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Abstract: This paper presents a mechanical control method for precise weeding based on deep
learning. Deep convolutional neural network was used to identify and locate weeds. A special
modular weeder was designed, which can be installed on the rear of a mobile platform. An inverted
pyramid-shaped weeding tool equipped in the modular weeder can shovel out weeds without being
contaminated by soil. The weed detection and control method was implemented on an embedded
system with a high-speed graphics processing unit and integrated with the weeder. The experimental
results showed that even if the speed of the mobile platform reaches 20 cm/s, the weeds can still
be accurately detected and the position of the weeds can be located by the system. Moreover, the
weeding mechanism can successfully shovel out the roots of the weeds. The proposed weeder has
been tested in the field, and its performance and weed coverage have been verified to be precise
for weeding.

Keywords: deep learning; machine vision; weeder; smart agriculture; mechanical control

1. Introduction

The type of crop production and management has been toward knowledge- and
automation-intensive practices, which use automated machine, information communica-
tion technology, and biotechnology for large-scale production, which can be combined
with precision agriculture technique to increase productivity, reduce resource waste and
production costs, and improve environmental quality [1–3]. Among them, weed manage-
ment is regarded as one of the most challenging tasks in crop production. Effective weed
control can increase the productivity per unit area to meet the growing demand for crop
production [4]. Improper weed management can lead to a potential loss of approximately
32%, which is increasing every year [5]. If weeds are not effectively controlled, most of
the fertilizer nutrients applied to the crop are absorbed by the weeds, resulting in 60%
reduction in crop yield in organic farming [6].

Since weeds exhibit uneven spatial distribution [7], however, the traditional weed
management method is that herbicides are usually applied uniformly across the field. Most
herbicides are released into the environment through runoff and drift, which have an
impact on the ecological environment and human health [8]. Hand-weeding is a common
weed management practice, but it is time-consuming, high cost, labor-intensive, and more
difficult due to labor shortage in the agriculture. This practice may also expose farmers
to the risk of infected weeds. Some countries have even abandoned this practice [9,10].
Fortunately, some smart agricultural machines have been investigated recently, which use
physical or chemical methods to solve the issue of weed management [11–17]. It can be
expected that machines will replace humans or assist operators to achieve the purpose of
smart production management [18].

The type of weeding machine can be divided into passive and active based on whether
there is a power source [19]. Among them, active weeding can realize the behavior of
avoiding seedlings and simultaneously weeding. Its weeding behavior can be divided
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into swing, rotation, hybrid, etc. [18,20–23]. Among them, swing behaviors are mainly
powered by ground-driven system to drive the hoe to reciprocate. The rotary type is
divided into vertical axis rotation and horizontal axis rotation according to the position of
the rotation axis. There are notched hoe knives, claw tooth cycloidal hoe knives, etc., which
rotate around the vertical axis of the transmission mechanism of the machine. Hybrid
is a combination of swing and rotating, and its motion behavior has a high degree of
spatial freedom. However, the design challenge is how to optimize the transmission
mechanism and reduce the number of components. The weeding machines are usually
mounted behind the tractor. As the tractor moves, the weeding machine will continue to
shovel the soil to remove weeds. In fact, the implementation of full-cover mechanized
shoveling operations will affect the organic matter content in the soil, which in turn affects
the nutrient absorption effect of the crop roots.

Generally, a detector is installed on an automated weeding machine, which is expected
to be used to detect whether there is crop in the interrow. At the same time, the actuator
can control the knives or hoe knives under the soil. Based on the detection results, the
actuator can move the knives into or out of the rows to fork over the soil, so as to remove
weeds [9,24]. Since the performance of the end effector (actuator) of weeding machinery
directly affects the efficiency of weeding. This kind of variable rate technology is rarely
used in actual operation and the cost is also a key factor that needs to be considered [25].
In order to achieve the purpose of precise weeding, some weeding machine combine
computer vision technology with a mobile robot capable of autonomous navigation [26].
The mobile manipulator must be able to accurately locate the weeds in real time. At the
same time, the weeding tools must cooperate with the actuator to operate the weeding
tools at the right time to remove the weed.

