
agriculture

Article

Application of Optical Spectrometer to Determine Maturity
Level of Oil Palm Fresh Fruit Bunches Based on Analysis of the
Front Equatorial, Front Basil, Back Equatorial, Back Basil and
Apical Parts of the Oil Palm Bunches

Jia Quan Goh 1, Abdul Rashid Mohamed Shariff 1,2,3,* and Nazmi Mat Nawi 1,2,3

����������
�������

Citation: Goh, J.Q.; Mohamed

Shariff, A.R.; Mat Nawi, N.

Application of Optical Spectrometer

to Determine Maturity Level of Oil

Palm Fresh Fruit Bunches Based on

Analysis of the Front Equatorial,

Front Basil, Back Equatorial, Back

Basil and Apical Parts of the Oil Palm

Bunches. Agriculture 2021, 11, 1179.

https://doi.org/10.3390/

agriculture11121179

Academic Editor: Maciej Zaborowicz

Received: 2 September 2021

Accepted: 6 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia,
Serdang 43400, Malaysia; gs53069@student.upm.edu.my (J.Q.G.); nazmimat@upm.edu.my (N.M.N.)

2 SMART Farming Technology Research Center, Faculty of Engineering, Universiti Putra Malaysia,
Serdang 43400, Malaysia

3 Laboratory of Plantation System Technology and Mechanization (PSTM), Institute of Plantation Studies (IKP),
Universiti Putra Malaysia, Serdang 43400, Malaysia

* Correspondence: rashidpls@upm.edu.my

Abstract: The quality of palm oil depends on the maturity level of the oil palm fresh fruit bunch
(FFB). This research applied an optical spectrometer to collect the reflectance data of 96 FFB from
unripe, ripe, and overripe classes for the maturity level classification. The spectrometer scanned the
FFB from different parts, including apical, front equatorial, front basil, back equatorial, and back basil.
Principal component analysis was carried out to extract principal components from the reflectance
data of each of the parts. The extracted principal components were used in an ANOVA test, which
found that the reflectance data of the front equatorial showed statistically significant differences
between the three maturity groups. Then, the collected reflectance data was subjected to machine
learning training and testing by using the K-Nearest Neighbor (KNN) and Support Vector Machine
(SVM). The front equatorial achieved the highest accuracy, of 90.6%, by using SVM as classifiers;
thus, it was proven to be the most optimal part of FFB that can be utilized for maturity classification.
Next, the front equatorial dataset was divided into UV (180–400 nm), blue (450–490 nm), green
(500–570 nm), red (630–700 nm), and NIR (800–1100 nm) regions for classification testing. The UV
bands showed a 91.7% accuracy. After this, representative bands of 365, 460, 523, 590, 623, 660, 735,
and 850 nm were extracted from the front equatorial dataset for further classification testing. The
660 nm band achieved an 89.6% accuracy using KNN as a classifier. Composite models were built
from the representative bands. The combination of 365, 460, 735, and 850 nm had the highest accuracy
in this research, which was 93.8% with the use of SVM. In conclusion, these research findings showed
that the front equatorial has the better ability for maturity classification, whereas the composite
model with only four bands has the best accuracy. These findings are useful to the industry for future
oil palm FFB classification research.

Keywords: oil palm; fresh fruit bunch; ripeness; optical spectrometer

1. Introduction

The most productive oil crop, oil palm, can meet the enormous and growing global
demand for vegetable oils—expected to reach 240 million tons by 2050 [1]. Oil palm trees
produce three to eight times more oil than any other oil crop [1]. To achieve the same
amount of soybean or coconut oil, four to ten times more land is needed [2]. According
to Oil World, the world production of major vegetable oils in 2018 was 200.8 million tons,
with palm oil accounting for 73% of it [3]. By 2025, the worldwide market for palm oil is
expected to reach 25.3 billion USD. Palm oil is the main ingredient in many daily supplies,
including soaps, cosmetics, detergents, candles, food shortening, cooking oil, margarine,
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feedstock, and more [4]. The main production of palm oil is contributed by Indonesia and
Malaysia [5], with both countries producing a combined 90% of palm oil in the world. Asia
is the largest consumer of palm oil, with India, China, and Indonesia consuming 40% of all
palm oil in the industry [5]. In Europe, the total palm oil import increased by 5% in 2019,
and the Roundtable on Sustainable Palm Oil (RSPO) demanded the continent to import
100% of its certified sustainable palm oil (CSPO) by 2020 [6]. The report by the European
Palm Oil Alliance (EPOA) showed that 86% of European palm oil import is sustainable,
proving that European countries are working towards closing the gap to the 100% set by
RSPO [7]. Thus, the palm oil industry is a promising market around the world.

The FFB commercial value is dependent on the appearance of the bunch and the
quantity of the oil extracted from the bunch. Ripe bunches are more valuable than unripe
bunches because they contain more oil and have lower free fatty acid (FFA) levels than
overripe bunches [8]. Therefore, the FFB maturity grading is an essential task at the mill to
ensure the extracted oil fulfills the business viability and quality standards required of the
extracted oil.

