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Abstract: The traditional approach to modeling productive efficiency assumes that technology is
constant across the sample. However, farms in different regions may face different production oppor-
tunities, and the technologies they employ may differ due to environmental factors. Therefore, rather
than using a traditional stochastic frontier model in such cases, a stochastic meta-frontier (SMF) anal-
ysis is recommended to account for environmental factors between regions. It follows that differences
in environmental factors between the upland and lowland regions in Anambra State, Nigeria, may
result in farmers producing rice under different production and environmental conditions. Using
the SMF model, this study, for the first time, determines technical efficiency (TE) and technological
gap ratios (TGRs) of rice production from the upland and lowland regions in the Awka North Local
Government Area of Anambra State, Nigeria. Our data are from a cross-section sample of randomly
selected rice farmers. Results reveal that lowland regional rice producers are on average, significantly
more technically efficient (91.7%) than their upland counterparts (84.2%). Additionally, mean TGRs
associated with lowland rice farmers are higher (92.1%) than their corresponding upland producers
(84.7%). While the upland rice producers are less technically efficient and further away from their
full potential, results indicate that both sets of farmers do not use advanced technologies to match
the industry’s potential. We suggest that agricultural policy should focus on providing regionally
specific technologies, such as improved rice varieties that fit the working environment of the lagging
area, to help rice farmers improve their resource efficiency and minimize technological gaps.

Keywords: efficiency measurement; stochastic meta-frontier; rice

1. Introduction

Agriculture continues to be the key to economic development for many countries [1–5].
In Nigeria, Ike and Ugwumba [6], Egbetokun et al. [7], and Obianefo et al. [8] contend
that no less than 70% of Nigerians earn their living from the agricultural sector. Moreover,
the agricultural sector in Nigeria is subdivided into four important sub-sectors which
include crop production, fisheries, aquaculture, and forestry. Rice production is notably an
important part of the crop production sub-sector [9]. The case of rice production in Nigeria
is similar to other countries in Asia [10] and Africa [11,12] where rice production continues
to play an important role in their economic development process as a staple food for most
farm families [13]. Therefore, the provision of sufficient rice quantities and affordable
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rice prices are some of the top priorities of Nigeria’s national development plan. At the
time of this study, Nigeria has made efforts to attain self-sufficiency in rice production
through banning rice importation to encourage local production and consumption with
the immediate effect of raising the local rice price. Following Obianefo et al. [8] and the
World Bank [14], Nigeria has four ecologies (rainfed upland, shallow swamp and inland
valley swamp, irrigated lowland, and mangrove or tidal swamp) where rice has been found
to thrive very well. However, Nigeria’s agricultural sector is dominated by smallholder
farmers that often contribute to its stagnation [15].

A large number of smallholder farmers in Nigeria’s rice production continuously
threatens food security, self-sufficiency in food production, and supply. This is because
smallholder farmers are resource-poor and often face the following challenges: the high
cost of inputs, the lack of agrochemicals for pests and diseases, the high cost of labor, and
limited access to irrigation facilities for year-round farming [16]. The Federal Ministry of
Agriculture and Rural Development (FMARD) and the International Fund for Agricultural
Development (IFAD) reiterate that rice production by smallholder farmers is challenged by
inefficiency in resource allocation, low productivity, poor access to improved varieties, and
a heavy reliance on traditional technology, among others [17].

Therefore, to match rice demand with its supply in Nigeria, there is a need to build
farmer’s capacity in a way to not only produce rice in the upland system but also ensure
they equally undertake irrigated (lowland) rice farming while adopting improved tech-
nology [18]. Rohmad and Praptiningsih [19] and Willybrordus [20] considered upland
rice farming as rice production on dry-land that depends on rainfall for water supply or
water supply through irrigation, and that the yield of upland rice farming is still low across
many countries. Yurkushi [21] contended that upland rice in Nigeria is the second most
important rice production system and that it depends heavily on the amount of rainfall.
Continuous heavy downpours lead to nutrient loss through leaching, soil erosion, and
flooding. On the other hand, lowland rice is the most prominent rice ecological system in
Nigeria covering about 53% of the rice area [21]. The two types of lowland crop-related
technologies are shallow fadama and deep fadama. Fadama generally refers to the land that
is capable of being irrigated; the distinguishing feature from upland is that the soil is
completely covered with water at some stage or rice growth cycle.

These differences in environmental factors between the upland and lowland suggest
that with other factors held constant, rice farmers across the two agro-ecological regions
may produce rice under different production and environmental conditions. Following
Ng’ombe [22], such differences in regional endowments of resources have the potential to
inhibit (motivate) farmers in either region from (to) selecting the best technology from an
array of potential technologies. These differences would result in technology gap ratios
(TGRs) that may help policymakers to realize which agro-ecological regions need their
urgent involvement in improving productivity and technical efficiency (TE). Considering
this important issue, the objective of this study is to determine the TE of rice production
in the Awka North Local Government Area of Anambra State, Nigeria. We do so by
identifying regional-specific frontiers and the rice industry frontier in the study area. We
further decompose production efficiency scores into meta-technical efficiency (MTE) and
TGRs to unearth how far rice-producing farm households’ productions functions are
from the stochastic meta-frontier. Additionally, we identify the determinants of technical
inefficiency of the rice industry in the area. We do so by using stochastic meta-frontier
(SMF) techniques and data sampled from the two areas with distinct environmental factors
in Anambra State, Nigeria.

Previous studies have closely determined the production performance of rice pro-
ducers in Nigeria, other countries in sub-Saharan Africa (SSA), and other world regions.
For example, a descriptive study by Umar et al. [18] examined how entrepreneurship and
innovation by farmers improve lowland rice farming in Mattiro Ade, Patampanua Dis-
trict, Pinrang Regency, and South Sulawesi Province. Another study by Mariko et al. [23]
compared the TE of a system of rice intensification (SRI) and conventional rice production
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system (CRPS) in Mali by applying SMF techniques. Mariko et al. [23] found that mean TE
was 0.96 and 0.79 for SRI and CRPS, respectively, while the mean TGR was 0.98 and 0.91
for SRI and CRPS, respectively, with industrial TE averaging 0.858. Their study further
found that labor, farm size, and fertilizer are the significant variables to the meta-frontier,
while determinants of technical inefficiency were gender, age, level of education, and
farming experience.

