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Abstract: Climate change is a global problem since many countries worldwide are becoming increas-
ingly vulnerable to natural disasters. Numerous climate models in various studies project a decline in
agricultural productivity that will mainly be due to excessive heat in tropical and subtropical regions,
especially in Southeast Asia. As a Southeast Asian country, Malaysia is no exception to this problem.
Hence, the present study aimed to examine the impact of climate change on rice yields in Malaysia. A
panel data approach was adopted using data from 1987 to 2017 on eight granary areas in Peninsular
Malaysia. The main objectives were to assess the impact of climate variables (i.e., minimum and
maximum temperature and precipitation) on rice yield and the variance of the impact during the
main season and off-season. Our regression results indicate that precipitation was not statistically sig-
nificant in all model specifications for both the main and off-season. While the maximum temperature
was found to be negatively associated with yield during the off-season, the minimum temperature
showed a positive effect in both cropping seasons. We used the HadGEM3-GC31 N512 resolution
model based on the high-emission Shared Socioeconomic Pathways 8.5 scenario (SSPs-8.5) from
the High-Resolution Model Intercomparison Project (HighResMIP) of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) to project future climate change in 2030 and 2040. The projected
results indicate that rice yield would show a more positive trend by 2040 when compared to the
previous decade, ranging from −0.02 to 19.85% during the main season and −2.77 to 7.41% during
the off-season. Although rice yield is likely to increase in certain areas, other areas are projected to
experience negative effects. Hence, adaptation at the farm level remains crucial, specifically during
the off-season, since climate change could widen the gaps in rice yields between cropping seasons
and among granary areas.

Keywords: climate change; rice; granary areas; yield; panel data

1. Introduction

The global climate has been changing noticeably over recent decades, which is a global
phenomenon that is expected to continue. According to the Intergovernmental Panel on
Climate Change (IPCC), climate change is defined as changes in the climate that can be
identified by changes in the mean or variability of the climate properties and that persists
for an extended period, typically decades or longer [1]. Adverse and intense climate
events continued during the 2010–2019 period, which was the warmest decade on record
globally. Notably, it is projected that the global temperature will increase by 3.2 ◦C by the
year 2100 [2]. Global warming is indisputable since global average daily maximum and
minimum temperatures have increased by 1 to 3 ◦C since 1950, primarily in the Eurasian
region [1]. Projections suggest that global mean temperature increases will have adverse
impacts such as increased heatwaves, agricultural droughts, floods, and reduced crop
yields [3]. A recent study by Firdaus et al. [4] indicated that minimum and maximum
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temperatures in the main rice granary areas of Peninsular Malaysia have continued to rise
rapidly over the past decade, with increases of 0.3 to 0.5 ◦C and 0.2 to 0.3 ◦C, respectively.

Since agriculture relies on climate cycles and weather patterns, climate change is
expected to affect the productivity of crops, including rice. For instance, a 4% increase in
temperature against pre-industrial levels will increase the probability of damaging maize
and rice crops due to hot spells by 5 to 50% and 27 to 46%, respectively [3]. Lobell et al. [5]
evaluated climate change impacts on 18 different crops in 12 food-insecure regions. These
regions covered South Asia, China, Southeast Asia, East Africa, Central Africa, Southern
Africa, West Africa, Central America and the Caribbean, the Sahel, West Asia, the Andean
region, and Brazil. The results reveal that rice productions in Brazil, Central America,
and Southeast Asia are projected to record losses of up to 5% by 2030. Other crops such
as wheat in South Asia, the Sahel, Southern Africa, Brazil, and Central Africa, as well as
maize in Southern Africa and groundnut in Western Africa, would also likely be affected
by such losses. Rosenzweig et al. [6] made an ambitious attempt to assess the impacts of
climate change on multiple crops worldwide. Their results indicate that climate change
impacts are severe in tropical areas, particularly for annual C3 crops such as rice. In a global
assessment of climate change and socioeconomic impacts on agriculture up to 2080 using
different models, Fischer et al. [7] found that the critical asymmetric impacts of climatic and
socioeconomic factors would increase existing gaps in food production and consumption
between developed and developing countries.

For rice, elevated temperatures could reduce grain-filling duration, while extreme
temperatures during the flowering phase could reduce the grain or seed volume [8].
In tropical climate countries such as Malaysia, high temperature is a constraint to rice
production [4,9,10]. Moreover, variability in the amount and distribution of precipitation
(which could lead to drought and/or flooding) is another crucial factor that could affect
the yield of rain-fed rice, especially in low altitude regions [11–14] such as those located in
Malaysia [4,9,10]. For instance, a study conducted using the DSSAT crop simulation model
found that rice yield in Malaysia will decrease by 12% in the main season and 31.3% in
the off-season until 2030 as temperatures increase and precipitation patterns change [15].
A study conducted in Northwest Selangor, Malaysia, identified the negative impacts of
temperature and precipitation variants on rice production while emphasizing the location-
specific impacts of climate change [16]. In a global scale study on impacts of climate change
at different temperature levels on crop yields, Arnell et al. [3] found that dry spell may
have damaging impacts on rice and maize yield yet projected regional variations.