The Malaysia Palm Oil Board (MPOB) grades FFB into 17 different classes; ripe, under-
ripe, unripe, overripe, empty, rotten, long stalk, unfresh, old, dirty, small, pest-damaged,
diseased, dura, loose fruit, stored, and wet. These classifications are based on the “MPOB
Manual of Grading Oil Palm Fresh Fruit Bunches Third Edition (2015)” [9]. The details
of each class are described in Table 1. Throughout the years, different researchers from
around the world have developed various approaches to assess fruit maturity levels. Some
of these have been used for the inspection phase of the FFB quality, while others are better
suited for lab level applications. The latter includes the destructive test method and the
non-destructive method. Chauhan et al. [10] state that non-destructive methods (NDM) are
more effective than conventional methods as NDM are mainly based on physical properties,
which correlate well with certain quality factors of crops. Besides, NDM do not rupture
the fruit tissue and can be used to assess the internal variables of fruits. These include
applications of LiDAR scanning [11], optical-based sensors [12], computer and camera
vision system [13], laser-based imaging system [14], handheld optical spectrometer [15],
LED optical sensor [16], thermal imaging technique [17], and fruit battery [18]. Table 2
gives a summary of the applications of different NDM to classify FFB maturity levels.

Table 1. MPOB Manual of Grading Oil Palm Fresh Fruit Bunches Third Edition (2015) [9].

Bunch Classifications Description

Ripe
Reddish orange color fruits, has at least 10 sockets of detached

fruitlets and more than fifty percent (50%) of the fruit still
attached to the bunch at the time of inspection at the mill.

Underripe Reddish orange color fruits and has at least 10 sockets of
detached fruitlets at the time of inspection at the mill.

Unripe Purplish black color fruits and without any socket of detached
fruitlets at the time of inspection at the mill.

Overripe
Darkish red color fruits and has more than fifty percent (50%) of
detached fruitlets but with at least ten percent (10%) of the fruits

still attached to the bunch at the time of inspection at the mill.

Empty Bunch which has more than ninety percent (90%) of detached
fruitlets at the time of inspection at the mill.

Rotten Bunch partly or wholly, including its loose fruits, has turned
blackish in color, as well as rotten and moldy.
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Table 1. Cont.

Bunch Classifications Description

Long stalk Bunch which has s stalk of more than 5 cm in length (measured
from the lowest level of the bunch stalk).

Unfresh

Bunch which has been harvested and left in the field for more
than 48 h before being sent to the mill. The whole fruit, or part of

it, together with its stalk, has dried out. Normally, this type of
bunch is dry and blackish in color.

Old

Bunches that have been harvested and left long on the farm before
being shipped to the factory. The fruit still attached on this bunch
has been wrinkled and is colored brownish or black. The stalk has
also been wrinkled and is soft and fibrous, with a blackish color.

Many relay seeds fall out of the outer layer of the bunch.

Dirty Bunch with more than half of its surface covered with mud, sand,
or other dirt particles and mixed with stone or foreign matter.

Small Bunch which has small fruits and weighs less than 2.3 kg.

Pest damaged Bunch with more than thirty percent (30%) of its fruits damaged
by pest attacks, such as rats, etc.

Diseased Bunch which has more than fifty percent (50%) parthenocarpic
fruits and is not normal in terms of its size or its density.

Dura Shell thickness 2–8 mm; ratio of shell to fruit 25–50%; ratio of
mesocarp to fruit 20–60%; ratio of kernel to fruit 4–20%.

Loose fruit Fruit detached from a fresh bunch because of ripeness and
reddish orange in color.

Stored Unripe bunch that was stored or left long after harvest.

Wet Consignment of FFB which has excessive free water.

Table 2. Summary of oil palm maturity classifications.

Ref. Equipment Data Type Analysis
Method Accuracies/Discoveries

[11] LiDAR scanning
sensor NIR 905 nm

Linear equation
of reflectance
percentage

Fruits with greater
ripeness have lower
reflectance intensity

[12] Optical sensor 670 nm

Average voltage
readings for

each ripeness
class

When there is less
chlorophyll content
inside the FFB, the

amount of light
absorbed also lessens

[13] Digital camera
RGB images,

HSI, normalized
RGB

Canonical
discriminant

function
85% accuracy

[15]
Oil palm

ripeness detector
(OPRiD)

UV, VIS, NIR Various ML
algorithm 85.7% accuracy

[16] Multiband
optical sensor

615 to 940 nm,
oil content
correlation

Discriminant
analysis, KNN 88.2% accuracy
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Table 2. Cont.

Ref. Equipment Data Type Analysis
Method Accuracies/Discoveries

[17]

FLIR E60 and
FLIR T440

thermal imaging
cameras

Emissivity of
FFB

Thermal
imaging

temperature vs.
emissivity

Rotten bunch emissivity
98%, higher than

normal bunch

[18] Fruit battery
with charging

Load resistance
voltage

Fruits with moisture
content less than 44%

and average load
voltage, Vavg, between

20 to 30 mV are
considered ripe fruits

[19] GigE camera
Hue, Saturation,

and Intensity
(HSI)

Linear
regression (LR)

and ANN

LR: 45% accuracy
ANN: 70% accuracy

[20]

Multi-parameter
fluorescence

sensor:
Multiplex®3

Blue-to-Red
Fluorescence

Ratio (BRR-FRF)

Classification
and regression

tree (C&RT)
90% accuracy

[21]

Hyperspectral
camera

(SPECIM,
ImSpector V 10)

560 nm, 680 nm,
740 nm, 910 nm

Euclidean
distance 97.92% accuracy

[22] Multiband
sensor

570, 670, 750,
870 nm

Discriminant
analysis 85% accuracy

[23]

Multi-parameter
fluorescence

sensor:
Multiplex®3

Fluorescence
(Flavonoids,
anthocyanin)