Moreover, Obianefo et al. [9] investigated the technical efficiency of rice farmers
in the Anambra State value chain development program and found that farmers were
operating around 15% below their optimum potentials. In their study, seed, agrochemical,
farm size, labor, and capital input were statistically significant to the production frontier.
In the same vein, it was gathered that the variables of inefficiency were gender and
farming experience. A study by Ng’ombe [22] on the technical efficiency of smallholder
maize production in Zambia used stochastic meta-frontier techniques and established that
the socioeconomic variables that influenced technical inefficiency were gender, farming
experience, and contact with extension agents, among others. Ng’ombe [22] further found
that several regions in Zambia were not at par in terms of technical efficiency as well as
TGRs. These significant differences were a result of environmental factors that characterize
Zambia’s provinces.

This study contributes to agricultural productivity literature by being the first to use
stochastic meta-frontier techniques to determine the technical efficiency of rice production
in Nigeria’s upland and lowland farming platforms to account for their subtle environ-
mental heterogeneity. Doing so delivers more credible results for agricultural policy for
rice production than from a pooled sample as most previous studies have done [24]. We
hypothesize that rice productive efficiency between the lowland and upland regions in
Anambra, Nigeria is different because of the prevailing varying environments. Therefore,
this study’s results may help design policy directed towards increasing rice productivity
to curb the ever-rising poverty levels and stagnation in rice productivity among small-
holder farmers in Anambra State, similar agro-ecological regions in Nigeria, and other
developing countries.

Subsequent sections of the article are organized as follows: The next section presents
materials and methods, Section 3 presents empirical results and discussion, and
Section 4 concludes.

2. Materials and Methods
2.1. Data

This study was carried out in the Awka North Local Government Area (LGA) of
Anambra State, Nigeria. The LGA headquarters is at Achalla and lies in the latitude
of 6.34◦ E and longitude 6.99◦ N. The 10 communities in Awka North LGA are Awba
Ofemili, Amunuke, Isuaniocha, Amansea, Ebenebe, Uzum, Ugbene, Achala, Mgbakwu,
and Ugbenu. Farming is their main occupation, and their major crops are cassava, rice,
maize, and yam. A multi-stage sampling technique was used to collect data from a sample
of 100 rice farmers comprising 70 upland and 30 lowland rice farmers. In stage one: four
communities (Achala, Awba-Ofemili, Amanuke, and Ugbenu) were purposively selected
because of their high likelihood of producing rice. In stage two, five villages were randomly
selected from each community to make it twenty villages. Furthermore, five rice farmers
were randomly selected from each village to make it a total of 100 respondents using
structured questionnaires.

Table 1 presents descriptive statistics of rice farmers (which are the decision-making
units) in the study regions. The average rice output for upland was 9155.71 kg (9.16 tons)
with a standard deviation (SD) of 4687.75, which is high enough to show variability in rice
production in the region. Among the farm inputs utilized from the upland region, fertilizer
has the highest mean value (638.67 kg) followed by labor (235.12 man-days), seed (104 kg),
land (2.05 ha), and agrochemicals (16.47 L). The SD for land (0.98) was quite low, which
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implies that land variability within our sample was marginal. It is equally important to
note that the average farm size for upland rice production was consistent with [18].

Table 1. Descriptive statistics of farmers.

Variable
Upland (n = 70) Lowland (n = 30) Pooled (n = 100)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Rice yield (kg) 9155.714 4687.75 5893.33 3620.48 8172 4631.72
Fertilizer (kg) 638.6714 279.16 328.57 205.23 545.64 295.03

Seed (kg) 104 46.08 53.2 27.32 88.76 47.39
Agro-chemicals (liter) 16.47 7.41 8.8 5.48 14.17 7.72

Labor (man-day) 235.12 105.66 131.87 81.85 204.14 109.57
Land (Ha) 2.05 0.98 1.27 0.72 1.72 0.99
Age (year) 41.93 11.52 43.2 11.19 42.65 11.22

Household size (No) 8.87 3.34 8.7 3.13 8.87 3.24
Farming experience (year) 11.26 3.93 14.67 5.53 12.33 4.67
Level of education (year) 11.64 4.17 10.87 5 11.43 4.44
Contact with extension

agent (No) 2.14 0.95 2.63 1.18 2.31 1.06

Rainfall level () 3.663 0.302 3.639 0.313 3.656 0.304
Gender: (equals 1 if male,

0 otherwise) 38.6% 30.0% 35.0%

Female 61.4% 70.0% 65%

Regarding the socioeconomic characteristics of the upland rice region, farmers re-
ported an average age and farming experience of 41.93 years and 11.26 years, respectively,
which were similar to the sample in Umar et al. [18] and Obianefo et al. [9]. These statistics
imply that rice farmers from our study are still in their productive age and are better
experienced to handle farming challenges with vigor, which would help them in adopting
new technologies including those that may require more labor. On average, household size
is 9 people, level of education is 11.64 years, and contacts with extension agents are 2.14
times annually. The majority of rice farmers in our sample indicated that they are female.

In terms of rice yield, lowland rice producers had an average output of 5,893.33 kg
(5.89 tons). Descriptively, average fertilizer, seed, agrochemical, labor, land inputs were
328.57 kg, 53 kg, 8.8 L, 131.87 man-days, and 1.27 ha, respectively. Regarding demographics,
average age, household size, farming experience, level of education, and contact with the
extension agents were 43.2 years, 8.7 people, 14.67 years, 10.87 years, and 2.63 times
annually, respectively. The sector is female-dominated as well. Descriptive statistics for the
whole sample are relatively close to those for the two agro-ecological regions.

2.2. Analytical Framework

Efficiency measurement is important due to its direct effect on productivity and
economic growth. Efficiency measurement may help farmers to be aware of how they
would have to raise their productivity to improve returns [25]. Measurement of firm-
specific efficiency through frontier techniques has been severally studied. Frontier analysis
sets a maximum limit of potential output levels firms can produce [26]. Though some
firms can produce below the frontier point, there cannot be any point above the production
frontier given the available technology [27,28]. Efficiency implies that firms produce the
largest possible quantity of output from a given set of inputs. The theory of efficiency
recognizes the pioneering work of Farrell [29] who opined that the efficiency of a firm
comprises two components, technical and allocative efficiency, but that a combination of
the two components gives a measure of total economic efficiency (overall efficiency). The
firm’s technical efficiency is the ability to produce maximum output from a minimum
quantity of inputs and is either measured as input conserving oriented technical efficiency
or output expanding oriented technical efficiency, though a firm’s performance is measured
stochastically [30].