In previous study, a machine vision-based smart weeder is peoposed that uses im-
age processing methods to identify crops and weeds, and uses an inference-based control
method to drive three direct current (DC) motors, which are driven by gears and chains [27].
The three-claw harrows weeding tool on the connecting rod is inserted into the soil, and
then the soil is moved backward to remove the weeds. However, due to the type of claw
harrow and the torque limitation of the actuator, this machine is only suitable for soft soil
and small weed removal. McCool et al. [28] described mechanical methods as an alter-
native to weed management. They proposed different types of weeding tools, including
arrow- and tine-shaped, which can be mounted on a guided vehicle to perform weeding
operations. Statistical analysis proves the effectiveness of these tools and emphasizes
the importance of early intervention. Other types of weeding tools, such as intrarow
plowshares, comb harrows, spring harrows, and specific plowshares for in-row weeding,
are also used for weeding operations [29]. Fennimore and Cutulle [30] developed and
implemented machine vision technology in an autonomous weeder. Two robotic arms
cooperate with weed actuators to spray herbicides directly on each weed. Raja et al. [31]
proposed a weeding system based on a 3D geometry detection algorithm of robot vision. A
corresponding mechanical weeding device was also designed, used for automated weeding
in tomato and lettuce fields, which can efficiently perform weed removal in a high-density
environment. Kumar et al. [32] proposed an mechatronics prototype for interrow weeding
and crop damage control, which initiates weeding operations through plant sensing, soil,
and plantation parameters. The developed method combines the different conditions of
soil, forward speed, and plant spacing to calculate the dynamic lateral movement speed.
However, it is still easy to be affected by vibration or other uncontrolled movements during
image processing in practical applications, resulting in blurry images, which impact the
recognition and positioning performance. Meanwhile, this mechanism is complicated and
lacks modular design.

The implementation of machine vision technology for weeding tasks first needs to
use image processing methods to extract features such as the color, texture, and shape of
the image, and then combine them with machine learning algorithms such as clustering
or classification to detect and classify weeds [33–36]. Among them, the shape or feature
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extraction based on the support vector machine is the most commonly used to distinguish
crops and weeds [37–39]. After this, it is necessary to determine the feature of the target
object and use some morphology or color space conversion methods to extract the feature
and position of the weeds [40,41]. Due to the use of a machine vision system to detect and
locate weeds, its system performance is limited by the uncertainty of the environment,
including light conditions and color variance of leaves or soil, which also results in a
decrease in the performance of weed control. There are currently some weed detection
technologies that integrate images taken from multiple perspective sources and multiple
feature marks to improve the accuracy of weed recognition and location [42,43]. Because of
its complex system design, time-consuming and maintenance costs need to be considered.
Other methods include the use of controlled light emitting diode (LED) lighting equipment
in the dark box and the use of camera-lighting module to record the reflection spectrum of
the object. The system combines the size information of the desired object to distinguish
crops, weeds and soil in horticultural crops, which can locate weeds [44]. Currently, this
method has not integrated weeding equipment to implement precise weeding operations.

With the improvement of computer computing performance and the increase in
the number of available images, deep learning has been able to provide enhanced data
expression capabilities for target objects in images. These methods can be used to extract
multiscale and multidimensional spatial semantic feature information of objects [5,45–47].

In many cases, the detection and classification results obtained using convolutional
neural network method are better than the classification results produced by using machine
learning commonly in the early stages [48–55]. However, deep learning needs to rely on a
large number of data sets for training, it is not easy to collect crop and weed images [56].
Redmon et al. [57] proposed a fast target detection algorithm called YOLO, which can
quickly implement real-time applications. This method is based on the Darknet-53 network
architecture and has been modified many times to greatly improve the accuracy of target
identification with only a small amount of data samples.