Several studies projected that increased atmospheric carbon dioxide (CO2) concen-
tration along with temperature, precipitation, soil conditions, and solar radiation would
have mixed impacts on rice yields. Under a high CO2 emission scenario (CO2 at 900 ppm),
rice and soybeans in the U.S. will have a 135% increase in yield in 2100 due to the CO2
fertilization effect [17]. However, impacts of increased CO2 (850 ppmv) and temperature
(38 ◦C) on the M206 rice variety in California, U.S., caused a 16% reduction in yield [18].
While in Southwestern China, increased temperature and CO2 (at 700 ppm) will result in
decreased rice yield up to 10.5% by 2050 and 47.9% by 2080 [19]. Ujiie et al. [20] found
that elevated atmospheric CO2 reduces nutritional elements (zinc, protein, and iron) in C3
type grain crops and legumes, possibly due to lower absorption or translocation of such
nutrients under CO2 concentration. Thus, they proposed to move from C3 to C4 crops
and genetic modifications in C3 grain crops. More importantly, changes in micronutrients,
minerals, protein, and vitamins in different 18 rice varieties in Asia would have negative
consequences on rice-consuming countries. These risks may range from health impacts
to lower gross domestic product, thus impact on about 600 million people [21]. As per
Ujiie et al. [20], elevated CO2 may affect nutritional values in grain crops, feed crops, and
leaf vegetables (such as nitrogen, zinc, calcium, magnesium, and sulfur), thus causing a
greater threat to human health and nutrition. Therefore, it is obvious that changing climate
and agronomic conditions, as well as increased CO2 in the atmosphere, bring both positive
and negative impacts.
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In general, three main approaches have been widely used to analyze the impacts
of climate change on agriculture—one of which is panel data analysis [22]. In panel
data analysis, omitted variables can be overcome by including regional dummies in the
model. This method has been applied in many studies, such as those of Arnell et al. [3],
Welch et al. [23], Sarker et al. [24], and Mahrous [25]. The panel model most commonly
applies two types of effect models, namely fixed- and random-effects models. Most of the
aforementioned studies used the fixed-effects model because district-specific characteristics
can be included in this model. Moreover, the random-effects model does not require a
correlation between unobserved time-invariant characteristics and the explanatory variable,
while the fixed-effects model relaxes this assumption [26].

Malaysia is located in Southeast Asia, lying just north of the equator. Malaysia
is categorized as equatorial, hot, and humid throughout the year, with average daily
temperatures ranging from 21 to 32 ◦C throughout the year [27]. The average annual
rainfall of Peninsular Malaysia is approximately 2500 mm [28]. In major granary areas,
rice is cultivated twice per year during the off-season (March to July) and the main season
(August to February). The main season has high air humidity due to the heavy rainfall
brought on by the northeast monsoon, while the off-season has low air humidity with
less rainfall [9]. Rice production in Malaysia mainly comes from these granary areas,
which produced approximately 74% of the total national production in 2016. However,
the average yield per hectare varies among different granary areas due to location-specific
factors such as environmental conditions, cultivation areas, and farming practices [29].

Several studies have found that climate variables have a significant impact on agricul-
ture yield [30]. Climate parameters such as increased temperature, high or low precipitation
as well as extreme weather events adversely affect crop productions, thus challenging food
security [4]. Studies projected that increased atmospheric CO2 concentration would have
a mixture of positive and negative effects on rice production, consumption, distribution
as well as national development [17–20]. Extreme weather events due to climate change
alter the food production, consumption, trade, and distribution patterns, thus challenging
poverty eradication, food security, and sustainable development [4,7]. Moreover, climate
change has negative adverse impacts on agriculture, especially at low latitudes and tropical
areas [6,30]. Since a continuous temperature rise is anticipated [31], assessing the impacts
of climate change on Malaysian rice yield is crucial. Notably, a limited number of studies in
Malaysia have used panel data analysis to assess the impact of climate change. Therefore,
the present study specifically aimed to analyze the impact of climate variables on rice yield
in Peninsular Malaysia during the main and off-season.

2. Materials and Methods
2.1. Data

A panel data set was used for the present study. In general, panel data analyses
use statistical (i.e., regression) techniques to estimate the effect of climate parameters on
crop yields by estimating a production function. In contrast, the empirical estimation of
these functions is based on panel data, which includes observations of a cross-section of
individual units (i.e., granary areas) over time [22]. Data from granary areas (i.e., yield
and cultivated area) were obtained from the Ministry of Agriculture (MOA), while climate
data were provided by the Malaysian Meteorological Department (MMD). Granary data
were seasonal, while daily meteorological records (i.e., minimum temperature, maximum
temperature, and precipitation) were taken from eight weather stations in Peninsular
Malaysia (see Table 1).

The empirical analysis was based on panel data involving eight granary areas in
Peninsular Malaysia from 1987 to 2017. Figure 1 illustrates the locations of these granary
areas and their closest weather stations (as indicated in Table 1). We used the same weather
station data for the S.P. and B.L.S. granary areas, which was collected from the Hospital
Teluk Intan Station. Moreover, KADA and K.S. used data from the Kota Bharu station. Both
KADA and K.S. are located in Kelantan, which can be best represented by the Kota Bharu
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station. For the S.P. and B.L.S. granary areas, there is only one central station between these
areas: the Hospital Teluk Intan Station.

Table 1. List of granary areas and weather stations.