Stochastic
Gradient

Boosting Trees
model

87.7% accuracy

[24]
Canon

Powershot A430
digital camera

RGB images Neuro fuzzy
logic 73.3% accuracy

[25] Olympus E-520
digital camera RGB images Fuzzy logic 86.67% accuracy

[26]
Vivotek

IP8332 Network
Bullet Camera

HSI model ANN and PCA 93.33% accuracy

[27]

Hyperspectral
camera

(Imperx IPX-2
M 30)

400–1000 nm ANN
830 nm identified as

best wavelength; 98.67%
overall accuracy

[28]

CCD camera
(QICAM Colour

Fast 1394,
QImaging,
Surrey, BC,

Canada) and
laser diode

658 nm

RGB images and
backscattering

images
LDA, QDA 85% accuracy

Shabdin et al. [19] studied the maturity classifications by using the Hue, Saturation,
and Intensity (HSI) approach and extracting HSI from RGB images. ANN analysis showed
a 70% accuracy with this approach. Hafiz et al. [20] scanned FFB from four categories of
unripe, underripe, ripe, and overripe by using a handheld multi-parameter fluorescence
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sensor called Multiplex®3. The Blue-to-Red Fluorescence Ratio (BRR_FRF) was used in
their research. The value of the blue-green (BGF) emission signal was divided by the value
of the far-red emission (FRF) signal to get this information. Both ratios used a UV (375 nm)
light-emitting diode as a source of excitation, resulting in an overall accuracy of 89.7%.
Color and hyperspectral images were applied by Junkwon et al. [21] to estimate the weight
and maturity of oil palm. The results of hyperspectral images showed a better confidence
level than RGB images, where the classification of maturity was easier and more accurate.
The author concluded that hyperspectral images have a better potential than RGB images
to classify oil palm maturity levels. To assess oil palm FFB maturity, Saeed et al. [22] tested
a multi-band portable, active optical sensor system with four spectral bands of 570, 670,
750, and 870 nm. Using spectral reflectance data, Mahalanobis distance proved to be a
reliable method for measuring FFB maturity, with an overall accuracy of 85%.

Dayaf [15] proposed the application of a handheld spectrometer to classify oil palm
maturity levels using the Oil Palm Ripeness Detector (OPRiD). The device can radiate a
spectrum from eight different LED modules, including UV, blue, green, amber, red, deep
red, far-red, and near-infrared. OPRID is a device designed based on these technologies
(measures reflected EMR in AU form) for determining the degree of maturity and the color
differences of the sensed surfaces of oil palm bunches. The experiment using this device
achieved 85.7% by using 590 and 660 nm as a composite model.

The classifiers used in this analysis are the Support Vector Machine (SVM) and the
K-Nearest Neighbors (KNN) in MATLAB R2020a. SVM is a machine learning algorithm
that uses nonlinear kernel functions to map input data into a high dimensional feature
space to search for a separate hyperplane [29]. The hyperplane performs classifications
onto the input data. KNN is a machine learning algorithm that can be used to solve
classification and regression problems [30] and assumes there are feature similarities to
predict the values of new data points. It assigns these based on their distances to the points
in the training set.

SVM has been applied in different agricultural fields to discover, unravel, quantify,
and understand data-intensive processes in agricultural operational environments [31].
Khan et al. [32] reviewed articles that applied machine learning algorithms to oil palm
research and found that SVM is the most frequently used algorithm. This is due to the
appropriateness of SVM for both regression and classification problems, as well as its
reliability as a standard algorithm for performance benchmarking. In the study by Sengupta
and Lee [33], SVM was used to identify the number of immature green citrus fruits under
natural outdoor conditions. The SVM classifier achieved 80.4% of accuracy. Ramos et al. [34]
developed computer vision to count the number of fruits on coffee trees automatically with
the assistance of SVM. SVM achieved 87.83% of visibility percentage in ripe or overripe
classes and 86.36% of visibility percentage in the semi-ripe class. The visibility percentage
achieved in the unripe class was 81.39%. Chung et al. [35] also implemented SVM to detect
Bakanae disease, a seedborne fungal disease in rice seedlings, for which they were able
to produce 87.9% accuracy. Nooni et al. [36] compared the performance of SVM and the
maximum likelihood classifier (MLC) to map oil palm plantations, where SVM proved to
have higher accuracy, at 78.3%, than MLC, with 71.9% accuracy.

Other than SVM, KNN was also used in various studies of oil palm. Dayaf [15]
obtained 88.7% of accuracy for classifying FFB maturity levels using KNN. However, they
found that KNN performed less accurately than ANN. Zolfagharnassab [37] used KNN to
classify FFB maturity by using a difference in FFB temperature and ambient temperature
(∆Temp), and 74.3% accuracy was achieved.

The varied wavelengths of energy generated by a light source are referred to as the
light spectrum. Nanometers are the units of measurement for light (nm). A wavelength
of light or a band of light energy is represented by each nanometer. The visible light
spectrum ranges from 380 nm to 780 nm. Each distinct wavelength in the visible light
spectrum corresponds to a certain color. We perceive different colors when the light of
a given wavelength reaches the retina of the human eye. UV (ultraviolet) light has a
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wavelength of about 400 nm and is found in the electromagnetic spectrum between visible
light and X-rays. Since it has a shorter wavelength and a higher frequency than the light
our brain interprets as pictures, this electromagnetic radiation is not visible to the naked
eye. Near-infrared (NIR) light is defined as light that has a wavenumber between 12,500
and 4000 cm−1 (wavelengths from 800 to 2500 nm) [38].