Agriculture 2021, 11, 1240 5 of 13

The stochastic production frontier was initially developed by Aigner et al. [31] and
has underpinned most applied for farm productivity performance work (e.g., [32–39]). The
specification of the stochastic frontier production function allows for the decomposition
of the error term into a nonnegative random variable (Ui), associated with the technical
inefficiency of the ith farm, as well as the Gaussian error term (Vi), which represents
random variation in output due to factors beyond farmers’ control, such as variation in
weather patterns, measurement error, or any unspecified input variable. More details of
the stochastic frontier approach can be found in Aigner et al. [31] and we do not dwell
much on it as our focus is the stochastic meta-frontier (SMF) paradigm discussed in the
next section.

2.3. Stochastic Meta-Frontier Analysis

This study uses Huang et al.’s [40] stochastic meta-frontier model applied in Ng’ombe
[22] and Mariko et al. [23] to estimate the optimal output potentials of the rice farming
industry in Awka North of Anambra State, Nigeria. The meta-frontier is used to investigate
the TE of rice producers facing different production functions in the study area. We equally
used a two-step procedure which is what differentiates Huang et al’s [40] approach from
the classical meta-frontier proposed by Battese et al. [41] and O’Donnell et al. [42].

The first step implies estimating group-specific frontiers, while the second step in-
volves estimating the stochastic meta-frontier production function [22,40]. If the rice
industry has j production groups, the stochastic function for the farm or decision-making
units is defined by

Yji = f j
(

X1i, X2i, . . . XMi; βj
)

eVji−Uji (1)

j = 1, 2, . . . , J; i = 1, 2, . . . , Mj
where Yji is the observed output of the ith farmer in the jth group, Xmi is the mth input
quantity used, and βj represents the vector of input parameters for the jth group. The
production function (fj) is superscripted as j to indicate that the individual group-specific
frontier can vary across groups in a cross-sectional setup. Group refers to the two agro-
ecological regions (i.e., lowland and upland) considered in the present study. Based
on the stochastic frontier model, the Vji is the random error term, denoting statistical
noise, and Uji represents technical inefficiency. Vji is assumed to be independent and
identically distributed as N(0, σv

j2); Uji is assumed to be Uji~N+(
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ⱱ j(Zji), σj2), where Zji
represents farmer-specific or group-specific variables [22,43]. Taking logs of both sides
of Equation (1), the maximum likelihood estimation (MLE) can be used to estimate the
resulting transformed regression model. A farmer’s technical efficiency (TE) is defined by

TEj
i =

Yji

f j
(
Xji

)
eVji = e−Uji (2)

where Xji is the input vector of the ith farmer in the jth group and the other variables
remain as previously defined. Because it dominates most productivity analysis literature,
we assume that Uji follows a half-Gaussian distribution. This entails that farm-specific
efficiency is given as 1–TE value [44].

According to Huang et al. [40], the meta-frontier production function that takes into
consideration all groups in period t is defined by

f M(
Xji

)
, j = 1, 2, . . . , J (3)

The meta-frontier f M(
Xji

)
envelops the individual group’s frontier f j(Xji

)
. The

relationship between the individual group frontier and the meta-frontier is defined in
Equation (4) as

f j(Xji
)
= f M(

Xji
)
e−UM

ji , ∀j, i (4)
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where UM
ji ≥ 0 means that f M ≥ f j. Additionally, Huang et al. [41] note that the TGR is the

ratio of the jth group’s production frontier to the meta-frontier and is defined by

TGRj
i =

f j(Xji)
f M(Xji)

= e−UM
ji ≤ 1 (5)

where TGRj
i is the gap between the production technology adopted by the rice farmers and

the technology available in the rice industry. A higher TGR implies that the gap is closing.
According to Ng’ombe [22], a ratio of less than one means that the farmers failed to adopt
the most advanced technology, which could be due to some economic or environmental
conditions. Accessibility and level of adoption of the available meta-frontier production
technology could also affect the value [23,41].

Huang et al. [41] contend that at a particular input level (Xji), farmers observe the
output level (Yji) relative to the meta-frontier f M(

Xji
)

consisting of three components.
These are the TGR, the farm’s TE, and the random noise as defined by

Yjit

f M
(
Xjit

) = TGRj
i ∗ TEj

i ∗ eVji (6)

Though, TGRj
i ≤ 1 and TEj

i ≤ 1 are bounded, the meta-frontier f M(
Xji

)
does not

necessarily envelop all the farm’s observed outputs (Yji) due to the random noise (eVji ).

The TGRj
i is equally important to explain the ability of the individual farms in the upland

agro-ecological region to compete with other farms in the lowland region. In addition,
it corrects the TEj

i scores of the farmers that apply different technologies to make them
comparable using the distance between the technology (upland and lowland) and the
leading frontier. To account for the random noise, Huang et al. [40] rewrite Equation (5) as

MTEji ≡
f j(Xji

)
f M

(
Xji

) = TGRj
i ∗ TEj

i (7)

where MTEji represents the farm’s technical efficiency concerning the meta-frontier pro-

duction technology f M(
Xji

)
, as opposed to the farm’s technical efficiency (TEj

i ) regarding
group j’s production technology f j(Xji

)
.