Granary Areas Weather Stations

1.Muda Agricultural Development Authority MADA Alor Setar
2.Integrated Agricultural Development Area Pulau Pinang P.P. Butterworth
3.Integrated Agricultural Development Area Kerian K.S.M. Perai
4.Integrated Agricultural Development Area Seberang Perak S.P. Hospital Teluk Intan
5.Integrated Agricultural Development Area Barat Laut Selangor B.L.S. Hospital Teluk Intan
6.Kemubu Agricultural Development Authority KADA Kota Bharu
7.Integrated Agricultural Development Area Kemasin Semarak K.S. Kota Bharu
8. Integrated Agricultural Development Area KETARA KETARA Kuala Terengganu
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Figure 1. Locations of granary areas and weather stations.

Wetland rice varieties in the main granary areas are cultivated during both cropping
seasons (i.e., the main season and off-season). Hence, we formed the data into a seasonal
data set. In every cropping calendar, the off-season typically runs from March to July, while
the main season begins in August of the same year and ends in February of the following
year [9]. The rice yield data provided for each granary area are measured in kilograms
per hectare (kg/ha).

Regarding the climate data, three weather variables were considered: precipitation
(mm), minimum temperature (◦C), and maximum temperature (◦C). Since the data provided
by the MMD were daily observations, the cumulative amount of precipitation was calculated
according to the respective season (the main season runs from March to July while the off-
season is from August to February). For instance, daily precipitation values from 1st March
until 31st July in 1987 were summed to estimate the total precipitation for the off-season in
1987. Regarding minimum temperature data, the daily temperatures during each season were
averaged to determine the average seasonal temperature. The same method was also applied
to determine the maximum temperature. Hence, all climate data in this study were aligned
based on the rice cropping seasons. Table 2 summarizes the variables used in this study.
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Table 2. Variable description.

Type of
Variable Variable Description

Dependent Yield (kg/ha) Average yield per season
Independent Land (ha) Total cultivated area per season

P (mm) Total precipitation per season
Tmin (◦C) Average of daily minimum temperature per season
Tmax (◦C) Average of daily maximum temperature per season

2.2. Model Specification

The least-squares dummy variable (LSDV) model was applied in this study. The LSDV
model allows for heterogeneity among the cross-section by allowing each entity to have an
intercept value. The model is defined as:

yit = α0 +
N−1

∑
i=1

αiDi +
K

∑
k=1

βkxk,it + εit for i = 1, . . . N, t = 1, . . . , T, (1)

where N is the number of cross-sections, T is the period, K is the number of independent
variables, and yit and xk,it are the dependent and independent observations, respectively,
for the ith individual and tth period. Moreover, αi and βk are parameters of interest that
measure the impact of the dependent variable, while Di is the dummy variable (value equals
1 when the observation relates to granary i, and 0 otherwise) and εit the error term.

In this study, we used a fixed-effects model (FEM). For the FEM, we assumed that the
regressors’ slope coefficients did not vary across granary areas or over time. This is also
known as a time-invariant model, which implies that although the intercept may differ
across granary areas, each granary’s intercept does not vary over time.

The fixed- and random-effects models are commonly used in panel models. In this
study, the FEM was chosen for few reasons. First, the FEM allows for the specific char-
acteristics of granary areas to be included. One advantage of the fixed-effects over the
random-effects model is that the FEM allows for the correlation between regressors and
time-invariant distinctiveness. In contrast, the random-effects model assumes no correlation
between unobserved time-invariant characteristics and explanatory variables. This decision
is also supported by recent studies [32,33].

In this study, we developed four estimation models. Our analysis applied a panel fixed-
effect approach that involved eight granary areas over a 31-year period (1987 to 2017). We
included four independent variables (i.e., size of cultivation area, precipitation, minimum
temperature, and maximum temperature) to analyze the impact of these variables on
rice yield. Precipitation and temperature are known as the primary determinants of crop
growth and yield. Hence, Model 1 is defined as follows:

lnYieldit = α0+
7

∑
i=1
αiDi + β1Landit + β2Pit + β3Tminit + β4Tmaxit

+ εit

(2)

Model 1 (Equation (2)) is a production function in linear form. This equation examines
the linear effect of each explanatory variable on the dependent variable. Model 2 is
computed as follows:

lnYieldit = α0+
7

∑
i=1
αiDi + β1Landit + β2Pit + β3Tminit + β4Tmaxit

+β5Land2
it + β6P2

it + β7Tmin2
it + β8Tmax2

it

+β9Pit ∗ Tminit + β10Pit ∗ Tmaxit + β11Tminit ∗ Tmaxit + εit

(3)
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For Model 2 (Equation (3)), the quadratic terms for independent variables were in-
cluded in the specification to account for the non-linear effect of independent variables
on rice yield. An interaction term between the independent variables was included to
determine the potential effect of one independent variable (specifically the climatic vari-
ables) given the effect of another independent variable. The dependent variable of rice
yield was a natural logarithm transformed for both models to reduce the data variability
and improve the variable’s distribution. Since only the dependent variable was natural
logarithm transformed, the model estimated semi-elasticities. Therefore, interpreting the
impact of a one-unit increase in the independent variable (assuming other independent
variables remain constant) represents a certain percentage change in yield.