Traditionally, FFBs were graded manually. Trained graders inspected the quality and
maturity of FFBs. However, this method is subjective and inaccurate. Even for a skilled
grader, manually classifying oil palm FFB into maturity categories is a tough and time-
consuming process. Furthermore, human perceptions of color are frequently inconsistent,
affected by physical and psychological factors [13]. The overripe and unripe FFB at the mills
has contributed to the low quality of oil extraction. Due to these weaknesses, optimum
crude oil production cannot be achieved; hence, some operation costs become a loss and
burden to manufacturers [39].

The growth of small data collecting units has been rapid in recent years as they can
cover data details for broad coverage, enhancing understanding of crop spatial and tempo-
ral variability [40]. Sensors with smaller dimensions, lower costs, and higher performance
that can be deployed and integrated into production processes allow for more data and,
ultimately, more information [41]. In the experiment conducted in [42], the Smart Engine
(OtO Photonics, Inc., Hsinchu City, Taiwan) (SE) Series Spectrometer was used to collect the
reflectance of FFB, with the scanning process focused only on the front equatorial of the FFB,
while the classification made use of the pure reflectance of the FFB (180 to 1100 nm) as the
input. The highest accuracy acquired was 90.6%. Next, the principal component (PC) was
extracted from the PCA as the input, and the obtained accuracy was 73.2% in classifying
the FFB maturity level. Thirdly, specific bands were selected to compute vegetation indices
for classification, and the normalized difference vegetation index 2 (NDVI2) produced
84.4% accuracy in classifying the FFB maturity level. In that research [42], only SVM was
used as the classifier.

To improve the performance of the experiment, we proposed a new experiment in this
study that focused on the application of the same spectrometer to collect the reflectance
data of the light spectrum of FFB and classify them into three categories based on maturity
level, which were unripe, ripe, and overripe. These three categories are critical, as there is a
pressing need to avoid the harvesting of unripe fruits to avoid low oil yield. We explored
the use of different bands across the light spectrum to investigate the ability of each band
to classify FFBs. The reflectance of various bands is a popular technique in the study of FFB
maturity level classifications. However, FFB varies in size, and its growth condition on the
tree leads to varying amounts of sunlight exposure on each part. Some parts face the tree
and may be covered by leaves, while other parts face the sun and receive different amounts
of sunlight for photosynthesis. This situation causes the different parts of the FFB to have
different colors. Previous research may have acquired data indiscriminately between the
parts covered by leaves during the growing stage of the FFBs. In the research presented in
this paper, instead of focusing on just the front equatorial as done in [42], we investigated
the research gap by dividing FFB into five different parts—apical, front equatorial, front
basil, back equatorial, and back basil—for analysis. Each one was scanned and compared
to discover the best part of the FFB for maturity classification. Machine learning algorithms,
i.e., SVM and KNN, were applied for classification accuracy testing.

2. Materials and Methods
2.1. Sample Preparation

The experiment in this research was undertaken at a large local oil palm mill in
Banting, Selangor, Malaysia. The FFBs were prepared by trained graders and classified into
the three highly critical maturity categories of oil palm fresh fruit bunches, that is, unripe,
ripe, and overripe. Each category contained at least 30 samples. The FFBs were cleaned by
a brush to remove dirt and dried leaves from them.
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2.2. Data Collection

The device used was a SE Series spectrometer (OtO Photonics, Inc., Hsinchu City,
Taiwan). The SE Series spectrometer is built with a linear CCD-type sensor and a high
performance 32-bit RISC controller. The system is powered by USB port and communi-
cates with computer through the USB port. The spectrometer has the ability to capture
reflectance intensity at a wavelength range of 180 to 1100 nm. It works with accompanying
software called SpectraSmart© (Version 2.5.0.20551, Copyright 2012–2019 OtO Photonics,
Inc., Hsinchu City, Taiwan) on personal computer to monitor and save data. The illustration
of the SE Series spectrometer is shown in Figure 1. The technical specifications are listed in
Table 3.

Figure 1. SE Series Spectrometer.

Table 3. SE Series Spectrometer specifications.

Specifications Content

Wavelength accuracy ±0.3 nm

Resolution 0.2 to 10.5 nm

Thermal Stability <0.04 nm/◦C

Environmental conditions

Storage −30 ◦C to 70 ◦C

Operation −10 ◦C to 50 ◦C

Humidity 0% to 90% non-condensing

Interfaces USB 2.0 @ 480 Mbps

Input fiber connector SMA 905

Power

Power requirement: 300 mA at +5VDC
Supply voltage: 4.75–5.25

Power-up time: <4 s
Maximum USB input power Vcc: +5.25VDC

Maximum I/O signal voltage: +5.5VDC

A halogen lamp acts as an external light source as the spectrometer does not have a
lighting source. The spectrometer and halogen lamp were mounted horizontally on two
retort stands with 60 cm distance from the ground level. The setup of the experiment is
displayed in Figure 2.
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Figure 2. Experimental setup.

Based on the standards established by the Malaysia Palm Oil Board (MPOB), the oil
palm FFB can be classified into unripe, ripe, and overripe by referring to the number of
empty sockets on the bunch. When the bunch ripens, its fruit will detach from the bunch,
resulting in an empty socket. If there are 1–9 empty sockets, the bunch is classified as
an unripe class. If there are 10–50% empty sockets on the bunch, it is classified as a ripe
class. Lastly, if there are more than 50% empty sockets on the bunch, it is classified as an
overripe class. The details can be found in Table 4. Each FFB sample was scanned using the
halogen lamp and spectrometer. The scanning step focused on five parts on the FFBs, which
are the apical, front equatorial, back equatorial, front basil, and back basil (as shown in
Figure 3). The target part to be scanned was put under the spectrometer and halogen lamp
and the system was controlled on the personal computer. In the SpectraSmart software, the
number of readings was set to “Average”. Once the reading on the graph was stable, the
data was saved.