2.4. Empirical Model Specification

For the sake of brevity and to avoid loss of the degrees of freedom due to our relatively
smaller sample size, we adopted the Cobb-Douglas (CD) functional form in all of our
estimations. Battese and Broca [45] recommend the Cobb-Douglas functional form to be a
more general specification of a non-neutral stochastic production frontier model. As Lee
and Tyler [46] put it, the Cobb-Douglas functional form is the basic foundation upon which
Aigner et al.’s [31] stochastic frontier modeling is founded and remains an appropriate
functional form for efficiency analysis. Our general empirical model is

LnYi = Lnβ0 +
5

∑
j=1

β jLnXji + (Vi −Ui) (8)

where Ln is the log, Yi is the level of output (kg), X1 is fertilizer (kg), X2 is the amount
of seed (kg), X3 represents agrochemicals (liters), X4 is labor (man-days), and X5 is land
(hectares). The variable Vi is the random error term, Ui~ N+(
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3. Results and Discussion
3.1. Hypothesis Tests

Employing the SMF is appropriate only if a statistical test confirms differences in the
underlying technologies between the groups in each industry of interest [40,42]. Using
MLE, the value of the log-likelihood function for the stochastic frontier was estimated by
pooling data for both zones. Next, the sum of the values of the log-likelihood functions
from the individual regional production frontiers was computed to verify if the two agro-
ecological regions used different technologies using the likelihood ratio test (LRT). The rule
is that if the null hypothesis of similar technologies across the two regions is rejected, it
becomes appropriate to adopt meta-frontier techniques to estimate TE [22,42,47,48]. The
LRT statistic was computed as: λ = −2[ln(L(Ho)) − (ln(L(H1))], where ln(L(Ho)) was the
value of the log-likelihood function for stochastic frontiers estimated by pooling data for
all regions and ln(L(H1)) was the value of the sum of the log-likelihood values for the two
regional production frontiers. The degrees of freedom for the chi-square distribution was
six, calculated as the difference between the number of parameters estimated under H1
and Ho. The LRT statistic was 45.581, which was greater than the critical value (12.592) at a
5% significance level. Thus, we rejected the null hypothesis of homogenous technology
between the two agro-ecological regions. This meant that the two regional stochastic
frontiers for rice production in Nigeria’s Anambra State are different, a result which
justified the use of the meta-frontier techniques. We then tested whether estimating
a production function without modeling inefficiency was appropriate. We did so by
estimating a production function without the inefficiency term and another with the
efficiency term. A computed LRT value of 45.58 (p < 0.001) was obtained which resulted
in the rejection of the null hypothesis of no presence of inefficiency in the Anambra state.
Estimation of all the models was done in Stata [49,50].

3.2. Estimation of Parameter Estimates of Regional Stochastic Frontiers

Table 2 shows parameter estimates of the production stochastic frontiers for the two
agro-ecological regions (upland and lowland). The lower rows of Table 2 show model
statistics. The gamma values of 0.719 and 0.163 are for the upland and lowland regions,
respectively. These statistics mean that 71.9% and 16.3% deviation from frontier output was
coming from the group-specific variables, with the remaining 28.1% and 83.7% emanating
from the disturbances, respectively.

Table 2. Parameter Estimates for Regional-Specific Stochastic Frontiers.

Variables
Upland Region Lowland Region

Estimate Std. Error Estimate Std. Error

Log-Fertilizer 0.423 *** 0.137 0.248 * 0.132
Log-Seed −0.031 0.110 0.068 0.165

Log-Agrochemicals 0.068 0.073 0.464 ** 0.166
Log-Labor 0.471 *** 0.120 −0.063 0.120
Log-Land 0.044 0.073 0.201 0.148
Constant 3.882 *** 0.489 6.340 *** 0.825

Region-specific Variables
Age −0.020 0.04 −0.042 0.127

Gender −0.534 0.7 −4.471 7.704
Household size −0.007 0.11 0.007 0.591

Farming experience −0.248 ** 0.13 0.066 0.181
Education −0.126 0.14 −0.040 0.241

Extension contacts −2.219 1.45 −0.825 1.048
Constant 5.556 4.56 −1.105 6.310

Model statistics
Log-likelihood 23.927 7.578

Sigma 0.035 0.039
Gamma 0.719 0.163

Notes: Asterisks denote significance at the following levels: *** = 1%, ** = 5%, * = 10%.
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For the upland region, results show that fertilizer and labor are the productive re-
sources that significantly influence rice production. The coefficient of the log of fertilizer is
positive and statistically significant at a 1% significance level. This finding implies that a
1% increase in fertilizer applied to rice plots is associated with an increase in rice output
in the upland region by 42.3%, ceteris paribus. In terms of the log of labor, its positive
and statistically significant coefficient implies that a 1% increase in man-days allocated
to rice plots would increase rice output by 47.1%, with other factors held constant. These
findings are consistent with [9] and [23] and suggest that rice farming in the upland re-
gion is fertilizer- and labor-dependent relative to other inputs. Therefore, there is a need
for farmers to be encouraged to apply fertilizer and labor to rice fields in a way that is
environmentally sustainable.

Regarding results for the lowland region, we find that fertilizer and agrochemicals
significantly influence rice production in the region. The coefficient of log of fertilizer is
positive and statistically significant at a 10% significance level, suggesting that a percent
increase in fertilizer applied on a rice plot increases rice yield by 24.8%, with other factors
held constant. Furthermore, the coefficient of the input log of agrochemicals is equally
positive and statistically significant. This finding suggests that a 1% increase in the use
of agrochemical is associated with a 46.4% increase in rice output in the lowland region,
with other factors being fixed. This is plausible because the use of agrochemicals would
reduce the weeds that compete with the rice crop for soil nutrients, thereby making more
nutrients available for rice. This would likely increase rice yields, a result that is consistent
with Mariko et al. [23].

The estimates of group-specific variables are reported at the bottom of Table 2. A
group-specific variable with a positive coefficient implies that the variable has a negative
effect on technical efficiency. Contrarily, those with negative coefficients mean that the
respective variables have a positive effect on technical efficiency. A quick check on these
results indicates that farming experience positively and significantly affects technical
efficiency in the upland region. All the group-specific variables in the lowland regions
have the expected negative signs though they are not statistically significant.

3.3. Estimation of Parameters of the SMF

Parameter estimates of the SMF are presented in Table 3. We find that all inputs have
significant effects on rice production which highlights their crucial role on rice output in
Anambra state, Nigeria. The positive coefficients of the log of fertilizer suggest that ceteris
paribus, an additional percent increase in fertilizer applied to rice plots is, on average,
associated with a 28.6% increase in rice output. In terms of log of seeds, when other factors
are held constant, a 1% increase in the amount of seeds of rice planted on rice fields is
associated with a 14% increase in rice yield.