2.3. Diagnostic Tests

Before a model is regressed for prediction, a series of diagnostic tests are required to
ensure that the error structure of the model fulfills the assumptions. In this study, three
key assumptions need to be satisfied: (1) errors must be homoscedastic; (2) errors must be
cross-sectionally independent; (3) autocorrelation is not present. The Breusch-Pagan test
was applied to test for the presence of heteroscedasticity. It tests the null hypothesis that
the error variances are all equal versus the alternative hypothesis that the error variances
are unequal. A test suggested by Wooldridge was performed to assess the presence of
autocorrelation [34,35]. The null hypothesis of this test states that there is no first-order
autocorrelation, while the alternative hypothesis states otherwise. Lastly, Pesaran’s cross-
sectional dependence (CD) test was used to test for the presence of CD under the null
hypothesis of CD [36].

We also conducted a unit root test to confirm that our time series data were stationary.
If a time series of panel data contains a unit root (non-stationary), it implies that there is
a systematic pattern that is unpredictable. The existence of a unit root or regressing non-
stationary data will produce a spurious regression. Usually, a regression is spurious if trending
variables over time are regressed, which likely indicates a non-existing relationship.

Traditional unit root tests work only with one time series at a time. In this study,
the first-generation unit root test assumes no CD (i.e., the Fisher-type test was performed
as proposed by Maddala and Wu [37] using the augmented Dickey-Fuller (ADF) test).
Additionally, we performed the second generation that allows CD (i.e., the Pesaran unit
root test [38]).

2.4. Climate Change Scenarios

The HadGEM3-GC31 N512 high-resolution model (1024 × 768, Had-HM) based
on the high-emission Shared Socioeconomic Pathways 8.5 scenario (SSPs-8.5) from the
High-Resolution Model Intercomparison Project (HighResMIP) of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) [39] was used to extract future climate projections
over the eight rice granary areas. The high-resolution HadGEM3-GC31 model was selected
due to its greater capability in capturing mean and extreme observed precipitation over
Peninsular Malaysia compared to the coarse resolution version [40].

Since original climate models even contain biases in high-resolution versions, a bias
correction scheme should be implemented before applying them to regional- or local-scale
studies. The quantile mapping approach adopted by Tan et al. [41] to bias correct the
CMIP6 HighResMIP models in the Kelantan River Basin, Malaysia, was used in this study.
We found that the quantile mapping approach can effectively correct the occurrence period
of peak monthly precipitation in December and precipitation amount for all months. The
bias-corrected Had-HM model was then used to extract annual precipitation and maximum
and minimum temperatures for the historical period (1985 to 2004) and the future periods
of 2015–2034 (2030) and 2025–2044 (2040). Precipitation and temperature projections over
the eight granary areas are summarised in Table 3.

Both minimum and maximum temperatures are projected to increase significantly
across all granary areas. Regarding precipitation, the changes were heterogeneous across



Agriculture 2021, 11, 569 7 of 17

the granary areas. MADA, P.P. and K.S.M. are expected to experience a decline in precipita-
tion, while precipitation in the remaining areas is expected to increase by 2030. However,
precipitation for MADA is likely to increase by 2040, while P.P. and K.S.M. will remain
negative compared to the historical mean.

Table 3. Future climate scenario.

2030 2040

No. Station ID Station
Name

Min Temp.
(◦C)

Max Temp.
(◦C)

Changes in
Precipitation

(% mm)

Min Temp.
(◦C)

Max Temp.
(◦C)

Changes in
Precipitation

(% mm)

1 48603 Alor Setar 0.63 0.70 −2.31 0.93 0.72 15.04
2 41529 Perai 0.41 0.61 −14.04 0.75 0.76 −4.79
3 48620 Teluk Intan 0.61 0.71 1.00 0.97 0.85 9.73
4 48615 Kota Bharu 0.32 0.35 15.91 0.74 0.71 13.08
5 48602 Butterworth 0.41 0.59 −15.80 0.72 0.72 −4.11
6 48618 Kuala Terengganu 0.34 0.37 8.58 0.73 0.76 15.80

The maximum and minimum temperature time series are depicted in Figure 2. The
time series results showed that the mean annual maximum and minimum temperatures of
the granary areas will increase continuously during the 2015–2045 period. The regression
line showed a significant increasing trend in mean annual maximum and minimum tem-
peratures (Figure 2a,b). While a time series analysis for precipitation was also performed,
the regression line showed a marginally positive trend that was insignificant (Figure 2c).
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3. Results and Discussion
3.1. Descriptive Statistics

Table 4 presents the descriptive statistics of the eight granary areas. In general, B.L.S.
had the highest mean annual rice yield (4859.72 kg/ha), while K.S. had the lowest rice yield
(2941.07 kg/ha) and granary area (6455.1 ha). Moreover, MADA had the largest cultivation
area (192,180.3 ha) with the second-highest mean annual rice yield (4358.78 kg/ha) among
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the eight areas. Regarding climate variables, KETARA had the highest total precipitation
(2680.55 mm), while MADA had the lowest (2046.7 mm). Furthermore, there was not much
difference in temperature among the eight granary areas since these areas are located within
a relatively small region (i.e., Peninsular Malaysia). Since S.P. and B.L.S. used the same
meteorological station, both of these regions had the lowest mean minimum temperature
(23.7 ◦C) despite having the highest mean maximum temperature (33.12 ◦C).

Table 4. Descriptive statistics.

Granary Areas Annual Yield Planted Area Annual Total
Precipitation

Annual Mean
Minimum

Temperature

Annual Mean
Maximum

Temperature

MADA
Mean 4358.78 192,180.30 2046.70 24.05 32.72

Std. Dev. 546.94 3205.78 287.17 0.36 0.36

P.P.
Mean 4180.01 20,878.38 2263.43 24.13 32.05

Std. Dev. 1270.18 2197.34 293.89 0.45 0.35

K.S.M.
Mean 3234.27 51,044.32 2146.02 24.73 32.24

Std. Dev. 628.32 5277.8 337.65 0.44 0.39

S.P.
Mean 3765.93 17,782.20 2383.35 23.70 33.12

Std. Dev. 627.66 4831.62 423.33 0.60 0.48

B.LS.
Mean 4859.72 36,649.88 2383.35 23.70 33.12

Std. Dev. 822.84 1076.94 423.33 0.60 0.48

KADA
Mean 3622.29 49,311.36 2599.49 24.06 31.46

Std. Dev. 510.07 6193.62 635.79 0.30 0.32

K.S.
Mean 2941.07 6455.10 2599.49 24.06 31.46

Std. Dev. 587.13 1944.64 635.79 0.30 0.32

KETARA
Mean 4095.54 9342.38 2680.55 24.11 31.53

Std. Dev. 1063.41 1084.46 539.94 0.37 0.42

In addition to comparing regions, analyzing seasonal differences is also essential.
Figure 3a–d illustrates the differences in rice yield and climatic variable fluctuation between
the main season and off-season over a 31-year period.

These figures strongly support the fact that granary areas in Peninsular Malaysia are
usually hotter during the main season when compared to the off-season. Figure 3b shows
that there was heavier precipitation during the main season than in the off-season. Fur-
thermore, temperatures (minimum and maximum) during the main season were generally
lower than in the off-season (see Figure 3c,d). On the other hand, the average rice yield per
hectare (Figure 3a) during the main season was higher than that of the off-season. These re-
sults may indicate that precipitation had a positive impact on rice yield, while temperature
had a negative impact. Further analyses were conducted to confirm the hypothesis (see
Section 3.4).

3.2. Diagnostic Tests

A series of diagnostic tests were conducted before the panel model estimation. To
avoid the possible spurious correlation between variables, unit root tests (i.e., Fisher-ADF
and Pesaran’s CD test) were conducted. Table 5 exhibits the results of the two tests with
and without trends. The values shown in Table 5 include the test statistics and their
p-values (in parenthesis). All of the variables assessed were statistically significant in tests
with and without trends. Most of the variables were substantially significant at the 1%
significance level. This implies that the null hypotheses stating that all panels contain a
unit root can be rejected. Therefore, the variables were stationary, and no differencing is
required. Hence, estimation of the variables using the model was carried out at the level.
As previously mentioned, we developed two models to represent the main season and off-
season, respectively. The main season and off-season models’ diagnostic results are shown
in Table 5 and were initially estimated using the ordinary least squares (OLS) method.
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The Breusch-Pagan test was used to assess the presence of heteroscedasticity. As
shown in Table 6, only the main season model had a p-value of 0.406, which was not
statistically significant and indicated that the null hypothesis of homoscedasticity could
not be rejected despite heteroscedasticity being discovered in the other models. On the
other hand, the Wooldridge test was applied to identify the presence of a first-order
autocorrelation. In Table 6, all models were statistically significant. Consequently, the null
hypothesis of no presence of autocorrelation was rejected.

Table 5. Panel unit root test.

Variables
Fisher-ADF Pesaran Unit Root Test

Without Trend With Trend Without Trend With Trend

Main Season

LnYield 41.32 ***
(>0.001)

61.07 ***
(>0.001)

−3.30 ***
(>0.001)

−2.082 **
(0.019)

Land 53.20 ***
(>0.001)

50.18 ***
(>0.001)

−2.46 ***
(0.007)

−2.10 **
(0.018)

P 115.28 ***
(>0.001)

109.30 ***
(>0.001)

−2.80 ***
(0.003)

−1.61 *
(0.054)

Tmin 24.16 *
(0.086)

78.71 ***
(>0.001)

−3.17 ***
(0.001)

−1.65 *
(0.050)

Tmax 110.61 ***
(>0.001)

90.69 ***
(>0.001)

−4.76 ***
(>0.001)

−4.82 ***
(>0.001)

Off-Season

LnYield 57.02 ***
(>0.001)

56.15 ***
(>0.001)

−7.11 ***
(>0.001)

−6.14 ***
(>0.001)

Land 96.10 ***
(>0.001)

306.89 ***
(>0.001)

−2.88 ***
(>0.001)

−3.83***
(>0.001)

P 120.87 ***
(>0.001)

91.75 ***
(>0.001)

−4.37 ***
(>0.001)

−2.75 ***
(0.003)

Tmin 35.11 ***
(0.004)

98.82 ***
(>0.001)

−4.90 ***
(>0.001)

−3.61 ***
(>0.001)

Tmax 85.18 ***
(>0.001)

73.96***
(>0.001)

−4.07 ***
(>0.001)

−5.08 ***
(>0.001)

*, ** and *** denotes significance levels at 10%, 5% and 1% respectively. Values in brackets represent the p-value.