This study proposes a weed identification technology and weeding tool control
method based on the YOLOv3 model [58], and implements it in an innovative weeding
mechanism. In the early study, an artificial intelligent-enabled shovel weeder is designed
and implemented [59]. Nevertheless, the weeder was only tested in a simulated field and
its weeding performance is limited by the torque of actuator and unstable transmission
mechanism, which requires further design and testing. The earlier designed mechanism
was modified and re-made and assembled. The modular weeding tool is attached to an
unpowered machine. The motion behavior of the weeding tool is a combination of swing
and rotating. The design concept of the transmission mechanism of the weeding machine
is derived from the power transmission of a bicycle. An inverted triangle weeding knife is
designed. The weeding machine is equipped with a camera module, which can be used
to obtain top-in-view images in real time. This weeding tool is used to test and evaluate
the effectiveness of deep learning methods. After that, the weeding machine was used
in the field to actually test the weeding performance of the method in the presence and
absence of crops. The results of different types of knives for weed removal will also be
analyzed and compared.When the trailer is moving, the proposed weeding machine can
automatically remove weeds in the farmland.

The purpose of this study is as follows: First, a weeder is implemented and can be
used to replace manual weeding. Second, the use of deep learning methods to achieve
precise removal of individual weeds to improve the existing mechanized weeding. Third,
modularize the weeder. Multiple modules can be attached to the back of the vehicle to solve
the problem of difficult disassembly and spacing adjustment of large weeders. Fourth, the
proposed weeder simultaneously weeds and shovels soil, which can reduce the probability
of weed growth. The proposed weeder is particularly suitable for homeworkers and
farmers who want to carry out organic cultivation for weeding operations in small fields.

The chapters of this paper are organized as follows: The design method for the
weeding machine and the mobile platform, including the design of the weeding mechanism
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and transmission mode, the software and hardware construction of the weeding system,
and the performance evaluation matrices are described in Section 2. The flow of the weed
detection program is also explained in this chapter. Section 3 explains how to test the
performance of weeding machine, including evaluating the performance of weed detection
and testing the weeding efficiency. The last chapter summarizes the characteristics and
applications of the weeding methods proposed in this paper and explains future work.

2. Materials and Methods

The weeding machine developed in this research will can be attached to a simple
four-wheeled trailer with no power source to perform weeding operations. The battery
supplies power to the machine. The appearance of the entire mechanism is shown in
Figure 1. At most, two sets of weeding machines are attached to the vehicle, which are
respectively mounted on the left and right sides of the vehicle. On the right is the advanced
intelligent weeding machine (Weeder #1) equipped with an inverted triangle weeding tool.
On the left is the first-generation weeding machine (Weeder #2), which is equipped with a
claw rake-type weeding tool [59].
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Based on the YOLOv3 network, the deep learning model is used as weed detection,
the network model is trained by multiple feature objects, and the trained network model
and the weeding tool control algorithm are integrated and implemented in the embedded
system. Through the execution of the program, the weeding tool can swing up and down
and back and forth for weeding operations. The following describes the design of the drive
mechanism of the weeding machine and the weed detection and control system, including
the weed recognition algorithm and the hardware construction, and the software program
flow is also described in detail in this chapter.

2.1. Mechanism Design

The design and development of weeding equipment must take into account the
various agronomical requirements of crops, soil conditions, and weed characteristics for
field management operations. For example, the appearance of the field includes different
field heights, widths, and densities of cultivated crops. In addition, the height of crops,
root length, leaf branch and soil type, water content, bulk density, and strength of the soil
also need to be considered. The mechanical design of weeding tools needs to be simplified,
so that farmers or craftsmen can repair them quickly and have low maintenance costs.
Therefore, based on the above ideas, a DC-driven weeding machine was developed. Its
components include a DC motor (model: SWG-24-1800, Xajong), a transmission mechanism,
a height-adjustable weeding handle, and a protective case (see Figure 2).
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The transmission mechanism consists of an upper sprocket (Model: RS35-B-16,
New Sheylee CO., Ltd., Taichung City, Taiwan), a lower sprocket (Model: RS35-B-32,
New Sheylee CO., Ltd., Taichung City, Taiwan), a drive chain (Model: RS35, Prelead
Industrial CO., