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Abstract: Antioxidant activity (AOA) in fruits of Sambucus nigra and several new elderberry inter-
specific hybrids involving S. javanica (JA), S. nigra subsp. nigra (NI), S. nigra subsp. nigra ‘Black
Beauty’ (BB), S. nigra subsp. cerulea (CER) and S. racemosa (S. racemosa subsp. racemosa (RAC),
S. racemosa subsp. racemosa var. miquelii (MIQ), S. racemosa subsp. tigranii (TIG), S. racemosa subsp.
kamtschatica—coreana (KOR) at five maturity stages were investigated by applying DPPH (2,2-
diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), FRAP
(ferric reducing antioxidant power) and ORAC (oxygen radical absorption capacity) assays. The
aim of the study was to compare different assays for estimating AOA in elderberries, to plan the
appropriate harvest time and to determine whether the most promising genotypes could be predicted
in advance. All assays used showed that AOA increased significantly during maturation. All assays
were significantly correlated with each other and could be reliably used for the AOA determination of
elderberries. In fully mature berries, significant correlations were also found between total phenolic
(TP) content and AOA by all assays, but no significant correlations were found between total ascorbic
acid (TAA) content and AOA by all assays. At the fully mature stage, (the most appropriate stage for
harvesting), berries of (JA × NI) × BB and (JA × NI) ×MIQ were found to be superior in AOA and
TP content. Genotypes with higher/lower AOA and TP content could not be predicted in advance,
while TAA showed the opposite.

Keywords: Sambucus; interspecific hybrids; maturation; ABTS; DPPH; ORAC; FRAP; total phenolic
content; ascorbic acid; correlations

1. Introduction

Antioxidants are compounds that retard or inhibit the production of free radicals
produced by oxidation processes. Free radicals are reactive and unstable molecules or
complexes whose chain reactions pass through the enzymatic system and can damage
the cells of an organism and cause various diseases [1]. Naturally existing endogenous
enzymatic and non-enzymatic antioxidants protect human organism from the reactive
oxygen species and their harmful effects. When they are unable to provide complete
protection, the need for exogenous antioxidants such as vitamins (E, C, D, K3), ß-carotene,
mineral Se and flavonoids increases [2]. Although many synthetic compounds are available
in the market, there is an increasing interest in exogenous antioxidants of natural origin that
have beneficial nutritional and therapeutic effects. Moreover, many synthetic antioxidants
are no longer used in the food industry due to their potential adverse effects on human
health and the stringent control that requires expensive testing to evaluate their safety [3].
The search for natural substitutes for synthetic antioxidants has led to the antioxidant
evaluation of numerous plant sources. According to Halvorsen et al. [4], among 50 foods
analysed that were high in antioxidants, five were berries. Considering typical portion sizes,
the authors found that several berries (blackberries, strawberries, cranberries, raspberries
and blueberries) and related products (e.g., juice from grape berries) were high on the list
of foods high in antioxidants. According to Jakobek et al. [5], Jabłonska-Rys et al. [6] and
Tarko et al. [7], elderberry fruits also ranked high in antioxidant activity compared to other
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commonly used fruits and berries such as blackberries, strawberries, red raspberries, sweet
and sour cherries, red and black currants, bilberries, apples, goji berries and cranberries. In
addition, juices from some previously mentioned berries had lower antioxidant activity
than elderberry fruit juice [8–12].

Elderberries (genus Sambucus) grow as small trees, shrubs or herbs and are widely
distributed throughout the world, especially in temperate and subtropical parts of the
northern hemisphere [13]. The genus is morphologically complex and characterised by
great variability between and within the species. After the last available revision by
Bolli [14], the number of recognised species was reduced from 30 to 9. The most widespread
species in Europe, European black elderberry (Sambucus nigra subsp. nigra), was recognised
as separate species with five subspecies, including the most widespread species in the
United States, the American black elderberry (S. nigra subsp. canadensis). According to
the available literature, the inflorescences and fruits of these two subspecies have been
studied most frequently. In general, the chemical composition of elderberries varies among
species and depends on environmental conditions and maturity stage [15–21]. However,
they are known for their high content of some organic compounds (e.g., sugars, organic
acids, ascorbic acid, phenolic compounds) [6,22–33] that could improve the nutritional
value and organoleptic properties of the food. According to data from SPINScan Natural
and Information Resources Inc., published by Cavaliere et al. [34], elderberry supplements
ranked 8th (over $6.8 million) among the top 20 best-selling botanical dietary supplements
in the United States. They increased nearly 50% in 2009 compared to 2008 in the health
and natural food channels, including grocery stores, drugstores and mass market retailers,
convenience stores, media and network sales and health professionals. Considering only
grocery stores, drugstores and mass market retailers, the sales of elderberry supplements
also remained relatively stable in 2009 compared to 2008. Increasing consumer awareness
of their own health has sparked the interest in elderberry fruits, not only because of
their favourable chemical composition but also due to their health benefits, including
antibacterial, anti-inflammatory, antidiabetic, protective and antioxidant properties [35].