Table 6. Diagnostic test results.

Season Type Breusch-Pagan Wooldridge CD

Main
Linear 0.69

(0.406)
10.769 **
(0.014)

6.66 ***
(>0.001)

Quadratic 5.08 **
(0.024)

11.057 **
(0.013)

6.946 ***
(>0.001)

Off
Linear 12.77 ***

(>0.001)
11.461 **
(0.012)

8.049 ***
(>0.001)

Quadratic 34.91 ***
(>0.001)

9.123 **
(0.019)

6.732 ***
(>0.001)

** and *** denotes significance levels at 5% and 1% respectively. Values in parenthesis are p-value.

To assess cross-sectional dependence, we performed Pesaran’s CD test [42]. Since
all the p-values were less than 0.001, there was substantial evidence to reject the null
hypothesis of cross-sectional independence. Thus, all models were correlated across panel
groups, respectively.

Based on the three tests conducted on the four models, all models did not generally
fulfill the error assumptions. Thus, using the OLS method to estimate the models would
lead to bias problems. Therefore, Equation (1) could not be estimated using the OLS method
since its assumptions were violated. Instead, we used a panel-corrected standard error
(PCSE) approach while considering the violation of assumptions such as heteroscedasticity,
serial correlation, and CD found in the diagnostic tests [43,44]. The PCSE approach retains
the OLS parameter estimates but corrects the value of standard errors for parameters
estimated by the OLS method.
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3.3. Model Estimation

Linear regression with PCSEs for the four models (Model 1–Main and Off-Season and
Model 2-Main and Off-Season) is shown in Table 7. All models were significant based on the
test statistic (p-values were all less than 0.01). Regarding climate variables, the coefficient
of precipitation in linear and quadratic forms was negative but not significant. However,
the interaction term between precipitation and minimum temperature was positive and
significant, indicating a cumulative impact of these two rice yield variables. Regarding
minimum temperature, there was no significant coefficient for the variables in linear and
quadratic forms.

Table 7. Model estimation with PCSE for main and off-season.

Variable

Main Season Off-Season

Model 1 Model 2 Model 1 Model 2

Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value

Constant 5.431 *** >0.001 24.732 0.555 7.716 *** >0.001 −22.180 0.620
Land 0.00001 *** 0.003 0.00008 *** 0.002 0.00002 *** 0.007 −3.14 × 10−6 0.889

P 0.00004 0.217 −0.002 0.415 0.00005 0.401 −0.003 0.372
Tmin 0.0998 *** 0.007 0.009 0.997 0.109 ** 0.018 0.031 0.988
Tmax 0.125 0.557 −1.108 0.438 −0.069 * 0.077 1.872 0.320

Land2 −1.05 × 10−10 0.319 −1.90 × 10−10 0.063
P2 −4.02 × 10−8 0.448 −4.56 × 10−80 0.829

Tmin
2 0.002 0.960 0.085 *** 0.008

Tmax
2 0.021 0.220 0.015 0.588

P × Tmin 0.0001 ** 0.044 0.0001 0.159
P × Tmax −0.00004 0.205 −7.17 × 10−7 0.993

Tmin × Tmax −0.005 0.852 −0.123 *** 0.003
T-Stat 231.040 284.01 141.38 195.07

p-value >0.001 >0.001 >0.001 >0.001
Adj. R2 0.919 0.9078 0.8516 0.8236

*, ** and *** denotes significance levels at 10%, 5% and 1% respectively.

Model 2 consists of variables in the linear form and includes the quadratic and
interaction terms. Even though the adjusted R2 value for Model 1 is 0.9189, which was
higher than for Model 2 (0.9078), the difference was relatively slight. However, there
were significant interaction and quadratic terms in Model 2 that must be modeled. Based
on the estimated parameters, a few dummy variables showed a significant effect on rice
yield, which indicates that the variables successfully captured the heterogeneity across
individuals. Moreover, cultivation area (land) was significant in the linear form and
positively related to rice yield.

The estimation of Model 2 (off-season) also used PCSEs. As per the main season
estimation, the quadratic term elucidates the non-linear relationship between climate vari-
ables and yield, while the interaction variables explain the cumulative impact. There were
few dummy variables with p-values less than 0.05, indicating an apparent heterogeneity
across the granary areas. Moreover, the area of cultivation had a negative coefficient in the
linear form. However, the quadratic form was positively significant, indicating a convex
relationship with rice yield.

Regarding climate variables, the coefficients of precipitation in linear and quadratic
forms were negative but not significant. However, the interaction term between precipita-
tion and minimum temperature was significant, indicating a negative joint impact of these
two variables on rice yield. Consequently, precipitation affects rice yield. Similar to precipi-
tation, there were no significant coefficients for variables in linear and quadratic forms for
minimum temperature. However, as previously mentioned, there was a significant positive
coefficient of the interaction term between precipitation and minimum temperature.

