the vector of inputs used in production.
βi = the estimated coefficient of the ith input.
u = the error term.

The Cobb–Douglas production function is expanded to carry the inefficiency term in
the following form of the equation, which is known as the stochastic frontier production
function, and is given by

Y = β0 ×
n

∏
i=1

Xβi
i × e(v−u) (2)

where

Y = the yield or any variable representing the productivity per unit.
Xi = the vector of inputs (the same as Equation (1));
βi = the estimated coefficient of the ith input.
vi = an asymmetrical random term or stochastic noise, assumed with a normal distribution

[N
(
0, σ2

v
)
]

ui = the individual farm level technical inefficiency assumed to be half-normally distributed.

For the current study, the variable specification for the study is as follows:

Yi= Output/Yield (quintals per hectare)
X1 = Total human labor (Man-hours)
X2 = Total animal labor (Hours)
X3 = Total machine labor (Hours)
X4 = Total Fertilizer (kg.)
X5 = Total insecticide (Rupees).

Each farm has its own production frontier f (Xi, β)evi composed of a deterministic part
f (Xi, β) common to all producers, and a farm-specific part e(vi). The following equation
provides the farm-level technical efficiency:

TEi =
f (Xi, β) exp(vi − ui)

f (Xi, β) exp(vi)
= exp(−ui) (3)

where

f = the Cobb–Douglas type production function.
TE = the technical efficiency of an individual farm (0 < TEi ≤ 1).

The efficiency levels obtained from the stochastic frontier analysis will classify the
farmers into four different groups, as discussed in Figure 1 and mentioned in Table 1.
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Table 1. Efficiency group cut-offs in Stochastic Frontier Analysis.

Efficiency Class Efficiency Score Range

Very High 1.0 to 0.90

High 0.90 to 0.80

Medium 0.80 to 0.70

Low <0.70

2.4. Machine Learning Algorithms for the Prediction of Efficiency Classes

All of the inputs used in the stochastic frontier model and the size group will be used
to predict the efficiency classes. For this task, the “nnet” [48] and “caret” [49] packages
provided in the R computing environment were used. The KNN, SVM and RF algorithms
are run after the data partitioning for the train and test ratio. As illustrated in Figure 1,
a train test ratio of 80:20 has been used for the data sets of each state, and state-wise
classification algorithms were run with 10-fold cross-validation. A comparative table of
classification and a prediction algorithm used in the agricultural study is given below.

Table 2 gives a comparative view of the various datasets and models used in the
prediction of paddy yield, and also the use of KNN, SVM and RF algorithms in agriculture.
As discussed in an earlier section, our dataset is unique for this set up, as we have used
production input data to classify the efficiency groups of farmers.

Table 2. Comparison of paddy efficiency group classification and prediction with relevant works.

Author Classifiers/Predictors Crop Classification/Prediction
Problem

Machine Learning
Algorithm

Model Selection
Parameters

Gopal, M et al. [40]

Weather data,
irrigation,

planting area,
fertilization

Paddy paddy crop yield ANN, SVR, KNN, RF RF: RMSE = 0.085,
MAE = 0.055, R = 0.93

Gopal, M et al. [39]

Weather data,
irrigation,

planting area,
fertilization

Paddy paddy fields yield
ANN, MLR, SVR,

KNN
RF

ANN-MLR: R = 0.99,
RMSE = 0.051
MAE = 0.041
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Table 2. Cont.

Author Classifiers/Predictors Crop Classification/Prediction
Problem

Machine Learning
Algorithm

Model Selection
Parameters

Shidnal, S et al. [31] RGB leaf images Paddy nutrient
deficiencies (P, N, K) ANN Accuracy = 77%

Khosla, E et al. [36] Weather data
Rice,

maize,
millet, ragi

kharif
crops yield MANN, SVR Overall RMSE = 79.85%

Amaratunga, V et al. [35] Weather data Paddy Paddy yield ANN R = 0.78–1.00,
MSE = 0.040–0.204

Wan, L et al. [33] Multispectral images
from UAV Rice rice grain yield RF RMSE = 62.77 kg·ha−1

, MAPE = 0.32

Ramesh, S et al. [26] RGB images Rice

Recognition and
classification of

rice infected
leaves

KNN, ANN ANN: Accuracy = 90%,
Recall = 88%

Gomez Selvaraj et al. [50]

Satellite spectral data,
Multispectral images

from UAV,
RGB images
from UAV

Banana
Detection of

banana diseases
in different African

RF, SVM

RF: Accuracy = 97%,
omissions error = 10%;

commission error =
10%.

Kappa coefficient = 0.96

Gao, J et al. [51] RGB images from
UAV Wheat

Detection of
weeds in early

season maize fields
RF Overall Accuracy =

0.945, Kappa = 0.912

The KNN algorithm is a non-parametric classification model, which is simple and
effective [52]. The support vector machine has applications ranging from time series predic-
tion [53] to biological data processing for medical diagnosis [54], and can be applied to our
study for efficiency group classification. The random forest algorithm is one of the most
efficient decision tree-based algorithms proposed by Leo Breiman, and it has been used to
predict discrete classes [55]. The most accurate models obtained through this experiment
on the basis of their accuracy percentage and kappa values for individual states can be
used to classify and predict efficiency levels given the input parameters; this means that
new strategies in input management can be evaluated thanks to our approach before being
applied. The models used in the study are simple and are performed through preexisting
modules in the R computing environment. For simplicity, we have not included the de-
tailed mathematical explanation of the algorithms; however, the performance evaluation of
the models will be based on precision, recall, accuracy, sensitivity and specificity measures.
These are measured from the true positive (TP), true negative (TN), false positive (FP) and
false-negative (FN) values obtained from the model.

3. Results and Discussion

This section presents the results following the approach proposed in this work. In
particular, we first describe the status of paddy farming in India, and later we analyze
the regional disparity in productivity. We explore the farm-level technical analysis to find
the reason behind input mismanagement in the selected states. We conclude this section
by analyzing three standard classification algorithms that take input data and size group
labels, and predict the efficiency group for specific states.

3.1. The Status of Paddy Farming in India

Paddy farming is covered all over India, with variations in area, production and
productivity, as shown in Table 3. It provides an overview of the paddy cultivation
area, production and productivity statistics across all of India’s major growing states
in 2016–2017. The data suggest that the production percentage has surpassed the area
percentage in the states with higher average productivity (see the first six rows of Table 2),
indicating that more food per unit of land is produced. Thus, the disparity in productivity
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must be studied at a micro level in order to ascertain the causes and prescribe remedial
measures.