Figure 3. Five different parts of FFB: (a) front equatorial; (b) front basil; (c) back equatorial; (d) back
basil; (e) apical.
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Table 4. Grading standard of FFB based on maturity level [20].

Total Number of Empty
Fruitlet Sockets

Mesocarp Color

Yellow Yellowish/Orange Orange

0 Unripe Unripe Ripe
0–10 Unripe Under-ripe Ripe
>10 Unripe Ripe Ripe

2.3. Data Preprocessing

Principal components analysis (PCA) is a technique that takes high-dimensional data
and the dependencies between the variables to reduce the dimensionality of a data set
without losing too much information. At the end of PCA, the data set was transformed to a
new set of variables or principal components (PC) that were uncorrelated and retained most
of the variation in the original variables. In this research, PCA was applied to variables
of 180 to 1100 nm. The extracted PCs were used as inputs for the analysis of variance
(ANOVA). ANOVA compares the differences in samples to find out if they are similar or
statistically different from each other.

There were three classifications done in this analysis. In the first case, the pure
reflectance collected from the FFB from 180 to 1100 nm was used as the input to the
classifiers. Then, the bands from UV (180–400 nm), Blue (450–490 nm), Green (500–570 nm),
Red (630–700 nm), and NIR (800–1100 nm) regions were used in the classifiers. Lastly, we
selected specific bands from the pure reflectance data of FFB according to Dayaf’s [15]
work, where the bands 365 (UV), 460 (blue), 523 (green), 590 (amber), 623 (red), 660 (deep
red), 735 (far-red), and 850 (near-infrared (NIR)) nm were chosen as the input for the
classification The classification process was illustrated in Figure 4.

Figure 4. Flowchart of the analysis process.
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2.4. Support Vector Machine and K-Nearest Neighbor

Support vector machine is a classification algorithm that finds a 1-layer or multi-layer
hyperplane for separable patterns. The data points nearest to the hyperplane are called
support vectors. The support vectors have a direct impact on the hyperplane’s optimal
position. The gap between two lines or hyperplanes is called a margin. Larger margin
represents better classification. SVM’s main objective is to partition data sets into classes in
order to find the greatest margin.

SVM offers a variety of benefits, including being successful when there are more
features than training cases, being well-suited for extreme case classifications, and being
the best method to employ when classes are separable. Only the support vectors affect the
hyperplane; thus, outliers have less of an impact.

The K-nearest neighbor (KNN) model is frequently used in basic recommendation sys-
tems, image recognition, and decision-making models. Converting data points into feature
vectors, or their mathematical values, is the first step in implementing KNN. The algorithm
then determines the mathematical distance between these two points. The most popular
technique for determining this distance is the Euclidean distance, as demonstrated below:

d (p, q) = d (q, p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + · · ·+ (qn − pn)

2

=
√

∑n
i=1(q1 − p1)

2

where p and q are points on the plane. The Euclidean distance applied the theory of
Pythagoras’ theorem to calculate distance values.

The classification training and testing were done in MATLAB R2020a. In MATLAB,
the K-fold cross-validation function was applied, and 5-fold was chosen. This method
divides the data into five separate parts. Each part was used as testing set and the other
part acted as the training set. Then, the process was repeated until all five parts were used
as testing set. The average of the accuracy is the overall accuracy for the classification.

3. Results
3.1. Principal Component Analysis and ANOVA

Table 5 shows the number of PCs extracted and the total percentage of variance
explained by the PC for every part of FFB. For front equatorial, one PC was extracted with
a 92.4% variance. For front basil, five PCs were extracted, with 90.6% variance explained.
For back equatorial, five PCs were also extracted, with 90.3% variance. For back basil, five
PCs were again extracted, with a variance of 89.8%. For apical, five PCs with a total of
90.2% variance were extracted.

Table 5. Number of extracted PCs and variance percentage.

Parts No. of PC Extracted Percentage of Variance Explained

Front equatorial 1 92.4%
Front basil 5 90.6%

Back equatorial 5 90.3%
Back basil 5 89.8%

Apical 5 90.2%

The ANOVA test result for the front equatorial, using extracted PC, was shown in
Table 6; the significance level, or p-value, was less than 0.05. The null hypothesis was
rejected, and there were statistically significant differences between the means of the
three classes.
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Table 6. ANOVA test for front equatorial.

Robust Tests of Equality of Means

Statistica df1 df2 Sig.

Welch 38.585 2 52.792 0.000

Table 7 shows the results of the ANOVA test for front basil. We can see that PC 1, PC
2, and PC 5 have a p value greater than 0.05. PC 3 and PC 4 have a p value of less than 0.05.
PC 1 has the greatest variance explained, at 63.5%. Its p value is 0.278. Thus, we can say
that there is no statistically significant difference between the three maturity groups based
on the front basil.

Table 7. ANOVA test for front basil.

Sum of
Squares df Mean

Square F Sig.