Unlike the main season, precipitation during the off-season has no significant effect
on rice yield (even when interacted with other variables). This implies that the amount
of precipitation did not affect rice yield during the off-season. Notably, this could be due
to the effect of irrigation systems, which was not measured in the model. The irrigation
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systems in the main granary areas are considered effective, particularly during the off-
season period [45]. Regarding minimum temperature, the quadratic term’s coefficient
was positive and significant, showing a convex relationship similar to that observed by
Gupta et al. [11]. Moreover, there was a negative joint impact of minimum and maximum
temperature. There were few dummy variables with p-values less than 0.05, indicating
a sturdy heterogeneity across the granary areas. Moreover, the area of the cultivation
had a positive coefficient in the linear form. However, the quadratic form was positively
significant, indicating a convex relationship with rice yield.

Note, however, the model did not include the effects of carbon dioxide (CO2) fertiliza-
tion. CO2 fertilization due to an increase in the concentration of atmospheric greenhouse
gases is expected to counterbalance the negative effects of climate change and stimulate
plant growth [46,47], particularly in the temperate climate zone [48]. In this zone, C3 crops
with a lower photosynthetic efficiency rate, such as rice and wheat, will benefit from the
increase in atmospheric CO2 [49]. In contrast, C4 crops with a higher rate of photosynthetic
efficiencies, such as corn and millet, are projected to experience limited response [50]. If
the CO2 concentration is elevated to 550 ppm (parts per million) under normal conditions,
C3 and C4 crop yields are projected to increase by approximately 10 to 25% and 0 to 10%,
respectively [51]. This is because the increase in CO2 concentration limits the water loss
through leaf stomas (the pores on the surface of plants) that goes through transpiration [52].

Crop productivity is affected by counteracting factors (e.g., temperature, precipitation),
and increased atmospheric CO2 also leads to increase crop yield. Although elevated CO2
increases the yields of C3 crops by 10 to 30%, crop responses, however, depend on agro-
nomic conditions, types of species, availability of water and nutrients (see Toreti et al. [53]
for a recent review). A free-air CO2 enrichment (FACE) experiment in Tsukuba, Japan,
using eight rice cultivars demonstrated a wider range of rice yield (3 to 36%) increase due
to elevated CO2 [54]. A study by Kimball [55] found that elevated CO2 (353 to 550 ppm)
coupled with sufficient nutrients and water result in increased grain yields in C3 crops
such as rice, on average about 19%. However, the effects on C3 crop productivity could be
minimal when nutrients such as nitrogen are limited [55,56]. Another recent study using
indica, japonica, and hybrid rice cultivars has indicated an increased yield of 13.5% for
japonica, 22.6% for indica, and 32.8% for hybrid cultivars with an elevated CO2 of about
200 µmol mol−1 above ambient [57]. While studies in the large-scale field environment
using FACE show that elevated CO2 strongly affects rice yield [54–57], our regression
results, however, are mainly restricted to the domain of the data. Thus, we caution that our
results could be affected by the exclusion of the beneficial effects of elevated CO2.

3.4. Projection of Future Yield with Climate Change

The projected climate change for 2030 and 2040 is based on the HadGEM3 model, as
shown in Table 3. The projected changes are relative to the historical mean values of data
used in this study. The projected scenario shown in Table 3 is assumed to be the same
for the main season and off-season. The minimum and maximum temperature changes
are shown in degrees Celsius, while the projected changes in precipitation are shown as
percentages. The projected climate values were substituted into Model 2 to forecast the future
rice yield under the projected climate change scenario. As shown in Table 8, the historical
mean indicates the mean of the data used in this study (for the 1987–2017 period).

The forecasted values measure projected changes in the dependent variable as a
function of changes in a specific explanatory variable while keeping other covariates
constant. The results indicate that both MADA and P.P. were the only areas that would
experience a slight decrease in rice yield during the main season. By the year 2030, MADA’s
yield is projected to decline by −3.81%, followed by −0.02% over the following decade.
Conversely, P.P. is expected to receive a positive effect by 2040 after experiencing a slight
decrease in yield by 2030. By the year 2040, S.P. is expected to record the highest increase
(19.85%) compared to the baseline average, followed by B.L.S. (18.12%).
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The projected changes for off-season yield were very different compared to those
for the main season. By the year 2030, rice yield in seven granary areas is expected to
decline by −0.3 to −7.2%. P.P. would be the most affected granary area, followed by S.P.,
B.L.S., KSM, and KETARA. MADA would be the least affected area, followed by KS. Only
KADA is projected to have increased rice yield over the next two decades. By the year 2040,
all granary areas except S.P. and B.L.S. are projected to experience a positive effect when
compared to the baseline average.

Table 8. Forecasted yield for the years 2030 and 2040 relative to the sample means.

Season Granary Area Historical Mean Year 2030 Year 2040

Main

MADA 4386.65 4219.49 (−3.81) 4385.73 (−0.02)
P.P. 4212.19 4150.27 (−1.47) 4410.19 (4.7)

K.S.M. 3193.10 3201.12 (0.25) 3407.50 (6.71)
S.P. 3750.26 4179.25 (11.44) 4494.51 (19.85)

B.L.S. 4927.87 5434.14 (10.27) 5820.84 (18.12)
KADA 3612.13 3811.01 (5.51) 4098.23 (13.46)

K.S. 2949.52 3133.17 (6.23) 3417.32 (15.86)
KETARA 4312.48 4515.43 (4.71) 4986.26 (15.62)

Off

MADA 4324.08 4311.01 (−0.30) 4565.69 (5.59)
P.P. 4151.71 3852.92 −(7.2) 4180.91 (0.7)

K.S.M. 3273.84 3155.74 (−3.61) 3492.12 (6.67)
S.P. 3779.84 3585.37 (−5.14) 3675.03 (−2.77)

B.L.S. 4792.65 4558.76 (−4.88) 4655.04 (−2.87)
KADA 3588.00 3680.55 (2.58) 3853.96 (7.41)

K.S. 2797.07 2779.44 (−0.63) 2922.28 (4.48)
KETARA 3870.58 3822.04 (−1.25) 3981.00 (2.85)

Values in parenthesis are the percentage of change relative to the historical mean of yield.