Table 3. State-wise area, production and productivity for paddy crops in India for 2016–2017.

States Production Percentage to All
India Production

Area as a Percentage of
All India Area

Average Productivity
(kg/Hectare)

Punjab 10.56 6.59 3998.00

Andhra Pradesh 6.79 4.78 3540.00

Haryana 4.06 3.15 3213.00

West Bengal 13.95 12.49 2784.00

Kerala 0.40 0.39 2550.00

Karnataka 2.37 2.35 2519.00

Bihar 7.51 7.59 2467.00

Uttarakhand 0.57 0.59 2414.00

Gujarat 1.76 1.90 2306.00

Uttar Pradesh 12.54 13.62 2295.00

Jharkhand 3.50 3.90 2241.00

Odisha 7.59 8.76 2160.00

Chhattisgarh 7.34 8.71 2101.00

Maharashtra 2.83 3.49 2025.00

Himachal Pradesh 0.13 0.17 1968.00

Assam 4.31 5.61 1916.00

Madhya Pradesh 3.85 5.20 1847.00

Tamil Nadu 2.16 3.28 1642.00

Source: Handbook of Statistics on the Indian States, RBI Publication (2018–2019).

Analyzing the cross-sectional plot-level data for farmers across various states (Table 4),
it is evident that, on average, the proportion of the operational cost in paddy farming
remained on a higher side than the fixed cost. However, in states like Punjab and Haryana,
the proportion of fixed costs remained higher.

Table 4. Operational cost and fixed cost as a percentage of the total cost of cultivation in different
states of India in 2016–2017.

States Operational Cost (%) Fixed Cost (%)

Andhra Pradesh 60.9 39.1

Assam 74.4 25.6

Bihar 67.7 32.3

Chhattisgarh 68.6 31.4

Gujarat 72.6 27.4

Haryana 55.6 44.4

Himachal Pradesh 69.6 30.4

Jharkhand 66.3 33.7

Karnataka 62.3 37.7

Kerala 73.8 26.2

Madhya Pradesh 71.7 28.3
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Table 4. Cont.

States Operational Cost (%) Fixed Cost (%)

Maharashtra 79.7 20.3

Odisha 75.7 24.3

Punjab 47.2 52.8

Tamil Nadu 71.5 28.5

Uttar Pradesh 66.8 33.2

Uttarakhand 67.9 32.1

West Bengal 75.3 24.7
Source: Estimated from the DES Publication of 2016–2017.

From the development era of the green revolution to Punjab and Haryana’s highly
commercialized farm economy, it is apparent that the fixed-cost investment capacity re-
mained high in these states. Some southern states like Andhra Pradesh and Karnataka are
also catching up with the trend of investment in higher fixed costs. Linking these factors
with the study shown in Table 1, it may be suggested that higher fixed cost investment may
lead to higher productivity gains, and may act as a good policy implication.

From the input management perspective, Table 5 provides evidence that human labor
remains the single largest input in the total operational cost, with a minimum 41 percent
(Madhya Pradesh) to a maximum 74 percent (Himachal Pradesh) contribution to the total
operation cost in paddy cultivation in all major paddy growing states of India. Thus,
human labor wages in these states represent a crucial factor in determining the total cost
of cultivation. The data illustrates that the states with higher human labor utilize fewer
machines, as expected. For this study, we focused only on the input factors like human
labor, machine labor, fertilizer, irrigation and insecticide, which make up nearly 90% of
the total input cost in paddy cultivation across all of the states under study. The effective
management of these inputs to obtain higher productivities will be crucial for paddy
cultivation and these states’ agrarian economy.

Table 5. Proportion of different input costs in the total operational/variable cost in paddy cultivation in India for 2016–2017.

States Human Labor Animal Labor Machine Labor Seed Fertilizer Insecticide Irrigation

Andhra Pradesh 47.8 1.6 20.3 4.1 14.5 5.6 2.3

Assam 57.5 24.0 9.2 2.7 2.0 0.1 1.1

Bihar 56.0 0.4 13.6 6.6 10.1 0.1 10.0

Chhattisgarh 44.2 8.8 20.2 5.0 9.7 3.1 1.2

Gujarat 47.5 0.6 15.2 11.9 11.2 2.5 6.1

Haryana 52.3 0.0 12.9 3.0 10.2 5.0 14.0

Himachal Pradesh 74.2 7.9 6.5 6.6 1.1 1.5 0.2

Jharkhand 58.7 4.4 14.3 8.2 10.7 0.0 0.1

Karnataka 44.2 10.2 11.2 6.5 14.0 4.9 2.2

Kerala 56.2 0.0 19.6 5.6 8.3 3.3 0.2

Madhya Pradesh 41.7 9.0 19.2 6.0 9.4 3.5 2.3

Maharashtra 51.6 10.1 10.9 4.9 6.0 1.0 2.6

Odisha 66.4 7.1 11.3 2.6 6.0 0.8 0.3

Punjab 45.5 0.1 17.7 4.8 9.2 12.3 6.7

Tamil Nadu 41.5 0.2 18.2 12.7 10.8 2.8 7.4

Uttar Pradesh 49.4 1.6 11.5 10.4 11.5 0.9 12.3



Agriculture 2021, 11, 837 10 of 27

Table 5. Cont.

States Human Labor Animal Labor Machine Labor Seed Fertilizer Insecticide Irrigation

Uttarakhand 46.2 10.6 14.5 11.0 10.0 2.4 1.9

West Bengal 64.0 2.7 8.4 3.5 8.9 2.9 5.1

Source: Estimated from the DES Publication of 2016–2017.