Additionally, as mentioned before, the coefficient of the variable log of agrochemicals
is positive and statistically significant at 1% and implies that an increase in the use of
agrochemicals by 1% would result in an average increase in rice yield by 21.5%, ceteris
paribus. Regarding labor, we find that an increase in man-days devoted to rice production
is associated with a 17% increase in rice yield when other factors are held constant, a result
that implies the need for farmers to dedicate themselves to rice production activities to
increase their rice yield. Furthermore, the land is an equally important resource in rice
production. An increase in hectares allocated to rice production by 1% is associated with
an average 12.9% increase in rice yield, keeping other factors constant by 1%.
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Table 3. Stochastic meta-frontier parameter.

Variable Name
Anambra State, Nigeria

Parameter Estimates Std. Error

Log-Fertilizer 0.286 *** 0.034
Log-Seed 0.140 *** 0.031

Log-Agrochemicals 0.215 *** 0.033
Log-Labor 0.170 *** 0.033
Log-Land 0.129 *** 0.026
Constant 5.204 *** 0.144

Environmental-specific variables
Rainfall dependent −1.687 1.334

Constant 0.001 4.658
Model statistics
Log-likelihood 98.398

Sigma 0.006
Gamma 0.379

Notes: Asterisks denote significance at the following levels: *** = 1%.

Under the model statistics in Table 4, we find that a gamma value of 0.379, which
implies a 37.9% deviation from the frontier output in the rice industry in Anambra state,
Nigeria, is a result of the industry-specific environmental variable: rainfall dependency.
We also computed the output elasticities and the return to scale to help identify the stages
of classical production that rice farmers are operating on to help influence policy choice.
Output elasticity was evaluated as the partial product of the first order derivation of the
estimated parameters, while the return to scale was computed as the sum of all the output
elasticities. We found output elasticity with respect to labor as the highest for the upland
region, while the one with respect to agrochemicals is the highest in the lowland region.
Output elasticity with respect to land is the highest in the whole rice industry. In terms
of returns to scale, the two regions and rice industry exhibit decreasing returns to scale
implying that farmers are producing in the second stage of classical production function
and still have the opportunity to increase their production portfolios before reaching
their full rice potential. For policy implication, farmers need to scale back their short-
term production costs to stay at the frontier line. Put differently, farmers should reduce
their average production costs by expanding their production scale, i.e., cut expenses on
inputs that do not seem to contribute significantly to production while ensuring that rice
production does not suffer.

Table 4. Estimated output elasticity and return to scale.

Output Elasticity Upland Region Lowland Region Rice Industry

Log-Fertilizer 0.423 0.248 0.247
Log-Seed −0.031 0.068 0.107

Log-Agrochemical 0.068 0.464 0.201
Log-Labor 0.471 −0.063 0.069
Log-Land 0.044 0.201 0.267

Return to scale 0.975 0.918 0.890

3.4. Estimation of the Technical Efficiency and the Technological Gap Ratios

Table 5 presents results of the estimated regional TE, meta-frontier technical efficiency
(MTE), and the TGRs. We find that mean TE scores from upland and lowland agro-
ecological regions are 0.842 and 0.917, respectively. The mean difference between these
values is statistically significant at a 10% significance level (p < 0.068). These findings imply
that rice farmers in the upland region operate at 15.8% below their optimal capacity while
those from the lowland region are operating at 8.3% below their full potential. The upland
region’s technical efficiency value is above the 0.792 found in Mariko et al. [23] that is
associated with conventional rice production system (CRPS), while the lowland region’s
value is consistent with their system of rice intensification (SRI) efficiency value of 0.964.
For farmers in the two regions to attain 100% frontier output, they would have to bridge
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the gap between their current output and the maximum potential output. This would be
plausible by addressing the determinants of inefficiency in rice production in the industry
by engaging themselves in activities that would enable them to gain some farm managerial
skills.

Table 5. Technical efficiency scores and technology gap ratios.

Mean Std. Dev. Min Max

Upland Region TE 0.842 0.144 0.455 0.975
MTE 0.994 0.005 0.964 0.998
TGR 0.847 0.146 0.460 0.984

Lowland Region
TE 0.917 0.058 0.784 0.976

MTE 0.995 0.002 0.986 0.998
TGR 0.921 0.058 0.787 0.981

Rice Industry TE 0.875 0.113 0.499 0.978
MTE 0.955 0.036 0.665 0.988
TGR 0.882 0.106 0.506 0.992

While the variable extension contact is not significantly different from zero, it has a
negative sign, something that could be significant to help improve farmers’ skills. Learning
how to cope with floods and droughts in the upland that may impact their rice production
is important for farmers that have different environmental conditions. In terms of MTE,
its mean value for the upland and lowland regions are 0.994 and 0.995, respectively. This
implies that on average, lowland region farmers are closer to the industry’s potential
than their upland counterparts; thus, upland rice farmers would have to increase their
production levels to match their lowland counterparts.

Also, the mean TGRs for upland and lowland are 0.847 and 0.921, respectively with a
mean difference being significantly different from zero at a 10% significance level (p < 0.059).
This implies that the upland and the lowland region farmers will respectively have to close
the 15.3% and 7.9% gaps to be technically efficient. As suggested by Ng’ombe [22], farmers
with TGR equal to unity adopted the most advanced technologies in the industry. Therefore,
the lowland region farmer’s frontier output is closer to being tangent to their meta-frontier
output than their upland counterpart. Thus, upland region farmers are distant to meta-
frontier than lowland region farmers. Furthermore, the rice industry’s TE and TGR are
0.875 and 0.882 respectively. This result implies that the rice industry is operating 12.5%
below the optimal capacity but needs to close the 11.8% gap to be technically efficient
before their average optimal rice output is equivalent to regional optimal production levels.

4. Conclusions

This study used stochastic meta-frontier techniques to compare the technical efficiency
(TE) and technological gap ratios (TGRs) of rice production in the Awka North Local
Government Area of Anambra State, Nigeria. Our findings revealed that lowland rice
farmers are more technically efficient and overall less distant to the meta-frontier than
upland rice farmers. This suggests that compared with their counterparts, upland rice
farmers need to improve their rice production. Our results show that as farmers from
the upland gain more experience in rice production, their TE would increase, with all
other things held fixed. In addition, an increased number of man-days allocated to rice
production by upland farmers would also result in increased rice production. This result
implies that relevant stakeholders need to promote rice farming in the upland by creating
incentives such as increased rice prices and available markets so that more farmers from the
upland would be encouraged to dedicate themselves to rice farming. As farmers from the
upland spend more time on rice farming, it would improve their farming experience which
is expected to close the TE gap with lowland as well as the overall industry. Additionally,
the increased experience would help them improve their farm managerial skills and ways
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of dealing with and mitigating production risks [47,51]. If lowland farmers are incentivized
in the same way, they would also increase their rice productivity and TE levels.