PC 1
Between Groups 2.580 2 1.290 1.298 0.278

Within Groups 92.420 93 0.994

PC 2
Between Groups 0.008 2 0.004 0.004 0.996

Within Groups 94.992 93 1.021

PC 3
Between Groups 38.270 2 19.135 31.368 0.000

Within Groups 56.730 93 0.610

PC 4
Between Groups 6.300 2 3.150 3.303 0.041

Within Groups 88.700 93 0.954

PC 5
Between Groups 3.175 2 1.588 1.608 0.206

Within Groups 91.825 93 0.987

Table 8 shows the results of the ANOVA test for back equatorial. PC 2, PC 4, and PC 5
have p values greater than 0.05. PC 1 and PC 3 have p values of less than 0.05. PC 1 has
the greatest variance explained, which is 68.6%. Its p value is 0.012. Thus, we can say that
there is a statistically significant difference between the three maturity groups based on the
back equatorial.

Table 8. ANOVA test for back equatorial.

Sum of
Squares df Mean

Square F Sig.

PC 1
Between Groups 8.481 2 4.240 4.672 0.012

Within Groups 84.408 93 0.908

PC 2
Between Groups 1.750 2 0.875 0.872 0.421

Within Groups 93.256 93 1.003

PC 3
Between Groups 33.160 2 16.580 24.694 0.000

Within Groups 62.444 93 0.671

PC 4
Between Groups 1.768 2 0.884 0.886 0.416

Within Groups 92.803 93 0.998

PC 5
Between Groups 2.390 2 1.195 1.188 0.309

Within Groups 93.503 93 1.005

Table 9 shows the results of the ANOVA test for back basil. We can see that PC 1, PC 2,
PC 3, and PC 4 have p values of less than 0.05. PC 4 has a p value of less than 0.05. Thus, we
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can say that there is a statistically significant difference between the three maturity classes
based on the back basil.

Table 9. ANOVA test for back basil.

ANOVA

Sum of
Squares df Mean

Square F Sig.

PC 1
Between Groups 10.080 2 5.040 5.519 0.005

Within Groups 84.920 93 0.913

PC 2
Between Groups 7.199 2 3.600 3.813 0.026

Within Groups 87.801 93 0.944

PC 3
Between Groups 8.784 2 4.392 4.737 0.011

Within Groups 86.216 93 0.927

PC 4
Between Groups 7.386 2 3.693 3.920 0.023

Within Groups 87.614 93 0.942

PC 5
Between Groups 2.704 2 1.352 1.362 0.261

Within Groups 92.296 93 0.992

Table 10 shows the results of the ANOVA test for apical. We can see that PC 1 and
PC 3 have p values of less than 0.05. PC 2, PC 4, and PC 5 have p values of less than 0.05.
PC 1 explains 66% of the variance. Thus, we can say that there is a statistically significant
difference between the three maturity categories based on the apical.

Table 10. ANOVA test for apical.

ANOVA

Sum of
Squares df Mean

Square F Sig.

PC 1
Between Groups 14.165 2 7.082 8.148 0.001

Within Groups 80.835 93 0.869

PC 2
Between Groups 4.243 2 2.121 2.174 0.119

Within Groups 90.757 93 0.976

PC 3
Between Groups 22.064 2 11.032 14.067 0.000

Within Groups 72.936 93 0.784

PC 4
Between Groups 1.933 2 0.966 0.966 0.385

Within Groups 93.067 93 1.001

PC 5
Between Groups 0.554 2 0.277 0.273 0.762

Within Groups 94.446 93 1.016

3.2. Classification Using All Bands from 180 to 1100 nm

The classification accuracies of each part are shown in Table 11. In the first mode,
by using all bands as input to the classifiers, the results show that the front equatorial
successfully achieved an average accuracy of above 89%. The accuracies of front equatorial
were the highest in both classifiers. This is the best performance among the five parts.
SVM produced the highest accuracy, which is 90.6%, followed by 87.5% produced by KNN.
Back basil achieved the lowest classification accuracy in SVM, at 66.4%. Back equatorial
achieved the lowest classification accuracy, at 60.2%, in KNN.
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Table 11. Classification accuracy using all bands from 180 to 1100 nm.

Classification Accuracy (%)

Classifiers

Parts KNN SVM

Apical 68.4 74.5
Front equatorial 87.5 * 90.6 *

Front basil 69.1 71.3
Back equatorial 60.2 69.4

Back basil 65.6 66.4
Note: The asterisks mark the highest accuracies of each column.

The receiver operating characteristic (ROC) curve is illustrated below in Figure 5. It
describes the accuracy performance of the classification of front equatorial. It is a graph of
sensitivity against specificity. Curves that are closer to the top-left corner represent better
performances. The diagonal line is drawn across the middle of the graph. The closer the
curves to the diagonal line, the less accurate it is. To compare different curve performances,
the area under the curve (AUC) can be utilized. AUC, a measure of a model’s ability to
discriminate between classes, is frequently used to summarize ROC curves [43]. The higher
the value of AUC, the better the performance of the model.

Figure 5. ROC curve of front equatorial represents the performance of all bands.

The mean AUC is 0.908, with a 95% confidence interval. The highest AUC value is
contributed by the 350 nm curve with a value of 0.959, whereas the lowest AUC value
comes from the 680 nm curve with a value of 0.865. The mean lower bound is 0.824, while
the upper bound is 0.992. This shows a promising result for the classification of the front
equatorial data.