3.2. Regional Disparity in Productivity and Input Use

Table 6 gives a lucid picture of India’s various states’ average input use pattern in
2016–2017. The highest yield was observed in Punjab (67.13 kg/ha), and the lowest was
recorded in Himachal Pradesh (22.72 kg/ha). Furthermore, all of the eastern states except
West Bengal in the study area were below the average yield of 41.31 kg per hectare in
the study area, which was below the average yield of the southern region (49.68 kg/ha)
and northern region (46.84 kg/ha). This may be attributed to various geographic, biotic,
abiotic factors coupled with input management practices. This disparity calls for a targeted
approach in these areas in terms of varietal development and input management. In
chemical inputs like fertilizer, the average application was 143.30 kg per hectare over the
study area. However, only West Bengal in the eastern region applied over this average
(171.94 kg/ha). The rest of the eastern region states were well below it, with an average
92 kg per hectare application rate. Both the northern region (except Himachal Pradesh)
and southern region had a more considerably high (more than 1.5–2.5 times) application
rate than the eastern region. Insecticide use in the northern region was Rs.2069.30 per
hectare, second to the southern region (Rs.2127.51 per hectare). The least insecticide use
was reported in eastern region (Rs.980.60 per hectare). The average insecticide use in the
study area was Rs.1630.23 per hectare.

Table 6. Descriptive statistics of the parameters used in the stochastic frontier model estimated from cross-sectional farm
level data for AY2016–17.

State Particulars Yield
(Qtls/ha)

Fertilizer
(kg/ha)

Insecticides
(Rs/ha)

Human Labor
(Person Hours/ha)

Animal Labor
(Hours/ha)

Machine Labor
(Hours/ha)

Irrigation
(Hours/ha)

Andhra
Pradesh

Average 60.08 241.75 2810.16 541.35 22.27 23.95 293.82

Minimum 12.5 66.5 93.2 177.83 0.5 0.91 2.47

Maximum 110.89 590.78 22,500 1325 164.34 150 1206.25

Coefficient
of Variation 0.21 0.35 0.91 0.39 1.26 0.89 0.77

Assam

Average 33.65 47.4 829.94 668.98 180.43 65.03 92.03

Minimum 16.68 4.83 89.55 321.16 3.9 12.64 11.56

Maximum 69 349.89 1940.3 1415.92 424.53 156.72 229.85

Coefficient
of Variation 0.27 0.92 0.6 0.26 0.5 0.43 0.64

Bihar

Average 31.31 110.6 490.18 597.48 56.83 13.2 37.79

Minimum 15.91 23 297.62 274.82 15.66 9 4.4

Maximum 52.44 244.03 851.85 1192 90 30.11 80

Coefficient
of Variation 0.19 0.35 0.42 0.21 0.68 0.34 0.4

Chhattisgarh

Average 34.86 120.76 1158.67 456.14 39.61 21.84 40.36

Minimum 13.16 31.94 53.33 99.32 1.44 15.56 8

Maximum 48.15 220 2912.81 1040.83 192.42 30.42 141.29

Coefficient
of Variation 0.19 0.33 0.6 0.4 0.94 0.21 0.63

Gujarat
Average 37.21 153.6 1095.93 833.9 37.41 24.88 65.06

Minimum 0.87 13.89 91.4 170.83 3.19 3.51 0.67
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Table 6. Cont.

State Particulars Yield
(Qtls/ha)

Fertilizer
(kg/ha)

Insecticides
(Rs/ha)

Human Labor
(Person Hours/ha)

Animal Labor
(Hours/ha)

Machine Labor
(Hours/ha)

Irrigation
(Hours/ha)

Gujarat

Maximum 77.05 435.76 4017.22 2634.92 100 90.44 383.33

Coefficient
of Variation 0.43 0.45 0.96 0.44 0.83 0.78 1.07

Himachal
Pradesh

Average 22.72 64.58 1226.39 423.48 86.47 20.45 65.73

Minimum 6.25 14.38 388.89 200 1.39 5.56 40.62

Maximum 52.5 191.67 4900 954.16 172.92 44.58 103.12

Coefficient
of Variation 0.49 0.9 0.69 0.32 0.41 0.49 0.39

Kerala

Average 41.01 139.79 1994.45 460.38 6.54 16.71 25.53

Minimum 7.21 10.06 56.25 74.17 3.02 14.54 12.73

Maximum 89.2 442.94 13550 1383.32 7.44 19.67 35.42

Coefficient
of Variation 0.4 0.59 1.02 0.53 0.3 0.12 0.27

Odisha

Average 36.77 93.22 642.26 965.91 154.52 26.74 12.62

Minimum 15.28 23.16 25.96 507.22 1.6 0.35 0.62

Maximum 56.18 198.49 4250 1408.67 365 58.33 32.81

Coefficient
of Variation 0.17 0.26 1.18 0.17 0.72 0.52 0.75

Punjab

Average 67.13 183.1 4122.04 363.94 2.08 24.43 251.7

Minimum 23.64 64.94 500 247.71 0.09 1.33 26.67

Maximum 109 344.03 11,644.78 779.69 46.51 58.81 612.5

Coefficient
of Variation 0.21 0.25 0.57 0.22 2.73 0.35 0.32

Tamil Nadu

Average 47.96 228.17 1577.93 508.96 7.17 20.97 224.8

Minimum 13.92 103.57 129.95 168.25 0.63 3.47 38.33

Maximum 93.75 741.67 4938.02 1281.25 40 98.77 876.47

Coefficient
of Variation 0.22 0.27 0.65 0.36 0.92 0.65 0.59

Uttar
Pradesh

Average 36.19 164.7 1832.87 683.84 48.61 18.19 65.91

Minimum 12.5 28.75 294.64 291.86 3.03 5.49 10.39

Maximum 64.29 327.42 8767.12 1396.43 137.14 370.83 790.62

Coefficient
of Variation 0.21 0.34 1.08 0.28 0.8 1.75 0.73

West Bengal

Average 46.86 171.94 1781.97 1021.94 46.15 40.18 101.57

Minimum 23.58 14.62 30.61 448.13 0.37 1.71 1.28

Maximum 70.8 533 9066.07 2109.09 245.37 146.34 450

Coefficient
of Variation 0.19 0.39 0.98 0.26 0.89 0.7 0.88

Note: In the models, the yield is represented per hectare; other inputs are represented in a per-farm format.

The most crucial component of the cost of paddy cultivation, i.e., human labor, has an
average application of 627.19 person-hours per hectare in the study area. The eastern states
used nearly 742 person-hours per hectare, and the northern states engaged 576.29 person-
hours per hectare, while the southern states used only 503 person-hours per hectare. This
indicates that eastern states are more labor-intensive. Higher agricultural wages in the
southern region (Rs.393 per person-day), Rs.274 per person-day in the northern region,
and Rs.208 per person-day in the eastern region were recorded. As such, eastern states can
easily employ higher human labor to increase production with the same capital.
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The analysis illustrates that India’s eastern region has a lot of potential for yield,
production and productivity through higher input use. For further technical analysis,
we applied the stochastic frontier approach to the assessment of the individual farmers’
technical efficiency in different states in the study to obtain a comparative view of the
potential yield improvement and efficiency distribution.