We found that for both farmers, increased fertilizer use would increase their rice
output. The same holds for the industry. However, smallholder farmers have limited
resources and the government may have to help them with subsidized fertilizer as well as
other inputs such as agrochemicals to help them expand their rice production scale. That
the respective technical efficiency scores for rice farmers from both agro-ecological regions
are still far from the stochastic meta-frontier is an indication of the need of governments
and other relevant authorities to provide necessary rice production-related information to
help reduce the gap [52–55]. Information may be provided through farmer trainings with a
focus on relevant rice technologies, especially with the technologies that fit the working
environment of the lagging area (i.e., upland). Such technologies may include improved
rice varieties, crop diversification, mixed cropping systems, and other sustainable land
management strategies [56,57] that are associated with improved rice productivity for
environments similar to lowland’s agro-ecology.

Another avenue for policymakers is to provide subsidized improved rice varieties
to both regions to help improve farmer access to such seeds. This is important because
subsidized inputs with more intensive and export-oriented farming may boost agricultural
returns [58]. We further found that rice farmers in both regions and the industry as a whole
operate in the second stage of the classical production function. This suggests that there is
a need for the farmers to reduce their short-run production costs while ensuring that the
rice production scale is maintained to optimize profit. As in every empirical work, caveats
in this study remain. Future studies should focus on employing panel data to help account
for unobserved heterogeneity to improve our results. However, this study’s results lay
a launchpad for policymakers aiming to improve productivity in Anambra State and for
future studies seeking to investigate resource efficiency in developing world countries.

Author Contributions: Conceptualization, C.A.O. and J.N.N.; Data curation, C.A.O. and J.N.N.;
Formal analysis, C.A.O., J.N.N. and A.M.; Funding acquisition, C.A.O., J.N.N., A.M., B.M., N.J.O.
and N.J.O.; Investigation, C.A.O., J.N.N., A.M., B.M., N.J.O. and O.O.A.; Methodology, C.A.O. and
J.N.N.; Project administration, C.A.O. and J.N.N.; Resources, C.A.O., J.N.N., A.M., B.M., N.J.O. and
O.O.A.; Software, C.A.O. and J.N.N.; Supervision, C.A.O. and J.N.N.; Validation, C.A.O., J.N.N.,
A.M., B.M., N.J.O. and O.O.A.; Visualization, C.A.O., J.N.N., A.M., B.M., N.J.O. and O.O.A.; original
draft, C.A.O., J.N.N. and A.M.; Writing—review & editing, C.A.O., J.N.N., A.M., B.M., N.J.O. and
O.O.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon reasonable request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Osmani, A.G.; Hossain, E. Market participation decision of smallholder’s farmers and its determinants in Bangladesh. Econ.

Agric. 2015, 62, 163–179.
2. Anumudu, O.O.; Obianefo, C.A.; Okafor, I.P.; Onyekineso, J.C. Determinants of market participation and failure of table egg

production by small scale poultry farmers in Anambra State, Nigeria. Int. J. Sci. Res. PONTE 2020, 76, 58–77.
3. Mulungu, K.; Ng’ombe, J.N. Sources of economic growth in Zambia, 1970–2013: A growth accounting approach. Economies 2017,

5, 15. [CrossRef]
4. Frimawaty, E.; Basukriadi, A.; Syamsu, A.J.; Soesilo Budhi, T.E. Sustainability of rice farming based on eco-farming to face food

security and climate change: Case study in Jambi Province, Indonesia. Procedia Environ. Sci. 2013, 17, 53–59. [CrossRef]
5. Taridala, S.A.A.; Abdullah, W.G.; Wahyuni, S.; Wianti, N.I.; Zani, M. Understanding the social and economic aspects of upland

rice farming. Earth Environ. Sci. 2018, 122, 1–8. [CrossRef]

http://doi.org/10.3390/economies5020015
http://doi.org/10.1016/j.proenv.2013.02.011
http://doi.org/10.1088/1755-1315/122/1/012066


Agriculture 2021, 11, 1240 12 of 13

6. Ike, P.C.; Ugwumba, C.O. The profitability of small-scale broiler production in Onitsha North Local Government Area of Anambra
State, Nigeria. Int. J. Poult. Sci. 2015, 10, 106–109. [CrossRef]

7. Egbetokun, O.A.; Sittu, B.A.; Ayode, M.O. Determinants of market participation among maize farmer’s in Ogbomoso Zone, Oyo
State, Nigeria. Cercet. Agron. Mold. 2017, 2017, 109–118. [CrossRef]

8. Obianefo, C.A.; Aguaguiyi, N.F.; Umebali, E.E.; Ezeano, C.I. Comparative analysis of rainfed and dry season rice farming in
value chain development programme in Ayamelum Local Government Area Anambra State. Inter J. Sci. Res. 2019, 8, 1655–1659.

9. Obianefo, C.A.; Nwigwe, C.A.; Meludu, T.N.; Anyasie, I.C. Technical efficiency of rice farmers in Anambra State value chain
development programme. J. Dev. Agric. Econ. 2020, 12, 67–74. [CrossRef]

10. Nwinya, C.E.; Obienusi, E.A.; Onuoha, D.C. Comparative economic analysis of upland and lowland rice production in Izzi Local
Government Area of Ebonyi State. J. Econ. Sustain. Dev. 2014, 5, 144–160.

11. Ayambila, N.S.; Kwadzo, M.T.G.; Brempong-Asuming, S. Economics of rice production an economic analysis of rice production
systems in the Upper East region of Ghana. Ghana J. Dev. Stud. 2008, 5, 95–108. [CrossRef]

12. Chen, S.; Zheng, X.; Wang, D.; Chen, L.; Xu, C.; Zhang, X. Effect of long-term paddy- upland yearly rotations on rice (Oryza sativa)
yield, soil properties, and bacteria community diversity. Sci. World J. 2012, 2012, 279641. [CrossRef] [PubMed]

13. Saputra, E.; Tabrani, G.; Zuhry, E. The Experiment of Bokashi and Ferinsa Composition on Upland Red Rice (Oryza nivara L.)
Inpago 7 Variety. JOM Faperta 2016, 3, 1–13.