3.3. Classification Using Different Bands

In the second mode of classification, wavelengths were divided into UV, visible, and
NIR bands for individual classification testing. The front equatorial data set was used
in this mode as it shows a better result compared to others. The results are shown in
Table 12. By using KNN as classifiers, UV and Blue achieved the highest accuracy level
of 87.5%. Meanwhile, red bands have the lowest accuracy of 78.1%. By using SVM as
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classifiers, UV bands have the highest accuracy level of 91.7%, and green bands have the
lowest accuracy level of 69.8%.

Table 12. Classification accuracies for different wavelength bands.

Classification Accuracy (%)

Classifiers

Regions KNN SVM

UV 87.5 * 91.7 *
Blue 87.5 * 87.5

Green 82.3 69.8
Red 78.1 76.0
NIR 84.4 78.1

Note: The asterisks mark the highest accuracies of each column.

The ROC curve was drawn to test the accuracy performance of each region. Figure 6a
shows the ROC curve of the UV bands. The mean AUC is 0.922 with a 95% confidence
interval. The highest AUC value is contributed by the 350 nm curve with a value of 0.959,
and the lowest AUC value comes from the 210 nm curve with a value of 0.889. The mean
lower bound is 0.849, while the upper bound is 0.995.

Figure 6. ROC curve of: (a) UV bands; (b) blue bands; (c) green bands; (d) red bands; and
(e) NIR bands.
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Figure 6b shows the ROC curve of the blue bands. The mean AUC is 0.941, with a
95% confidence interval. The highest AUC value is contributed by the 450 nm curve with a
value of 0.944, and the lowest AUC value comes from the 490 nm curve with a value of
0.938. The mean lower bound is 0.879, while the upper bound is 1.000.

Figure 6c shows the ROC curve of the green bands. The mean AUC is 0.939, with a
95% confidence interval. The highest AUC value is contributed by the 530 nm curve with a
value of 0.944, and the lowest AUC value comes from the 570 nm curve with a value of
0.930. The mean lower bound is 0.875, while the upper bound is 0.999.

Figure 6d shows the ROC curve of the red bands. The mean AUC is 0.884, with a 95%
confidence interval. The highest AUC value is contributed by the 640 nm curve with a
value of 0.899, and the lowest AUC value comes from the 680 nm curve with a value of
0.865. The mean lower bound is 0.789, while the upper bound is 0.979.

Figure 6e shows the ROC curve of the NIR bands. The mean AUC is 0.891, with a 95%
confidence interval. The highest AUC value is contributed by the 1100 nm curve with a
value of 0.914, and the lowest AUC value comes from the 990–1020 nm curve with a value
of 0.885. The mean lower bound is 0.792, while the upper bound is 0.989.

3.4. Classification Using Representative Bands

The classification accuracies of the third mode, which used representative bands, are
shown in Table 13. These bands were extracted from the UV, blue, green, amber, red, deep
red, far-red, and near-infrared regions, respectively, via front equatorial, as it has the best
accuracy. By using KNN as the classifier, 660 nm (deep red) has the highest accuracy, at
89.6%, whereas 523 nm has the lowest accuracy, at 75.0%. By using all the representative
bands in the KNN analysis, the composite model shows an accuracy of 92.7%. If the 523 nm
band is removed from the combination, the accuracy drops slightly to 91.7%. The accuracy
is maintained at 92.7% by removing the 850 nm (near-infrared) band from the combination.
Meanwhile, in the SVM classification, 365 nm (UV) has the highest accuracy, at 79.2%,
whereas 623 nm (red) has the lowest accuracy, at 60.4%. By using combinations of all the
representative bands in the SVM analysis, the accuracy reaches 92.7%. The classification
accuracy is increased to 93.8% if bands 523, 590, 623, and 660 nm are removed from the
combination. Note that these four bands each have an accuracy lower than 70%. The
composite models and their accuracies are shown in Table 14.

The average accuracy of KNN is 79.2%, whereas the average accuracy of SVM is 75.5%.
This shows that KNN has a better performance than SVM. Meanwhile, Figure 7 shows the
comparison between the average accuracies of three maturity levels. The unripe class has
better average accuracies compared to the other classes.

Table 13. Classification accuracy using representative bands.

Classification Accuracy (%)

Classifiers

Bands (nm) KNN SVM

365 87.5 79.2
460 84.4 74.0
523 75.0 65.6
590 80.2 68.8
623 82.3 60.4
660 89.6 * 69.8
735 88.5 71.9
850 78.1 72.9

Note: The asterisks mark the highest accuracies of each column.
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Table 14. Classification accuracy using composite models.

Classifiers Combination of Bands (nm) Accuracies (%)

KNN

365, 460, 523, 590, 623, 660, 735, 850 92.7 *
365, 460, 590, 623, 660, 735, 850 91.7
365, 460, 523, 590, 623, 660, 735 92.7 *

365, 460, 590, 623, 660, 735, 91.7

SVM

365, 460, 523, 590, 623, 660, 735, 850 92.7
365, 523, 590, 623, 660, 735, 850 92.7
365, 460, 523, 623, 660, 735, 850 92.7

365, 460, 735, 850 93.8 *
Note: The asterisks mark the highest accuracies of each column.

Figure 7. Average accuracies of the three maturity levels.