Various analytical assays are used to evaluate antioxidant activity (AOA). Those
based on gas and liquid chromatography, electrochemistry (cyclic voltammetry, amper-
ometry, biamperometry) and spectrometry (DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS
(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric reducing antioxidant
power), PFRAP (potassium ferricyanide reducing power), CUPRAC (cupric reducing an-
tioxidant capacity), ORAC (oxygen radical absorption capacity), HORAC (hydroxyl radical
antioxidant capacity), TRAP (total radical trapping antioxidant potential), fluorimetry)
are well known [2]. Most spectroscopic techniques are based on colour change, some on
measurement of fluorescein fluorescence loos, while others quench chemiluminescence
or detect excitation of fluorescence. FRAP assay is based on the ability of antioxidants to
reduce Fe3+ to the intensely blue coloured iron and TPTZ complex [Fe2+-(TPTZ)2]2+. On
the other hand, ABTS radical scavenging test and DPPH radical scavenging test are charac-
terised by discoloration in the presence of antioxidants. After the reaction of ammonium
persulfate, ABTS is converted to its radical cation, ABTS•+, which turns from dark to light
green colour when antioxidants are added. On the other hand, the DPPH radical turns
from dark purple to yellowish in the presence of antioxidants. ORAC assay is based on
the measurement of antioxidant scavenging activity against peroxyl radical induced by
2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) at 37 ◦C. The spectroscopic
techniques mentioned above are generally not directly comparable. They are characterised
by different reaction media, sensitivity and working mechanisms (electron transfer or
hydrogen atom transfer). In addition, radicals have different antioxidant potentials when
reacting with phenolic compounds, they may dissolve differently, and they may have
different affinities for other compounds present in the samples. The methods also differ
in their endpoint, quantification method and the possibility of measuring both lipophilic
and hydrophilic antioxidants [36,37]. However, according to many authors [38–41], ABTS,
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FRAP, DPPH and ORAC assays show similar trends and are significantly correlated with
each other.

The AOA in fruit extracts of the most commonly used Sambucus species, S. nigra subsp.
nigra [22,25,26] and S. nigra subsp. canadensis [29,30] has been studied previously. However,
little is known about the antioxidant activity of maturing elderberry fruits [15,16] and
even less about the antioxidant activity of fruits of elderberry interspecific hybrids [42].
Therefore, the purpose of the present study was to compare different assays (ABTS, DPPH,
FRAP and ORAC) for estimating antioxidant activities in the extracts of maturing fruits of
elderberry interspecific hybrids. The aim of this study was also to determine the superior
genotypes in AOA and to investigate whether the most promising genetic combinations in
terms of AOA, total phenolic and ascorbic content could be predicted in advance.

2. Materials and Methods
2.1. Plant Material

Twenty elderberry bushes from the Plant Gene Bank of the University of Maribor,
Faculty of Agriculture and Life Sciences in Hoče near Maribor, Slovenia, were included
in the present study. The plant material included the species Sambucus nigra (NI) and
fourteen elderberry interspecific hybrids involving S. javanica (JA), S. nigra (NI), S. nigra
‘Black Beauty’ (BB), S. cerulea (CER) and S. racemosa (RAC). Some of them were represented
by several bushes. The names S. nigra, S. cerulea and S. racemosa correspond to the names
S. nigra subsp. nigra, S. nigra subsp. cerulea and S. racemosa subsp. racemosa respectively,
according to the revised classification of Bolli [14]. S. nigra subsp. nigra also includes
the cultivated variety named ‘Black Beauty’ (BB) (characterised by purple leaves and
inflorescences). S. racemosa is represented by subsp. racemosa in the narrow sense (a
local, wildly grown genotype (RAC), S. racemosa subsp. racemosa var. miquelii (MIQ), S.
racemosa subsp. tigranii (TIG) and the taxon coreana (KOR) belonging to S. racemosa subsp.
kamtschatica. C1 means the first clonal generation (plants developed by cuttings taken on
the plant originated from seed).

Elderberries were collected in 2017 (between 7 September and 15 October) from three-
to four-year-old bushes containing berries at different stages of maturity. The maturity
stages were defined according to the fruit exterior colour and the percentage of fully
coloured berries on the infructescence. Infructescences were classified into five groups
(Figure 1): UR (containing unripe, green coloured berries that reached their final size);
EM (containing berries at early stage of maturity—the exterior of approximately 30% of
the berries exhibited the final (in most cases dark purple) colour); AM (containing almost
mature berries—the exterior of approximately 70% of berries exhibited the final colour);
FM (containing fully mature berries—the exterior of all berries exhibited the final colour
(optimal maturity for harvest)); OM (containing overmature berries—the majority of berries
were shrivelled due to the loss of moisture).