14. The World Bank. Pairing Agriculture with Technology in Bangladesh. Available online: www.worldbank.org/en/news/feature/
2014/06/23/pairing-agriculture-with-technology-in-banglashe (accessed on 23 June 2014).

15. Shehu, J.F.; Mshelia, S.I.; Tashikalma, A.K. Analysis of technical efficiency of small-scale rain-fed upland rice farmers in North-west
agricultural zone of Adamawa state, Nigeria. J. Agric. Soc. Sci. 2007, 3, 133–136.

16. Oluwadamilola, K.A. Challenges of rice production in Nigeria: A case study of Kogi State. Department of Science and Technology,
National Defense College Abuja, Nigeria. Food Sci. Qual. Manag. 2018, 74, 1–16.

17. IFAD. Value Chain Development Programme. Available online: https://www.ifad.org/en/web/operations/-/project/11000015
94 (accessed on 4 July 2020).

18. Umar, M.F.; Nugroho, I.; Darmadji, S. The study of entrepreneurship and innovation adoption by farmer in improving lowland
rice farming. J. Socioecon. Dev. 2020, 3, 16–28. [CrossRef]

19. Rohmad, B.; Praptiningsih, G.A. Efficiency analysis of production factors utilization in upland rice farming in NRLS Conference
Proceedings. KnE Life Sci. 2017, 2017, 180–187.

20. Willybrordus, L. Measurement of economic efficiency of upland rice farming in different land ownership status in Mausambi
Village, Maurole Sub- District, Ende Regency. J. AGRISEP 2019, 18, 387–402.

21. Yurkushi, E.N. Comparative Economic Analysis of Upland and Lowland Rice Production in Selected Local Government Area of
Kaduna State, Nigeria. Ph.D. Thesis, Ahmadu Bello University, Zaria, Nigeria, 2015.

22. Ng’ombe, J.N. Technical efficiency of smallholder maize production in Zambia: A stochastic meta-frontier approach. Agrekon
2017, 56, 347–365. [CrossRef]

23. Mariko, K.; Moussa, M.; Li, X.; Matafwali, E.; John-Philippe, E.A.; Ekram, A.E.; Osewe, M.O. Stochastic meta frontier analysis of
smallholder rice farmers’ technical efficiency. J. Agric. Sci. 2019, 11, 31–44. [CrossRef]

24. Battese, G.E.; Rao, D.P. Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2002, 1, 87.
25. Mzyece, A.; Ng’ombe, J.N. Does crop diversification involve a trade-off between technical efficiency and income stability for

rural farmers? Evidence from Zambia. Agronomy 2020, 10, 1875. [CrossRef]
26. Forsund, F.R.; Lovell, C.A.K.; Schmidt, P. A survey of frontier production functions and their relationships to efficiency measure-

ment. J. Econom. 1980, 13, 5–25. [CrossRef]
27. Ume, S.I.; Ochiaka, J.S. Technical efficiency of catfish production among smallholder Farmers in Anambra State of Nigeria. Case

Stud. J. 2016, 5, 147–155.
28. Mzyece, A.; Ng’ombe, J.N. Crop diversification improves technical efficiency and reduces income variability in Northern Ghana.

J. Agric. Food Res. 2021, 5, 100162. [CrossRef]
29. Farrel, M. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 3, 253–290. [CrossRef]
30. Jondrow, J.C.A.; Lovell, L.S.; Schmidt, P.S. On the Estimation of technical inefficiency in the stochastic frontier production function

model. J. Econom. 1982, 19, 233–238. [CrossRef]
31. Aigner, D.J.; Lovell, C.A.; Schmidt, P. Formulation and estimation of stochastic frontier production function model. J. Econom.

1977, 1, 21–37. [CrossRef]
32. Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in

India. J. Pro. Anal. 1992, 3, 153–169. [CrossRef]
33. Chiona, S.; Kalinda, T.; Tembo, G. Stochastic frontier analysis of the technical efficiency of smallholder maize farmers in Central

Province, Zambia. J. Agric. Sci. 2014, 6, 108–118. [CrossRef]
34. Souleymane, O. Technical and economic efficiency of rice production in the Kou valley (Burkina Faso): Stochastic frontier

approach. Asian J. Agric. Rural Dev. 2015, 5, 53–63.
35. Ng’ombe, J.; Kalinda, T.A. Stochastic frontier analysis of technical efficiency of maize production under minimum tillage in

Zambia. Sustain. Agric. Res. 2015, 5, 31–46. [CrossRef]

http://doi.org/10.3923/ijps.2011.106.109
http://doi.org/10.1515/cerce-2017-0010
http://doi.org/10.5897/JDAE2020.1150
http://doi.org/10.4314/gjds.v5i1.35069
http://doi.org/10.1100/2012/279641
http://www.ncbi.nlm.nih.gov/pubmed/22919301
www.worldbank.org/en/news/feature/2014/06/23/pairing-agriculture-with-technology-in-banglashe
www.worldbank.org/en/news/feature/2014/06/23/pairing-agriculture-with-technology-in-banglashe
https://www.ifad.org/en/web/operations/-/project/1100001594
https://www.ifad.org/en/web/operations/-/project/1100001594
http://doi.org/10.31328/jsed.v3i1.1290
http://doi.org/10.1080/03031853.2017.1409127
http://doi.org/10.5539/jas.v11n8p31
http://doi.org/10.3390/agronomy10121875
http://doi.org/10.1016/0304-4076(80)90040-8
http://doi.org/10.1016/j.jafr.2021.100162
http://doi.org/10.2307/2343100
http://doi.org/10.1016/0304-4076(82)90004-5
http://doi.org/10.1016/0304-4076(77)90052-5
http://doi.org/10.1007/BF00158774
http://doi.org/10.5539/jas.v6n10p108
http://doi.org/10.5539/sar.v4n2p31