3.3. The Stochastic Frontier Approach of Technical Efficiency Estimation

The analysis in the previous section shows a clear disparity among Indian states
in paddy cultivation methods. A large part of the paddy-producing area is incurring
a loss. In order to address this problem, the study first tried to explore the farm-level
technical analysis to find the reason behind input mismanagement in those states for
2016–2017. Stochastic frontier models were specified for each state under their technology’s
present level to determine the paddy production’s technical efficiency. The models were
specified based on the variables’ availability and the Ramsey Reset test specified in the
methodology section.

Perusing the stochastic frontier analysis results as presented in Tables 6 and 7, it was
observed that, in the Uttar Pradesh area, increase has led to improvement in yield levels,
while in the Bihar, Odisha Tamil Nadu, Assam, and Gujarat areas increase has significantly
reduced the productivities. Thus, both positive and negative instances of the land size and
productivity relationship exist in paddy production across various states of India. Human
labor use has shown the highest positive and significant elasticity in Tamil Nadu (0.193),
Bihar (0.145) and Odisha (0.127), followed by Gujarat and Uttar Pradesh, which indicates
the excess use of human labor in these states, which would have been optimized for the
improvement of paddy production. However, in Punjab (−0.271) and Kerala (−0.169),
human labor was found to have negative elasticities. Mechanical labor showed significant
negative elasticities in West Bengal, Odisha and Assam, mainly due to higher reliance on
animal labor, while the coefficient was positively significant only for Tamil Nadu (0.014),
where it had a slightly higher contribution in productivity.

Table 7. Maximum likelihood estimates for the Cobb–Douglas type stochastic frontier production function for major paddy
cultivating states in India for the AY 2016–2017.

Variables/States Punjab Bihar Uttar
Pradesh West Bengal Odisha Andhra

Pradesh Tamil Nadu Kerala Assam Gujarat Chhattisgarh

(Intercept) 4.363 ***
(0.389)

2.527 ***
(0.274)

2.817 ***
(0.257)

4.081 ***
(0.212)

0.872 ***
(0.206)

3.994 ***
(0.212)

2.641 ***
(0.293)

4.571 ***
(0.268)

3.448 ***
(0.321)

2.408 ***
(0.451)

3.744 ***
(0.984)

Area under crop
(hectare)

−0.011 ns

(0.065)
−0.178 ***

(0.045)
0.167 ***
(0.039)

−0.013 ns

(0.029)
−0.524 ***

(0.031)
−0.009 ns

(0.033)
−0.244 ***

(0.046)
0.059 ns

(0.046)
−0.089 *
(0.042)

−0.345 ***
(0.077)

−0.016 ns

(0.586)

Human labor
(man-hours)

−0.271 ***
(0.062)

0.145 ***
(0.043)

0.076 *
(0.036)

−0.028 ns

(0.031)
0.127 ***
(0.027)

−0.014 ns

(0.027)
0.193 ***
(0.035)

−0.169 ***
(0.043)

0.076 ns

(0.050)
0.125 *
(0.068)

0.044 ns

(0.399)

Mechanical labor
(Hours)

−0.004 ns

(0.004)
0.001 ns

(0.003)
0.003 ns

(0.003)
−0.005 *
(0.002)

−0.008 ***
(0.001)

−0.004 ns

(0.003)
0.014 ***
(0.003)

0.002 ns

(0.013)
−0.012 **

(0.004)
0.003 ns

(0.009)
−0.012 ns

(0.020)

Fertilizer (kg.) 0.061 ***
(0.010)

0.049 *
(0.024)

0.087 ***
(0.025)

0.019 ***
(0.005)

0.420 ***
(0.020)

0.065 *
(0.028)

0.042 ns

(0.044)
0.080 ***
(0.014)

−0.007 *
(0.003)

0.126 ***
(0.023)

−0.076 ns

(0.607)

Irrigation (Hours) 0.152 ***
(0.033)

−0.011 ***
(0.003)

0.001
(0.004)

0.004 *
(0.002)

−0.003 ***
(0.003)

0.005 *
(0.002)

0.002 ns

(0.003)
−0.014 ns

(0.014)
0.039 ***
(0.004)

0.022 *
(0.010)

−0.003 ns

(0.047)

Insecticide (Rupees) 0.064 ***
(0.014)

0.024 ***
(0.004)

0.011 ***
(0.002)

0.010 ***
(0.002)

0.005 ***
(0.001)

0.002 ***
(0.003)

0.008 *
(0.004)

0.020 ***
(0.005)

−0.004 ns

(0.004)
0.057 ***
(0.008)

0.028 ns

(0.019)

Sigma Square (σ2)
0.100 ***
(0.011)

0.045 ***
(0.009)

0.063 ***
(0.010)

0.084 ***
(0.007)

0.011 ***
(0.003)

0.116 ***
(0.011)

0.121 ***
(0.012)

0.286 ***
(0.038)

0.140 ***
(0.014)

0.505 ***
(0.085)

0.097 ns

(0.460)

Gamma (γ) 0.971 ***
(0.012)

0.617 ***
(0.167)

0.548 ***
(0.144)

0.890 ***
(0.022)

0.282 ***
(0.365)

0.924 ***
(0.023)

0.953 ***
(0.017)

0.909 ***
(0.039)

0.909 ***
(0.029)

0.968 ***
(0.028)

0.990 ns

(0.974)

Sigma Square U

(σ2U)
0.097 ***
(0.011)

0.028 *
(0.013)

0.035 *
(0.014)

0.075 ***
(0.007)

0.003 ***
(0.005)

0.107 ***
(0.012)

0.116 ***
(0.013)

0.260 ***
(0.044)

0.128 ***
(0.016)

0.489 ***
(0.092)

0.096 ns

(0.443)

Sigma Square V

(σ2v)
0.003 **
(0.001)

0.017 ***
(0.004)

0.029 ***
(0.005)

0.009 ***
(0.002)

0.008 ***
(0.002)

0.009 ***
(0.002)

0.006 **
(0.002)

0.026 **
(0.009)

0.013 ***
(0.003)

0.016 ns

(0.012)
0.001 ns

(0.096)

Lambda (λ) 5.799 ***
(1.200)

1.269 **
(0.449)

1.101 ***
(0.320)

2.846 ***
(0.327)

0.626 ***
(0.565)

3.476 ***
(0.562)

4.514 ***
(0.885)

3.165 ***
(0.748)

3.160 ***
(0.554)

5.484 *
(2.433)

9.737 ns

(459.040)

Log Likelihood 79.409 154.593 86.508 165.151 425.631 66.746 55.821 −78.10 17.204 −65.366 58.189

Mean Technical
Efficiency 0.801 0.879 0.868 0.819 0.958 0.793 0.784 0.699 0.768 0.639 0.801

Number of
Observations 260 401 487 596 449 422 317 248 448 129 149

Note: “***”, “**” and “*” represent significance at the 1%, 5% and 10% levels, respectively. “ns” represents non-significant estimates. Figures
in the parenthesis represent the standard error of the estimates.
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In Odisha, Tamil Nadu, Assam, Gujarat and Chhattisgarh, human labor contributed
positively and significantly to the paddy yield in 2016–2017. However, the states like
Punjab, Andhra Pradesh and Kerala showed a negatively significant value, indicating
the need to reduce human labor production. Furthermore, Tamil Nadu (0.19) showed the
highest elasticity, followed by Bihar (0.132), Gujarat (0.13) and Odisha (0.10), indicating the
scope for improvement in these states. In contrast, there was negative elasticity for human
labor in Punjab (−0.27), Andhra Pradesh (−0.05) and Kerala (−0.18). Similarly, animal
labor was found to have significantly contributed to the paddy yield in states like West
Bengal, Odisha, Andhra Pradesh, Tamil Nadu, Assam, Gujarat and Chhattisgarh in the
years 2016–2017.

The fertilizer application was found to have significantly contributed to states like
Punjab, Bihar, Uttar Pradesh, West Bengal, Odisha, Andhra Pradesh, Kerala and Gujarat,
indicating the scope for an enhanced level of fertilizer application for improved paddy
yield in 2016–2017. However, Assam showed a negative value, indicating the need to
reduce the fertilizer application in paddy production. Furthermore, the magnitude of
elasticities shows that the highest value was observed in Odisha (0.420), followed by Uttar
Pradesh (0.08), Gujrat (0.087), Andhra Pradesh (0.065), Kerala (0.080), Bihar (0.049) and
Punjab (0.061), indicating the scope of improvement of fertilizer use in these states. The
negative elasticity in Assam (−0.007) indicates the excess use of fertilizer application, which
could have been optimized to improve the paddy yield. The studies of Shanumugan and
Venkatramani [18], Bhende and Kalirajan [56], and Dung et al. [57] conform to the results
of our study, e.g., that fertilizer and human labor have positive production elasticity in case
of paddy production. Except for West Bengal, Odisha and Assam, mechanical labor has
not contributed to a variation in paddy yield in 2016–2017 in other paddy-producing states
of India. However, in these states there was also negative elasticity for mechanical labor.

As mechanical labor consists of both animal labor and machine labor, it was not
directly interpretable. An increase in irrigation hours would have significantly augmented
the yield in states like Punjab (0.152), West Bengal (0.004), Andhra Pradesh (0.005), Assam
(0.039) and Gujarat (0.022), while increased irrigation hours in Bihar and Odisha would
have reduced the yield. In small farms of central Gujarat, a study by Narala and Zala [58]
found positive elasticity for irrigation in paddy production, which conforms to our study.
Here, it should be noted that in Punjab, more than 98 percent of the irrigation for paddy
crops is there, while other states lag behind in irrigation infrastructure development. Thus,
the elasticity of the irrigation remained high for Punjab compared to other states. All of the
states under study except Assam and Chhattisgarh showed significantly positive estimates
for insecticide use, indicating the prevalence of insect pests throughout the country in
paddy crop significantly determining yield.

The estimated variance parameters σ2U and σ2v in Table 6 are significantly different
from zero, which suggested that the difference in the variation of the yield in the paddy
production in Punjab, Bihar, West Bengal, Andhra Pradesh, Tamil Nadu, Kerala, and
Assam in 2016–2017 was not caused by stochastic error alone but also involved technical
inefficiency or inefficiencies in input management. Further, the significant value of γ for
Punjab, Bihar, Uttar Pradesh, West Bengal, Odisha, Andhra Pradesh, Tamil Nadu, Kerala,
Assam, and Gujarat shows the presence of dominant inefficiency effect over the random
error term in all of the states. Among all of the states, Chhattisgarh showed the highest
difference of 98 percent between the observed and frontier outputs, followed by Punjab
(97%), Gujarat (97%), Tamil Nadu (95%), Assam (90%), Kerala (89%), Andhra Pradesh
(93%), West Bengal (89%), Bihar (61%), Uttar Pradesh (54%) and Odisha (28%), which was
mainly due to the inefficient use of resources by the farmers in these states. The value
of γ also highlighted the percentage of inefficiency due to the factors under the farmers’
control. It can be inferred from the estimate that states with a high level of γ have very
little opportunity left to adjust production factors. Their yield can only be ameliorated
through a complete change in technology in the form of a new variety or some hi-tech
production measures. In contrast, states with a lower technical efficiency need to improve
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their technical efficiency in order to improve management to achieve potential yield levels
in paddy. Lambda (λ), which measures the degree of asymmetry in the distribution of the
composite error term (Ei = Vi − Ui), was found to be significantly more than one for all of
the states except Chhattisgarh in our study. The value of λ illustrates technical inefficiency
and a higher magnitude of the one-sided error component Ui in Ei.

The stochastic frontier analysis suggests that in all of the major paddy-growing states
except for Chhattisgarh, input management practices entailed the inefficiency in paddy
production to varying degrees in 2016–2017. Each input showed a different degree of
responsiveness to paddy production, and management must be aimed to optimize the
input application. Consequently, a profitable level of paddy production can be achieved
in the future. The farm-level technical efficiency estimated from this analysis reveals that
India’s mean technical efficiency varies from 0.64 in Gujarat to 0.96 in Odisha. The results
from the pan-India study across all states by Shanumugan and Venkatramani [18] found
that the technical efficiency ranged from 0.77 in Madhya Pradesh to 0.84 in Odisha in
1990–1991. The fact that Odisha farmers are more efficient in utilizing farm resources is
due to high cropping intensity [18]. Table 7 divides technical efficiency into four efficiency
groups, as delineated in the methodology section across all of the states and size groups
of farmers.

The heatmap in Figure 2 illustrates that the marginal farmers of Uttar Pradesh and
West Bengal were operating at the highest efficiency level, while Andhra Pradesh and
Kerala were at the lowest efficiency level. Small farmers of Andhra Pradesh and Uttar
Pradesh showed the highest efficiency in paddy production, while those of Punjab and
Tamil Nadu had the lowest efficiency. In semi-medium farm groups, only Kerala showed
the lowest efficiency, while Chhattisgarh, Bihar and West Bengal were operating at the
highest efficiency level. Medium farms of Punjab and West Bengal were the least efficient
in paddy production, while Kerala and Uttar Pradesh employed the highest efficiency level.
In large farms, Kerala, Punjab and West Bengal were running at the lowest efficiency level,
while those of Tamil Nadu were operating at the highest efficiency level. Overall, we can
deduce that ten farm groups performed at the lowest efficiency level, ten at the very-high
efficiency level, 16 at the high-efficiency level, and 13 at the medium efficiency level. The
state-specific analysis showed that Kerala has the highest instance of low-efficiency farms,
while Uttar Pradesh has the highest number of very-high efficiency farmers. Thus, the
distribution of technical efficiency suggests that there is a need to improve the efficiency
of a significant proportion of farmers, and they belong to any of the farmer classes. The
study concludes that efficiency is not concentrated on any specific farm group; instead, it is
a discrete phenomenon.

The distribution graph (Figure 3) suggests that in all of the states under study, the
proportions of farmers operating at high and very high technical efficiency levels were
high except for Gujarat and Kerala, where a significant chunk of farmers was operating at
the lowest technical efficiency level. Skewed distribution can be seen in states like Uttar
Pradesh, West Bengal, Bihar, Gujarat and Kerala, showing a high level of instability in
input management practices.

In the following graphs (Figures 4–8), the study tries to overview the input use of
farmers operating in the four efficiency groups. The charts show that the highest efficiency
group also has the highest level of yields in paddy production across all of the states of
India. The graph shows that, as such, policymakers cannot go for one input management
policy because there is no specific pattern of input use among the different efficiency
groups which can be standardized for all of the states. Thus, a specific classification cum
prediction model to identify efficiency groups should be developed for appropriate input
management policy before the cropping season. This may act as a basis to advise on the
optimum input levels for specific states.
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  Figure 4. Yield of paddy (quintal/hectare) across various states and efficiency groups.
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  Figure 5. Human labor use in paddy (man-hours/hectare) across various states and efficiency groups.
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  Figure 6. Insecticide use in paddy (rupees/hectare) across various states and efficiency groups.
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  Figure 7. Fertilizer use in paddy (kg/hectare) across various states and efficiency groups.
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Figure 8. Irrigation in the paddy (hours/hectare) across various states and efficiency groups.

Figure 4 shows that the yield levels directly vary with the technical efficiency group.
The study confirms the disparity in yield among the states of India in paddy production.
Figure 5 shows that there is no pattern and no striking variation of human labor in relation
to the efficiency group; Gujarat and West Bengal use the highest human labor hours among
all of the states.

Figure 7 shows that there is very high variation in insecticide use among the states
under study, with Andhra Pradesh and Punjab being the highest user of insecticide. There
is no distinctive pattern of insecticide use among various size groups of farmers across
the states. In the case of fertilizer, there seems to be no specific pattern of difference to
classify the technical efficiency group (Figure 7), and the same can be observed in the case
of irrigation hours (Figure 8).

Thus, the visualization of the efficiency group and related input parameters is in-
sufficient to provide a classification based on technical efficiency, and more sophisticated
methods are needed to map the pattern of input use with respect to the efficiency group.
The next section employs machine learning algorithms on various parameters discussed in
the methodology section to find an accurate solution to the classification problem.

3.4. Machine Learning Models for Efficiency Group Prediction

The previous analysis suggests that there is disparity among the states regarding
paddy production technology, which leads to various levels of yield. The intra-state
variation of yield among various farm size groups was also found from the study. Thus,
input management that forms a major policy issue to target farmers needs to be tailored
to state and size groups. The stochastic frontier approach concluded that there exist four
efficiency levels of which the input management and yield levels differ. Scientists have
employed linear programming models to determine the input levels in the past. Still, as
new methodologies are being introduced, we have to check their applicability in input
management in agriculture. This will open new avenues for intelligent decision-making
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in agriculture. Thus, a machine learning model predicting the efficiency level of a farm,
given the input levels, would be advantageous to manage farm inputs to achieve yield-
augmenting objectives of the states.

Considering all of these advantages, the current study employed three standard
classification algorithms that take input data and size group labels and predict the efficiency
group for specific states. The tenfold cross validation method was used to compare the
model accuracy of the KNN, SVM and RF algorithms, and the mean accuracy and kappa
statistics are presented in Table 7. The mean accuracy for the KNN method ranges between
0.306 for Punjab to 0.685 in Uttar Pradesh, while that of SVM was in the range of 0.518 in
Tamil Nadu to 0.848 in Uttar Pradesh. The accuracy statistics of the random forest model
varied between 0.729 in Punjab to 0.943 in Uttar Pradesh. Overall, the random forest model
was the best model for our dataset across all of the states. The dataset for Uttar Pradesh
had the best response to all of the three models, while that of Punjab was the worst. The
random forest model is the most accurate for the classification and prediction objectives in
our case, as shown in Table 8.

Table 8. Comparison of the KNN, SVM and random forest algorithms for their accuracy in classifying
efficiency groups in paddy production across major paddy-producing states of India in AY 2016–2017.

Mean Accuracy from 10 Resamples Mean Kappa Values
from 10 Resamples

State/Models KNN SVM Random Forest KNN SVM Random Forest

PB 0.306 0.595 0.729 0.072 0.451 0.646

BH 0.514 0.802 0.857 0.086 0.62 0.744

UP 0.685 0.848 0.943 0.247 0.644 0.882

WB 0.449 0.797 0.916 0.17 0.689 0.876

AP 0.399 0.767 0.843 0.149 0.671 0.784

TN 0.34 0.518 0.701 0.104 0.335 0.597

KL 0.478 0.611 0.800 0.200 0.38 0.706

AS 0.353 0.779 0.874 0.094 0.692 0.828

GJ 0.579 0.632 0.786 0.086 0.186 0.628

CG 0.334 0.531 0.795 0.108 0.361 0.725
Note: Due to model misspecification for Odisha in the standard production function, only the highest efficiency
class was present and hence excluded from the classification study.

Table 8 shows that the random forest model’s mean accuracy and kappa values (with
10-fold cross-validation) across all of the states remained higher than the KNN and SVM
algorithms. Thus, the random forest model was chosen for classification and prediction
of the efficiency groups across the selected states of India in our study. Detailed accuracy
statistics are presented in Table 9. A detailed performance evaluation measure for the KNN,
SVM and RF models can be found in the Table A1.

Table 9 confirms that the random forest algorithm with 10-fold cross-validation pre-
dicted the efficiency group, given the input data in nine of the ten states in the classification
study, with a mean accuracy of 80 percent. The highest accuracy of the RF model was
observed for the data of Bihar (0.730), and the lowest was observed in the case of Gujarat
(0.667). The highest variation in accuracy was observed in case of case of Gujarat (0.45–0.84),
followed by Chhattisgarh (0.50–0.86) and Punjab (0.59–0.84). The model can be further
improvised by taking more features from soil fertility, soil properties, soil moisture, weather
and satellite data for all of the states across time in order to improve the accuracy and
reduce the NIR. This kind of model will predict the efficiency level and augment the yield
in upcoming crops by making suggestions to farmers on their level of input use, and is
hence a very effective tool in the hand of stakeholders to mitigate risk in agriculture.



Agriculture 2021, 11, 837 20 of 27

Table 9. Accuracy statistics of random forest models in the classification of the efficiency groups in
paddy production across the major producing states of India in AY 2016–2017.

States Accuracy 95% CI NIR Kappa

PB 0.730 (0.589,0.844) 0.289 *** 0.638

BH 0.910 (0.824,0.963) 0.539 *** 0.834

UP 0.885 (0.804,0.942) 0.677 *** 0.740

WB 0.863 (0.787,0.919) 0.470 *** 0.801

AP 0.880 (0.789,0.941) 0.361 *** 0.835

TN 0.776 (0.634,0.882) 0.449 *** 0.667

KL 0.710 (0.581,0.818) 0.301 *** 0.614

AS 0.875 (0.787,0.936) 0.352 *** 0.827

GJ 0.667 (0.447,0.844) 0.625 NS 0.407

CG 0.704 (0.498,0.863) 0.296 *** 0.598
Note: NIR means no information rate, and is significant when accuracy > no information rate. “***” means
significance at the 5% level. “NS” represents non-significant estimates. Figures in the parenthesis represent the
standard error of the estimates.

4. Conclusions

Among the major paddy-growing states in the study, the production percentage is
greater than the area percentage with higher productivity. The analysis suggests that higher
investments in fixed-cost components like mechanization have strongly contributed to
higher productivity, proving that the rural infrastructure is crucial for productivity; in
other words, investment policies are bearing fruit in the areas that have benefitted from
them. Input management and other efficiency-related measures can also be used to raise
productivity in the states that are instead falling behind. In our analysis, all of the eastern
states, except West Bengal, were below the average national yield of 41.31 kg per hectare;
the southern region’s average yield is 49.68 kg/ha, and the northern region’s is 46.84 kg/ha.
This disparity calls for a targeted approach in terms of varietal development and input
management. The capital-intensive northern (except Himachal Pradesh) and southern
regions have considerably higher fertilizer application rates than the eastern region (more
than 1.5–2.5 times). Furthermore, the insecticide use in the northern region is Rs.2069.30 per
hectare, second to the southern region (Rs.2127.51 per hectare). The least insecticide use
was reported in the eastern region (Rs.980.60 per hectare). However, paddy cultivation
labor hours were considerably higher in eastern states than in the northern and southern
regions because of lower mechanization and the higher use of human labor. Thus, the
policy for input management should be tailored to the context—i.e., capital-intensive north
and southern regions, and the labor-intensive eastern part. Our analysis suggests that the
yield can be increased by means of a more efficient input management. The yield can be
improved for different states in the range of 4.2 percent in Odisha to 36.1 percent in Gujarat
with the optimum use of inputs under the current level of technology of the specific states.

Input management inefficiency is responsible for lower yields. The technical efficiency
figure of individual farmers suggests that the very-high efficiency level was achieved in our
sample by ten farm groups, the high-efficiency level by 16 groups, the medium efficiency
by 13 farm groups, and the lowest efficiency by ten farm groups. Low efficiency is more
common in medium and large farm groups due to input management issues, rather than
input availability. Overall, the study concludes that efficiency is not concentrated on any
specific farm group; rather, it is a discrete phenomenon. From the maximum likelihood
estimates of all of the states (except Chhattisgarh), significant inefficiency due to input
management is visible, causing yield variation. In addition, many states are operating
at a very high technical efficiency level, and saturation in the current status of technical
efficiency has already occurred, as confirmed from high gamma estimates, which means
that there is little room for improvement. In states like Odisha, Bihar and Uttar Pradesh, the
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gamma values are low enough to accommodate higher inputs considering the technology
level. The states with high gamma values need to improve their technology to increase
their yield. Thus, the study suggests a targeted approach for states and regions regarding
the input management in the short term, and a technological shift in the next years to
keep farms at a profitable level. The study suggests that random forest algorithm is best
suited for this dataset across all of the states under study. The random forest algorithm we
used suggests that 66 percent of farmers in Gujarat to 91 percent in Bihar can be correctly
associated with the achieved efficiency levels using only the farmers’ input and size group
features. The random forest algorithm is highly significant in predicting the efficiency
levels in nine of the ten states. In the future, the development of a targeted random
forest algorithm can be considered for each state to achieve higher accuracies, especially
considering additional features. As the scope of the dataset of this study is limited, we
recommend using more features from published datasets on soil fertility, soil moisture,
satellite data and weather data to improve the accuracy and NIR. Future studies can use
this dataset across time to develop other algorithms used in this field of work. Such a
study can help policymakers predict farmers’ efficiency levels through input application
data before the cropping season, in turn providing support for policies for targeted input
management for each specific state operating under different levels of technology.
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Appendix A

Table A1. Performance Evaluation Measures of the KNN, SVM and RF models for various states for the classification and prediction of low, medium, high and very high efficiency classes.

State Punjab

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.167 0.770 0.190 0.455 0.900 0.969 0.667 0.936 0.900 0.985 0.800 0.968

Recall 0.100 0.877 0.267 0.484 1.000 0.710 0.979 0.825 0.976 0.710 0.979 0.947

Sensitivity 0.100 0.877 0.267 0.484 1.000 0.875 0.909 0.744 0.900 0.877 0.923 0.909

Specificity 0.881 0.452 0.638 0.684 0.900 0.969 0.667 0.936 0.900 0.985 0.800 0.968

State Andhra Pradesh

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision NA 0.508 0.682 0.000 NA 0.855 0.864 0.200 NA 0.873 0.864 0.600

Recall NA 0.564 0.682 0.000 1.000 0.823 0.741 0.842 0.987 0.919 0.889 0.790

Sensitivity NA 0.564 0.682 0.000 NA 0.810 0.731 0.250 0.000 0.906 0.864 0.429

Specificity 1.000 0.516 0.741 0.947 NA 0.855 0.864 0.200 NA 0.873 0.864 0.600

States Assam

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.536 0.333 1.000 0.000 0.871 0.818 0.000 0.000 0.903 0.818 1.000 0.400

Recall 0.484 0.273 0.333 0.000 0.957 0.869 1.000 1.000 0.957 0.967 1.000 1.000

Sensitivity 0.484 0.273 0.333 0.000 0.931 0.692 NA NA 0.933 0.900 1.000 1.000

Specificity 0.723 0.803 1.000 0.864 0.871 0.818 0.000 0.000 0.903 0.818 1.000 0.400

States Bihar

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.111 0.529 0.300 0.000 0.500 0.773 0.467 0.538 0.667 0.727 0.800 0.846
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Table A1. Cont.

State Bihar

Model KNN SVM RF

Recall 0.083 0.409 0.200 0.000 0.875 0.987 0.787 1.000 0.900 1.000 0.766 1.000

Sensitivity 0.083 0.409 0.200 0.000 0.546 0.944 0.412 1.000 0.667 1.000 0.522 1.000

Specificity 0.800 0.892 0.851 0.987 0.500 0.773 0.467 0.538 0.667 0.727 0.800 0.846

States Chhattisgarh

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.200 0.455 0.227 0.286 0.500 0.688 0.650 0.500 0.625 0.938 0.700 0.625

Recall 0.125 0.313 0.250 0.250 0.977 0.985 0.897 0.684 0.977 0.955 0.956 0.895

Sensitivity 0.125 0.313 0.250 0.250 0.667 0.917 0.650 0.400 0.714 0.833 0.824 0.714

Specificity 0.955 0.910 0.750 0.737 0.500 0.688 0.650 0.500 0.625 0.938 0.700 0.625

States Gujarat

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision NA 0.535 0.438 0.250 0.000 0.900 0.833 0.286 0.000 0.833 0.917 0.714

Recall 0.000 0.767 0.583 0.286 1.000 0.830 0.969 0.700 1.000 0.906 0.922 0.900

Sensitivity 0.000 0.767 0.583 0.286 0.750 0.909 0.250 NA 0.833 0.815 0.714

Specificity 1.000 0.623 0.719 0.700 0.000 0.900 0.833 0.286 0.000 0.833 0.917 0.714

States Kerala

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.638 0.273 0.444 0.556 0.952 0.600 0.692 0.714 0.952 1.000 0.846 1.000

Recall 0.714 0.200 0.615 0.714 0.778 1.000 0.889 0.800 0.889 1.000 0.917 0.800

Sensitivity 0.714 0.200 0.615 0.714 0.833 1.000 0.692 0.556 0.909 1.000 0.786 0.636

Specificity 0.528 0.882 0.722 0.800 0.952 0.600 0.692 0.714 0.952 1.000 0.846 1.000
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Table A1. Cont.

States Tamil Nadu

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.000 0.393 0.125 NA 0.200 0.786 0.455 0.000 0.600 0.893 0.455 1.000

Recall 0.000 0.393 0.091 0.000 1.000 0.978 0.868 1.000 1.000 0.966 0.868 1.000

Sensitivity 0.000 0.393 0.091 0.000 1.000 0.917 0.500 NA 1.000 0.893 0.500 1.000

Specificity 0.959 0.809 0.816 1.000 0.200 0.786 0.455 0.000 0.600 0.893 0.455 1.000

States Uttar Pradesh

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.353 0.333 0.320 0.682 0.333 0.875 0.684 0.867 0.733 1.000 0.474 0.800

Recall 0.400 0.313 0.421 1.000 0.757 0.980 0.558 0.333 0.811 0.960 0.907 0.778

Sensitivity 0.400 0.313 0.421 1.000 0.357 0.875 0.406 0.684 0.611 0.800 0.692 0.857

Specificity 0.703 0.901 0.605 0.222 0.333 0.875 0.684 0.867 0.733 1.000 0.474 0.800

States West Bengal

Model KNN SVM RF

Class Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE Low TE Medium TE High TE Very High TE

Precision 0.300 0.385 0.333 0.000 0.467 0.667 0.077 0.000 0.667 0.667 0.846 0.000

Recall 0.400 0.278 0.154 0.000 0.703 0.929 0.980 0.952 0.946 0.960 0.959 0.905

Sensitivity 0.400 0.278 0.154 0.000 0.389 0.632 0.500 0.000 0.833 0.750 0.846 0.000

Specificity 0.622 0.919 0.918 0.952 0.467 0.667 0.077 0.000 0.667 0.667 0.846 0.000
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Table A2. Abbreviations for states.

Abbreviation State Name

AP Andhra Pradesh

AS Assam

BH Bihar

CG Chhattisgarh

GJ Gujarat

KL Kerala

PB Punjab

TN Tamil Nadu

UP Uttar Pradesh

WB West Bengal

Table A3. Abbreviations for institutions, machine learning models and other technical terms.

Abbreviation Full Form

TE Technical Efficiency

DES Department of Economics and Statistics

CACP Commission for Agricultural Cost and Prices

FAO Food and Agriculture Organization

KNN K- Nearest Neighbor

SVM Support Vector Machine

RF Random Forest

ANN Artificial Neural Network

MLR Multiple Linear Regression

SVR Support Vector Regression

MANN Modular Artificial Neural Networks

RGB Red, Green, Blue

UAV Unmanned Aerial Vehicle
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