Immediately after harvest, infructescences were frozen in liquid nitrogen and the fruit
stalks were removed. Approximately 100 g of berries were freeze-dried using Christ Alpha
1–2 LD (Vacuumbrand GMBH, Germany) freeze dryer, crushed into a fine powder, vacuum
packed and stored at −80 ◦C until analysis.
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FRAP (ferric reducing antioxidant power) and ORAC (oxygen radical absorption capacity) assays, respectively. Different 
letters (a, b, c, or d) above the bars of the same assay indicate significant differences between maturity stages (Tukey, p ≤ 
0.05). Maturity stages of infructescences were defined as UR (containing unripe green coloured berries that reached final 
size); EM (containing berries at early stage of maturity—the exterior of approximately 30% of berries exhibited the final 
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Figure 1. Means and standard errors of means for antioxidant activity of maturing fruits of elderberry interspecific hybrids
determined by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP
(ferric reducing antioxidant power) and ORAC (oxygen radical absorption capacity) assays, respectively. Different letters
(a, b, c, or d) above the bars of the same assay indicate significant differences between maturity stages (Tukey, p ≤ 0.05).
Maturity stages of infructescences were defined as UR (containing unripe green coloured berries that reached final size); EM
(containing berries at early stage of maturity—the exterior of approximately 30% of berries exhibited the final colour); AM
(containing almost mature berries—the exterior of approximately 70% of berries exhibited the final colour); FM (containing
fully mature berries); OM (containing overmature berries).

2.2. Chemicals and Reagents

The following chemicals (Sigma-Aldrich, St. Louis, Missouri, USA) were used
for antioxidant activity assays: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
(ABTS), potassium persulfate (K2O8S2), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,4,6-Tris(2-
pyridyl)-s-triazine (TPTZ), iron(III) chloride hexahydrate (FeCl3·6H2O), sodium acetate
(CH3COONa·3H2O), acetic acid, sodium fluorescein salt, 2,2′-azobis(2-amindinopropane)
dihydrochloride (AAPH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox®),
Na2HPO4, NaH2PO4, hydrochloric acid and methanol.

2.3. Extraction

The extraction procedure was performed as described by Ochmian et al. [24], with
slight modifications. To 0.40 g of sample, 4 mL of an extraction solution consisting of
methanol: water: acetic acid (80:20:0.1, v/v/v) was added. The suspension was sonicated
for 15 min and centrifuged at 7500 rpm. The extraction procedure was repeated twice, and
the combined supernatants were diluted in a 10 mL volumetric flask.

2.4. Determination of Antioxidant Activity

The ABTS assay was performed according to the method of Mikulic-Petkovsek et al. [42]
with slight modifications. First, 1 mL of diluted ABTS•+ solution was added to 50 µL of
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diluted elderberry extract. The absorbance was measured after 6 min of incubation in the
dark at room temperature at 734 nm. The results of the assay were expressed in µmol
Trolox equvivalents per g of dry weight (µmol TE/g DW).

DPPH radical scavenging activity was determined as described by Duymus et al. [43]
with slight modifications. Diluted elderberry extracts (100 µL) were reacted with 3.9 mL
of freshly prepared methanol-DPPH solution. The mixture was incubated in the dark at
room temperature for 30 min. After the incubation period, the absorbance at 517 nm was
recorded. The inhibition percentage (IP) was calculated using the equation: IP = [(ADPPH
− Asample)/(ADPPH)] × 100. According to IP, the antioxidant activity of each sample was
calculated and expressed as µmol TE/g DW.

The FRAP assay was performed according to Granato et al. [8] with slight modifica-
tions. Three solutions (300 mM acetate buffer, 10 mM TPZT in 40 mM HCl and 20 mM
ferric chloride hexahydrate) were prepared and combined (10:1:1, v/v/v) to prepare the
FRAP reagent prior to analysis. FRAP reagent was incubated at 37 ◦C for 10 min and
added to 100 µL of each sample extract. After 30 min of incubation at 37 ◦C in the dark,
absorbance was measured at 593 nm. The results were expressed as µmol TE/g DW.