As shown in Figure 4a, the overall combined effects of increased temperature and
decreased precipitation by 2030 (refer to Table 3) are likely to reduce rice yield in the main
season in MADA and P.P. Even KSM would be affected by an increase in temperature
and decrease in precipitation since yield is expected to increase marginally. However, an
increase in precipitation by 2040 would reduce the effects of increased temperature since all
granary areas are expected to record an increase in yield. Figure 4b indicates that the total
effects of increased temperature and decreased or increased precipitation by 2030 would
bring negative effects in all areas except for KADA. In KADA, an increase in precipitation
of approximately 16% would help to reduce the effects of increased temperature. In the
following decade, the effects of increased precipitation would allow the granary areas to
increase their production per hectare, although the yield would remain below the baseline
average in B.L.S. and S.P.

Based on Figure 4a,b, farmers in MADA, P.P. and K.S.M. would be the most affected
since yield is expected to decrease in the coming decades. Conversely, the other five
granaries are likely to benefit since the increase in yield during the main season is greater
than the decrease in yield during the off-season. This could ultimately outweigh the
rice production loss in MADA, P.P. and K.S.M. if one were to view this context from the
‘national production’ perspective. Nevertheless, using this perspective would certainly be
unjust. That is to say, the majority of small farmers in these areas are just slightly above
the poverty line and remain vulnerable to changes in farm productivity and income [9].
Hence, the results of this study undoubtedly reflect the importance of location-specific
adaptation, which has not been observed in the other previous studies [15,16]. Moreover,
location-specific factors [29] such as climate conditions over the next decade will further
increase the variability of rice yield among granaries and between cropping seasons.

It is important to note that smaller countries in Southeast Asia, such as Malaysia, are
expected to meet a rising proportion of their future cereal consumption (e.g., rice) through
purchases from the international market [58]. Presently, Malaysia imports 30% of its rice
to fulfill domestic consumption. Even if Malaysia is not a net importer of rice, retaining a
long-term positive trend of rice production is critical to reducing the reliance on imports.
Such an effort is not only vital to small farmers’ livelihoods but—most importantly—food
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security. Domestic rice production is critical to preventing the country from experiencing
another serious shortage of supply due to a future global food crisis. Although the majority
of rice production is concentrated in developing Southeast Asian countries, rising global
rice prices are being transmitted into higher domestic rice prices, with the rise in domestic
prices outpacing the rise in international prices in some countries [59]. Thus, government
efforts to increase domestic rice production must be continued despite the challenges
brought by the impacts of climate change.
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4. Conclusions

Changes in climatic patterns would severely impact Malaysia’s rice production [4,9,10].
Thus, investigations related to the impact of climate change on rice yield are vital because
rice is an important staple food for Malaysians. This study examined the impact of climate
change on rice yield using a panel approach based on the LSDV model with PCSEs and
using data from 1987 to 2017 on eight granary areas in Peninsular Malaysia.

The key findings show that climate variables significantly affect rice yield. Notably,
while cultivated area size shows a positive impact on rice yield in both seasons, the
magnitude of the impact is greater during the off-season. This suggests that by increasing
the cultivation area size during the off-season, the effect on yield would be significant [9].
Rice yield is only negatively affected by precipitation during the main season since this
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season is also known as the wet season. Increased precipitation would lead to flooding,
which usually occurs during this season. Instead, the minimum temperatures in the main
season and off-season may experience inverse effects. Moreover, the main season is likely
to experience a positive effect, while the off-season may experience the opposite effect.
Lastly, maximum temperature adversely impacts rice yield in both seasons; however, the
magnitude of the impact is greater during the off-season.

Upon simulating impacts under the HadGEM3 scenario, climate change was projected
to reduce rice yield during the off-season by 2030. The P.P. granary area will be most
affected, followed by S.P. and B.L.S. All of the remaining granary areas except KADA are
also projected to encounter negative effects by 2030. By 2040, six granaries are predicted
to gain positive effects, while the remaining two granaries (i.e., S.P. and B.L.S.) would
likely experience negative effects. Hence, adaptation action measures must focus on
the off-season period, particularly for B.L.S. and S.P. Such adaptation measures would
include improving the existing irrigation infrastructure [60] (particularly during the off-
season) and introducing high-temperature stress-tolerant rice cultivars while improving
crop disease and pest management [61]. Although studies have shown that climate change
could exaggerate pest and disease occurrence [30], this was not observed in our study. In
summary, farm-level adaptations are crucial in enhancing farmers’ adaptive capacities and
promoting long-term agricultural sustainability [62,63].
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