4. Discussion

ANOVA tests showed that, except for the front basil, the other four parts of the FFB, i.e.,
the front equatorial, back equatorial, back basil, and apical, exhibited statistical differences
between the three maturity groups. The front equatorial was identified as the best part
to determine the FFB maturity level. It had the highest classification accuracies of 87.5%
and 90.6%, using KNN and SVM, respectively. This could be due to the growing condition
of the FFB on the oil palm tree where the front equatorial faced the direction of sunlight
and photosynthesis occurred regularly. Compared to the backside of the FFB, where it
faced the tree and did not receive enough sunlight for photosynthesis, back basil and back
equatorial both had the lowest accuracies in KNN and SVM classifications. The back basil
part was constantly concealed by the fronds of the tree and was often yellowish or greenish
in color. Junkwon et al. [44] mentioned that the color of back basil fruits significantly varies
by variety and planting location. Hence, it was impractical for use.

The classification of FFB using reflectance intensity is a popular method in this field.
Junkwon et al. [21] concluded that hyperspectral data has better potential than RGB images
to classify the FFB maturity level. It is an NDM method focusing on special characteristics
of the reflectance data to discover the relationship between them and the maturity level of
FFB. For example, Junkwon et al. [44] described the application of the hyperspectral camera
in discovering the internal qualities of FFB. They found that the 960 to 990 nm wavelength
was suitable for maturity classification. Bensaeed et al. [27] used a hyperspectral-base
system and found that 750–910 nm bands can distinguish the three classes of maturity
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clearly. These bands were in the NIR region. Their results share a similarity with our
results, where the NIR region achieved 84.4% accuracy using KNN as a classifier.

Saeed et al. [22] stated that 570, 670, 750, and 870 nm were robust in classifying FFB
maturity with 85% accuracy. These four bands fall within the green to NIR regions. In
this study, the green region has 82.3% accuracy, the red region has 78.1% accuracy, and the
NIR region has 84.4% accuracy in the FFB maturity classifications. This is consistent with
previous research findings. In fact, the four bands were extracted in this research’s data
set for classification to compare with Saeed et al. [22] results. Using SVM as a classifier
resulted in greater accuracy, at 90.6%.

In the classification of each region, the UV region from 180 nm to 400 nm had the
highest maturity classification accuracy, of 87.5% using KNN and 91.7% using SVM. The
AUC of this was 0.922, thus further proving the performance of the UV band. The Kappa
coefficient also supported this performance with a value of 0.86. This finding agreed with
the results of Cherie et al. [45], where the UV lamp with 320–380 nm could determine the
most suitable harvest decision for FFB on the tree.

Composite models using extracted bands show better performance compared to
Dayaf [15], in which the best composite model was 590 and 660 nm, with 85.7% accuracy.
In this current research, the combination of 365, 460, 735, and 850 nm wavelengths achieved
an accuracy of 93.8% by using SVM, which is higher than the Dayaf [15] model’s accuracy.
Furthermore, this composite model also surpassed the accuracy of all band classifications
with 90.6% for the front equatorial data set and 91.7% for the UV region. This was the
highest accuracy in the three modes of classification in this study.

This research uses three modes to classify FFB maturity. We tried to reduce the number
of bands for classification without losing accuracy and found that the UV region containing
23 bands, from 180 to 400 nm, improved the accuracy by 1% only. On the other hand, the
composite model of 365, 460, 735, and 850 nm improved the accuracy to 93.8%, despite
using only four bands.

Two types of classifiers, SVM and KNN, were used in the analysis. In the first mode
of analysis, SVM surpassed the performances of KNN, with the former producing 90.6% of
accuracy for the front equatorial and the latter only producing an accuracy of 87.5%. In fact,
SVM produced greater accuracy for apical, front equatorial, front basil, back equatorial, and
back basil than KNN. In the second mode of analysis, SVM produced the highest accuracy
for the UV regions, at 91.7%, while KNN produced an accuracy of 87.5%. In the third mode
of analysis, where representative bands were used as inputs, KNN outperformed SVM
with the highest accuracy of 89.6% for 660 nm, whereas SVM produced an accuracy of
69.8%. Nevertheless, SVM still produced the best overall performance for the composite
model of (365, 460, 735, and 850 nm) with 93.8% accuracy. In short, both SVM and KNN
are robust in the classification analysis. SVM is computationally less intensive than KNN
and easier to understand, but it recognizes a limited number of patterns. KNN, on the
other hand, can find extremely complicated patterns, but its output is more difficult to
understand [46]. Sabri et al. [47] proved the efficiency of SVM in FFB grading using color
features where SVM produced accuracies from between 70% to 96%. Alfatni et al. [48] also
proved that the classification accuracy of the statistical color feature extraction from FFB
with the SVM classifier was at 92%, and the color histogram feature extraction with the
SVM classifier was at 92% as well. Our performance of KNN was also slightly higher than
the performance of KNN in the Dayaf [15] research, where it achieved 88.7% accuracy.

5. Conclusions

This study investigated oil palm FFB reflectance data. We proved that the optical
spectrometer had the ability to determine oil palm FFB maturity levels. The utilization of all
bands, from 180 to 1100 nm, resulted in 90.6% accuracy by using SVM as a classifier for the
front equatorial. The front equatorial was identified as the prime part of FFB to focus on for
the maturity data acquisition of the oil palm FFB. This vital discovery will be of immense
aid to future researchers in expediting field data collection. The next important contribution
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of this research was the findings that the UV region alone produced an accuracy of 91.7%
by using SVM. Finally, a composite model consisting of 365, 460, 735, and 850 nm produced
the highest accuracy, at 93.8%. It can be concluded that, instead of all bands, we can reduce
the number of bands to a specific region or specific bands for the classification of FFB
maturity levels.

For future work, a simple sensor that consists of the above-selected regions or a
composite model can be built to detect the maturity level of FFB to replace the existing
human grading method.
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