ORAC was performed according to Huang et al. [44] with slight modifications. A stock
solution of fluorescein (FLss) (1.33 × 10−3 mM) was prepared in a 75 mM phosphate buffer
and stored in the dark at 5 ◦C. Before analysis, FLss was diluted with phosphate buffer
to 8.16 × 10−5 mM fluorescein working solution (FLws). The AAPH solution (153 mM)
was prepared fresh daily in 75 mM phosphate buffer and stored in the dark in an ice
bath. Before analysis, AAPH was warmed at 37 ◦C. When using the plates, the outer wells
were not used for experimental determinations and were filled with 250 µL of water. The
inner (experimental) wells were filled with standards (25 µL of Trolox dilution), samples
(25 µL), blanks (25 µL of phosphate buffer), and controls (50 µL of phosphate buffer).
To all experimental wells, 150 µL of FLws was added. The plate was then placed in the
TECAN INFINITE M1000 PRO microplate reader and incubated for 10 min at 37 ◦C. After
incubation, 25 µL of pre-warmed AAPH was added to all wells to initiate the reaction.
Fluorescence was then monitored kinetically, with data recorded every minute for a period
of 90 min. ORAC values were calculated according to Cao et al. [45] The results were
expressed as µmol TE/g DW.

2.5. Determination of Total Phenolic Content and Total Ascorbic Acid Content

In maturing fruits of elderberry interspecific hybrids, the total phenolic content and
total ascorbic content were determined as described in the work of Imenšek et al. in
press [46]. In the present study, the obtained results were used only for the calculations
of correlations.

2.6. Statistical Analysis

Statistical analysis was conducted using the software package R (Rx64 3.2.5) and IBM
SPSS Statistics 25. Group means and standard errors of means were calculated for all
numerical variables. To determine differences in AOA determined by different assays
among five maturity stages of elderberries, we applied a linear mixed effects model, using
the lmer function in the lme4 package [47]. “Maturity stage” was defined as a fixed
factor, “plant-ID” as a random factor and time was considered as a covariate. Multiple
comparisons were tested using Tukey’s test in the emmeans package [48]. Correlations
between observed variables were estimated using Spearman’s rank correlation coefficient.
Ward’s method of hierarchical clustering was used to group genotypes into homogeneous
subgroups for similarities of the quantitative variables.

3. Results and Discussion
3.1. Antioxidant Activity during Elderberry Maturation Process

To determine the AOA of elderberry fruits at five maturity stages, ABTS, DPPH, FRAP
and ORAC assays were applied, and the results are shown in Figure 1. For all assays,



Agriculture 2021, 11, 555 6 of 13

AOA increased during maturation of elderberry fruit. The lowest average values at all
maturity stages were obtained with the DPPH assay (from 38.8 ± 5.8 in the extracts of
unripe berries to 109 ± 14 µmol TE/g DW in overmature berries), followed by ABTS (from
57.4 ± 8.8 to 137 ± 11 µmol TE/g DW) and FRAP values (from 99.1 ± 8.8 to 221 ± 24 µmol
TE/g DW). The highest values were obtained with the ORAC assay (from 279 ± 18 to
588 ± 48 µmol TE/g DW). For each assay used, unripe green (UR) elderberries and those
at early stage of maturity (EM) were characterised by significantly lower AOA compared
to berries at later maturity stages. Almost mature berries (AM) showed significantly lower
AOA compared to fully mature (FM) berries for each assay, and overmature berries (OM)
were characterised by significantly higher AOA compared to fully mature (FM) berries
according to DPPH, FRAP and ORAC assays, while ABTS assay showed no differences. A
similar increasing pattern of AOA during maturation was previously reported for cherry
fruit [49], mandarin melon berries [50], ginseng berries [51], black and red currants [52] and
blackberries [53,54]. The authors explained the increase in AOA during fruit maturation by
the concomitant increase in anthocyanins and other phenolic compounds that contribute
strongly to AOA [55]. Elderberries are known for their high content of phenolic compounds,
especially anthocyanins [56,57]. Since these compounds showed an increasing pattern
during the maturation process of elderberries [15–17,19,46], a similar pattern could be
explained for AOA.

Comparing the AOA of fully mature elderberries with some previous reports on
elderberries, our results, when expressed on fresh weight (22.6 µmol TE/g for ABTS,
16.6 µmol TE/g for DPPH, 36.9 µmol TE/g for FRAP and 100 µmol TE/g for ORAC) are in
agreement with those reported by Mikulic-Petkovsek et al. [42], Jabłonska-Rys et al. [6],
Jakobek et al. [5] for the ABTS assay, Tarko et al. [7] for the DPPH assay, Akbulut et al. [22],
Perkins-Veazie et al. [30] for the FRAP assay and Wu et al. [58] for the ORAC assay.
The conclusions of the authors were similar, describing elderberries as a raw material
with relatively high AOA that could be suitable for use in dietary supplements and the
pharmaceutical industry.