Agriculture 2021, 11, 1240 13 of 13

36. Bidzakin, J.K.; Fialor, S.C.; Awunyo-Vitor, D.; Yahaya, I. Impact of irrigation ecology on rice production efficiency in Ghana. Adv.
Agric. 2018, 2018, 5287138. [CrossRef]

37. Raimondo, M.; Caracciolo, F.; Nazzaro, C.; Marotta, G. Organic Farming Increases the Technical Efficiency of Olive Farms in Italy.
Agriculture 2021, 11, 209. [CrossRef]

38. Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of Total-Factor Productivity and Efficiency Changes in China’s
Agriculture. Agriculture 2020, 10, 279. [CrossRef]

39. Obi, A.; Ayodeji, B.T. Determinants of economic farm-size–efficiency relationship in smallholder maize farms in the Eastern Cape
Province of South Africa. Agriculture 2020, 10, 98. [CrossRef]

40. Huang, C.J.; Huang, T.H.; Liu, N.H. A new approach to estimating the metafrontier production function based on a stochastic
frontier framework. J. Pro. Anal. 2014, 42, 241–254. [CrossRef]

41. Battese, G.E.; Rao, D.P.; O’donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology
gaps for firms operating under different technologies. J. Pro. Anal. 2004, 21, 91–103. [CrossRef]

42. O’Donnell, C.J.; Rao, D.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios.
Empir. Econ. 2008, 34, 231–255. [CrossRef]

43. Osawe, O.W.; Adeqeye-Bolarin, A.J.; Omonona-Bolarin, O. Technical efficiency of small scale farmers: An application of the
stochastic frontier production function on fish farmers in Ibadan Metropolis. J. Econ. Rural Dev. 2008, 16, 71–82. [CrossRef]

44. Assa, M.M.; Abdi-Khalil, E.; Matchaya, G.C. Unexploited Profit among smallholder farmers in Central Malawi: What are the
sources? Int. J. Appl. Econ. 2012, 9, 83–95.

45. Battese, G.E.; Broca, S.S. Functional forms of stochastic frontier production functions and models for technical inefficiency effects:
A comparative study for wheat farmers in Pakistan. J. Pro. Anal. 1997, 8, 395–414. [CrossRef]

46. Lee, L.; Tyler, F.W.G. The stochastic frontier production function and average efficiency: An empirical analysis. J. Econom. 1978, 7,
385–389. [CrossRef]

47. Mensah, A.; Brümmer, B. Drivers of technical efficiency and technology gaps in Ghana’s mango production sector: A stochastic
metafrontier approach Amos. Afr. J. Agric. Resour. Econ. 2016, 11, 101–117.

48. Huang, T.H.; Chiang, D.L.; Tsai, C.M. Applying the new metafrontier directional distance function to compare banking efficiencies
in Central and Eastern European countries. Econ. Model. 2015, 44, 188–199. [CrossRef]

49. Belotti, F.; Daidone, S.; Ilardi, G.; Atella, V. Stochastic frontier analysis using Stata. Stata J. 2013, 13, 719–758. [CrossRef]
50. StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019.
51. Ng’ombe, J.N.; Tembo, M.C.; Masasi, B. “Are they aware, and why?” Bayesian analysis of predictors of smallholder farmers’

awareness of climate change and its risks to agriculture. Agronomy 2020, 10, 376. [CrossRef]
52. Alem, H.; Lien, G.; Hardaker, J.B.; Guttormsen, A. Regional differences in technical efficiency and technological gap of Norwegian

dairy farms: A stochastic meta-frontier model. Appl. Econ. 2019, 51, 409–421. [CrossRef]
53. Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on

maize yields and incomes: Evidence from rural Zambia. J. Agric. L. Econ. 2016, 67, 130–153. [CrossRef]
54. Mulungu, K.; Tembo, G. Effects of weather variability on crop abandonment. Sustainability 2015, 7, 2858–2870. [CrossRef]
55. Lu, W.; Addai, K.N.; Ng’ombe, J.N. Impact of improved rice varieties on household food security in Northern Ghana: A doubly

robust analysis. J. Int. Dev. 2021, 33, 342–359. [CrossRef]
56. Masasi, B.; Taghvaeian, S.; Boman, R.; Moriasi, D.N.; Starks, P.J. Impacts of variable irrigation regimes on cotton yield and fiber

quality. Agric. Environ. Lett. 2020, 5, e20031. [CrossRef]
57. Lu, W.; Addai, K.N.; Ng’ombe, J.N. Does the use of multiple agricultural technologies affect household welfare? Evidence from

Northern Ghana. Agrekon 2021, 60, 1–18. [CrossRef]
58. Abman, R.; Carney, C. Agricultural productivity and deforestation: Evidence from input subsidies and ethnic favoritism in

Malawi. J. Environ. Econ. Manag. 2020, 103, 102342. [CrossRef]

http://doi.org/10.1155/2018/5287138
http://doi.org/10.3390/agriculture11030209
http://doi.org/10.3390/agriculture10070279
http://doi.org/10.3390/agriculture10040098
http://doi.org/10.1007/s11123-014-0402-2
http://doi.org/10.1023/B:PROD.0000012454.06094.29
http://doi.org/10.1007/s00181-007-0119-4
http://doi.org/10.2139/ssrn.1819042
http://doi.org/10.1023/A:1007736025686
http://doi.org/10.1016/0304-4076(78)90061-1
http://doi.org/10.1016/j.econmod.2014.10.029
http://doi.org/10.1177/1536867X1301300404
http://doi.org/10.3390/agronomy10030376
http://doi.org/10.1080/00036846.2018.1502867
http://doi.org/10.1111/1477-9552.12127
http://doi.org/10.3390/su7032858
http://doi.org/10.1002/jid.3525
http://doi.org/10.1002/ael2.20031
http://doi.org/10.1080/03031853.2021.1992290
http://doi.org/10.1016/j.jeem.2020.102342

	Introduction 
	Materials and Methods 
	Data 
	Analytical Framework 
	Stochastic Meta-Frontier Analysis 
	Empirical Model Specification 

	Results and Discussion 
	Hypothesis Tests 
	Estimation of Parameter Estimates of Regional Stochastic Frontiers 
	Estimation of Parameters of the SMF 
	Estimation of the Technical Efficiency and the Technological Gap Ratios 

	Conclusions 
	References