The results of the present work showed that the AOA of elderberries was found at
each maturity stage in ascending order of DPPH, ABTS, FRAP and ORAC values. The same
results have been reported for the AOA of kiwifruit [38] and some Mediterranean edible
plants [59]. Our results are also in partial agreement with those of Jimenez et al. [60] who
reported higher ORAC values compared to ABTS, DPPH and FRAP values of buriti, but
lower FRAP values compared to DPPH and ABTS values. Similar findings were reported
by Candido et al. [39] for some medicinal plants. Regarding elderberries, our results are in
agreement with those reported by Ozgen et al. [29] who found that FRAP values of fully
mature elderberries were proportionally higher than DPPH assay values. The AOA of the
samples depends not only on the composition of the extract but also on the conditions
of the assay used [61]. DPPH, ABTS and FRAP are based on SET reaction mechanisms
(Single Electron Transfer), which could help explain the similarity of their results. However,
each method only provides an estimate of AOA based on their reaction reagents and
conditions [41]. The redox potential of ABTS•+ is similar to that of Fe (III)-TPTZ, so similar
compounds react in the ABTS and FRAP assays. On the other hand, their reaction pH is
different (3.6 for FRAP and neutral for ABTS). Since lower pH causes the increase of the
redox potential and facilitates electron transfer, FRAP assay values could be higher than
ABTS assay values, although ABTS can determine the AOA of hydrophilic and lipophilic
antioxidants [62]. Differences between assays may also occur due to different times for
radical generation and reaction competition. ABTS•+ radicals require up to 16 h to be
generated, whereas DPPH• and Fe (III)-TPTZ can be generated just prior to assay. The
reaction of the ABTS assay is complete in 4–6 min, while FRAP and DPPH assay usually
require a longer time (30 min) [36]. The DPPH assay might have a lower yield compared to
the ABTS assay, probably due to the slower reaction of DPPH• with most antioxidants and
lower sensitivity [63]. Although both the ABTS and ORAC assays allow the measurement
of AOA of hydrophilic and lipophilic fractions, the ORAC assay values were expected to
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be the highest because this assay is based on the HAT (Hydrogen Atom Transfer) reaction
mechanism, which is pH and solvent independent [36] and is considered to be more
sensitive and accurate than other assays studied [39]. Even though DPPH, ABTS, FRAP
and ORAC assays have different reaction mechanisms and do not necessarily measure the
same activity [36], they clearly showed that the examined fruits of elderberry interspecific
hybrids possess variable but considerable antioxidant activities.

3.2. Correlations of AOA Based on Different Assays with Total Phenolic (TP) Content and Total
Ascorbic Acid (TAA) Content

Correlations between DPPH, ABTS, FRAP and ORAC assays were calculated for
unripe (UR) and fully mature (FM) elderberries to determine if the assays used provide
comparable results for AOA in elderberry fruits. Correlations between AOA, the total
phenolic (TP) content and total ascorbic acid (TAA) content were also reported for both
maturity stages. The results showed that for UR berries the correlations between DPPH,
ABTS, FRAP and ORAC were significant and positive (Table 1). On the other hand, only
AOA determined by FRAP assay was significantly correlated with TP content in the extracts
of UR berries (correlation coefficient 0.734), and AOA determined by ABTS assay was
significantly correlated with TAA content. The results were slightly different for FM
elderberries (Table 2). We also found significant and positive correlations between all
assays, but the correlation coefficients were generally higher than those for UR berries. For
FM berries, the results also showed that AOA determined by DPPH, ABTS, FRAP and
ORAC assays were significantly correlated with TP content (correlation coefficients 0.544,
0.641, 0.635 and 0.626, respectively), while no significant correlations were found between
TAA content and AOA determined by all assays. These results are in agreement with
some other reports. Namely, DPPH, ABTS, FRAP and ORAC assays were used for AOA
determination in the extracts of buriti fruits [39], sorghum [64], some medicinal plants [60]
and other plant extracts [61]. Studies revealed that all the assays used showed a similar
pattern and were significantly correlated with each other. In most cases, the authors also
agreed that the correlations between assays based on similar mechanisms were stronger
than those between assays based on different mechanisms.

Table 1. Spearman correlation coefficients between antioxidant activity (AOA) assays, total phenolic (TP)
content and total ascorbic acid (TAA) of unripe green (UR) fruits of elderberry interspecific hybrids.

DPPH ABTS FRAP ORAC TP

ABTS 0.633 **
FRAP 0.529 * 0.698 **
ORAC 0.524 * 0.851 ** 0.576 **

TP 0.070 0.259 0.734 ** 0.254
TAA 0.409 0.594 ** 0.352 0.286 0.183

* sig. < 0.05, ** sig. < 0.01.

Table 2. Spearman correlation coefficients between antioxidant activity (AOA) assays, total phe-
nolic (TP) content and total ascorbic acid (TAA) content of fully mature (FM) fruits of elderberry
interspecific hybrids.

DPPH ABTS FRAP ORAC TP

ABTS 0.764 **
FRAP 0.832 ** 0.885 **
ORAC 0.621 ** 0.720 ** 0.868 **

TP 0.544 * 0.641 ** 0.635 ** 0.626 **
TAA 0.385 0.214 0.348 0.377 0.023

* sig. < 0.05, ** sig. < 0.01.

For both maturity stages, UR and FM berries, the difference in the results obtained
regarding the correlations between AOA, TP and TAA could be partly explained by the
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difference in chemical composition between these maturity stages. Indeed, the UR berries
are characterised by a higher TAA [46] and a lower TP content (mainly due to the absence
of anthocyanins) [15,16] than the FM berries. Although phenolic compounds and total
ascorbic acid contribute more to antioxidant activity [65], the contribution of phenolic
compounds, especially flavonoids, to the total antioxidant activity of fruits is significantly
higher than that of total ascorbic acid, which contributes less than 15% [55,65]. Therefore, a
high TAA content (such as in UR berries) does not necessarily reflect a high AOA. On the
other hand, high/low TP content also does not always result in high/low AOA values, as
possible interactions between different types of phenolic compounds and other compounds
in fruit extract may cause the incomplete reactions of antioxidants with radicals [66]. How-
ever, this was not the case in FM berries, where similar to some other authors [39,64–66],
significant correlations between AOA assays and TP content were observed. Moreover,
our results regarding FM berries are in agreement with those reported by Ma et al. [41],
who found significant and positive correlations between TP content and DPPH, ABTS,
FRAP and ORAC antioxidant abilities but no significant correlations between AOA and
TAA content in mango fruits. Similar results (significant correlation between AOA and
TP and no significant correlation between AOA and TAA) were also obtained for some
common fruits regarding FRAP assay [67] and some tropical fruits regarding DPPH and
ORAC assay [66].

3.3. Clustering of Elderberry Interspecific Hybrids

All analysed genotypes were clustered into four groups (Figure 2). The characteristics
of each group (average AOA, TP and TAA content of fully mature berries) are shown in
Table 3. The genotypes of groups 4 and 3 were characterised with the lowest AOA and TP
contents compared to the other groups. Moreover, JA × (JA ×MIQ), (JA × NI) × RAC,
(JA×NI)× CER, JA× TIG, JA×KOR and ((JA×NI)× CER)×MIQ from group 4 showed
the lowest average AOA according to FRAP and ABTS assays and lowest TP content among
the groups. Similar but slightly better results were obtained for the genotypes JA × CER
No3 C1, (JA × CER) × (JA × NI) and S. nigra (NI) from group 3, which were found as
poorest in AOA according to DPPH and ORAC assays but dominated in TAA content
among all groups. More desirable characteristics compared to the previously mentioned
genotypes in terms of AOA and TP were obtained for JA ×NI, JA × (JA×NI), (JA ×NI) ×
NI and ((JA × NI) ×MIQ) × (CER × NI) from group 1. These genotypes had higher AOA
according to DPPH, FRAP and ORAC assay and higher average TP content. However, the
genotypes (JA × NI) × BB and (JA × NI) ×MIQ from group 2 were found to be superior
in terms of AOA as per DPPH, FRAP and ORAC assay and TP content but showed a lower
average TAA content than the genotypes from group 3 and 4. Nowadays, since there is
a great demand for raw materials with high AOA and TP content, the genotypes from
groups 1 and 2 could be recommended for further inclusion in breeding processes or use in
the food industry. Due to the high TAA content, the genotypes from group 3 may also be
useful in breeding programme.
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Figure 2. Dendrogram of fully mature berries of the 20 elderberry interspecific hybrids studied, obtained by Ward’s method.
Abbreviations correspond to S. nigra subsp. nigra (NI), S. nigra subsp. nigra ‘Black Beauty’ (BB), S. nigra subsp. cerulea (CER),
S. racemosa subsp. racemosa (RAC), S. racemosa subsp. coreana (KOR), S. racemosa subsp. tigranii (TIG), S. racemosa var. miquelii
(MIQ) and S. javanica (JA).

Table 3. Antioxidant activity of four groups of fully mature berries of elderberry interspecific hybrids
evaluated by different assays, total phenolic (TP) content and total ascorbic acid (TAA).

Group DPPH FRAP ORAC ABTS TP TAA

1 96 ± 14 208 ± 25 527 ± 60 130 ± 14 1130 ± 81 158 ± 59
2 100 ± 16 214 ± 33 589 ± 89 124 ±13 2801 ± 246 170 ±45
3 66 ± 21 172 ± 26 450 ± 24 106 ± 25 1762 ± 76 205 ±75
4 73 ± 19 156 ± 36 463 ± 59 98 ± 17 1361 ± 170 183 ± 125

Values are expressed as mean ± std. deviation of means in µmol TE/g for DPPH, FRAP, ABTS and ORAC, and
mg/100 g DW for total ascorbic acid (TAA) content and total phenolic (TP) content. Groups were determined by
the Ward’s method and are defined in the dendrogram (Figure 2).

To investigate whether genotypes with favourable chemical composition (AO activity,
TP content and TAA content) of fully mature (FM) berries could be predicted in advance
based of the known chemical composition of unripe (UR) berries, the correlation coeffi-
cients for above mentioned parameters between unripe (UR) and fully mature (FM) were
calculated (Table 4). The majority of correlations were not significant, the only exception
was TAA (correlation coefficient 0.827). In conclusion, the genotype with higher AO activity
and TP content in unripe berries (UR) was, in general, not characterised with higher AO
activity and TP content in fully mature (FM) berries, while the opposite results were found
for TAA content.
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Table 4. Spearman correlation coefficients for antioxidant activity assays, total phenolic (TP) content
and total ascorbic acid (TAA) content between unripe (UR) and fully mature (FM) fruits of elderberry
interspecific hybrids.

FM

UR
DPPH ABTS FRAP ORAC TP TAA

DPPH 0.384
ABTS 0.300
FRAP 0.232
ORAC −0.155

TP 0.265
TAA 0.827 **

** sig. < 0.01.

4. Conclusions

DPPH, ABTS, FRAP and ORAC assays showed different AOA levels but a similar
increasing pattern of antioxidant activity during elderberry fruit maturation. Moreover,
significant and positive correlations were observed between all the methods used for unripe
green (UR) and fully mature (FM) stage of elderberry infructescences. The results also
showed that total phenolic content strongly contributed to antioxidant activity (positive
and significant correlations), while the contribution of total ascorbic acid was lower (no
significant correlations). Based on the results, we can conclude that the antioxidant activity
of elderberries could be reliably measured using any of the four methods, however, to
obtain more comprehensive information on antioxidant properties, the use of more than
one method could be recommended.

All the assays used showed significant differences in antioxidant activity between most
important stages when planning the harvest time (almost mature (AM), fully mature (FM)
and overmature (OM) berries). Considering these results, berries could not be harvested
before reaching full maturity (e.g., at the early stage (EM) of maturity). Even though
overmature berries showed the highest antioxidant activity, harvesting at this maturity
stage could not be recommended due to the overall reduction in yield and quality.

Among the genotypes analysed, berries of (JA × NI) × BB and (JA × NI) ×MIQ were
found to be superior in antioxidant activity and total phenolic content at full maturity. The
results also showed that the most promising genetic combinations (genotypes) regarding
antioxidant activity and total phenolic content at full maturity could not be predicted in
advance based on the known chemical composition of berries at the beginning of ripening
(unripe stage). On the other hand, the results showed that interspecific hybrids with higher
total ascorbic acid content in unripe berries were, in general, characterised by a higher total
ascorbic acid content in fully mature berries.
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11. Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Anthocyanin content and antioxidant activity of various red fruit

juices. Dtsch. Lebensm.-Rundsch. 2007, 103, 58–64.
12. Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The effect of bioactive compounds on in vitro and in vivo antioxidant

activity of different berry juices. PLoS ONE 2012, 7, e47880. [CrossRef] [PubMed]
13. Atkinson, M.D.; Atkinson, E. Sambucus nigra L. J. Ecol. 2002, 90, 895–923. [CrossRef]
14. Bolli, R. Revision of the Genus Sambucus; J. Cramer: Berlin, Germany, 1994.
15. Mathieu, F.; Charlebois, D.; Charles, M.T.; Chevrier, N. Biochemical changes in American elder (Sambucus canadensis) fruits

during development. In Proceedings of the Acta Horticulturae, I International Symposium on Elderberry, Columbia, MO, USA,
9–14 June 2013; Thomas, A.L., Ed.; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2015; pp. 61–72.

16. Koss-Mikolajczyk, I.; Lewandowska, A.; Pilipczuk, T.; Kusznierewicz, B.; Bartoszek, A. Composition of bioactive secondary
metabolites and mutagenicity of Sambucus nigra L. Fruit at different stages of ripeness. Acta Aliment. 2016, 45, 442–451. [CrossRef]

17. Kaack, K.; Frette, X.C.; Christensen, L.P.; Landbo, A.K.; Meyer, A.S. Selection of elderberry (Sambucus nigra L.) genotypes best
suited for the preparation of juice. Eur. Food Res. Technol. 2008, 226, 843–855. [CrossRef]

18. Salvador, A.C.; Rudnitskaya, A.; Silvestre, A.J.D.; Rocha, S.M. Metabolomic-based strategy for fingerprinting of Sambucus nigra
L. berry volatile terpenoids and norisoprenoids: Influence of ripening and cultivar. J. Agric. Food Chem. 2016, 64, 5428–5438.
[CrossRef]

19. Szaloki-Dorko, L.; Steger-Mate, M.; Abranko, L. Evaluation of colouring ability of main European elderberry (Sambucus nigra L.)
varieties as potential resources of natural food colourants. Int. J. Food Sci. Technol. 2015, 50, 1317–1323. [CrossRef]

20. Salvador, A.C.; Rocha, S.M.; Silvestre, A.J.D. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of
ripening, cultivar and season. Ind. Crops Prod. 2015, 71, 15–23. [CrossRef]

21. Zahmanov, G.; Alipieva, K.; Simova, S.; Georgiev, M.I. Metabolic differentiations of dwarf elder by NMR-based metabolomics.
Phytochem. Lett. 2015, 11, 404–409. [CrossRef]

22. Akbulut, M.; Ercisli, S.; Tosun, M. Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.)
genotypes. Pharmacogn. Mag. 2009, 5, 320–323.

23. Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, antho-
cyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [CrossRef]

24. Ochmian, I.; Oszmianski, J.; Skupien, K. Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot.
Food Qual. 2009, 83, 64–69.

25. Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxi-
dant properties of extracts). LWT Food Sci. Technol. 2006, 39, 308–315. [CrossRef]

26. Anton, A.M.; Pintea, A.M.; Rugina, D.O.; Sconta, Z.M.; Hanganu, D.; Vlase, L.; Benedec, D. Preliminary studies on the chemical
characterization and antioxidant capacity of polyphenols from Sambucus sp. Dig. J. Nanomater. Biostructures 2013, 8, 973–980.

27. Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols.
Ind. Crops Prod. 2017, 95, 227–234. [CrossRef]

28. Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambuclus canadensis) and European elderberry
(S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [CrossRef] [PubMed]

29. Ozgen, M.; Scheerens, J.C.; Reese, R.N.; Miller, R.A. Total phenolic, anthocyanin contents and antioxidant capacity of selected
elderberry (Sambucus canadensis L.) accessions. Pharmacogn. Mag. 2010, 6, 198–203. [CrossRef] [PubMed]

http://doi.org/10.4103/0973-7847.70902
http://doi.org/10.4172/2161-1009.1000106
http://doi.org/10.1093/ajcn/84.1.95
http://doi.org/10.1002/jsfa.6910
http://doi.org/10.1007/s00217-004-0940-3
http://doi.org/10.1002/jsfa.8089
http://www.ncbi.nlm.nih.gov/pubmed/27739084
http://doi.org/10.1371/journal.pone.0047880
http://www.ncbi.nlm.nih.gov/pubmed/23110118
http://doi.org/10.1046/j.1365-2745.2002.00698.x
http://doi.org/10.1556/066.2016.45.3.16
http://doi.org/10.1007/s00217-007-0605-0
http://doi.org/10.1021/acs.jafc.6b00984
http://doi.org/10.1111/ijfs.12773
http://doi.org/10.1016/j.indcrop.2015.03.082
http://doi.org/10.1016/j.phytol.2014.11.021
http://doi.org/10.1016/j.foodchem.2008.09.080
http://doi.org/10.1016/j.lwt.2005.01.005
http://doi.org/10.1016/j.indcrop.2016.10.018
http://doi.org/10.1002/jsfa.3029
http://www.ncbi.nlm.nih.gov/pubmed/20836175
http://doi.org/10.4103/0973-1296.66936
http://www.ncbi.nlm.nih.gov/pubmed/20931079


Agriculture 2021, 11, 555 12 of 13

30. Perkins-Veazie, P.; Thomas, A.L.; Byers, P.L.; Finn, C.E. Fruit composition of elderberry (Sambucus spp.) genotypes grown in
oregon and missouri, USA. In Proceedings of the Acta Horticulturae, I International Symposium on Elderberry, Columbia, MO,
USA, 9–14 June 2015; Thomas, A.L., Ed.; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2015; pp. 219–224.

31. Mudge, E.; Applequist, W.L.; Finley, J.; Lister, P.; Townesmith, A.K.; Walker, K.M.; Brown, P.N. Variation of select flavonols and
chlorogenic acid content of elderberry collected throughout the Eastern United States. J. Food Compos. Anal. 2016, 47, 52–59.
[CrossRef]

32. Dudonne, S.; Dube, P.; Anhe, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive
analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compos. Anal. 2015, 44,
214–224. [CrossRef]
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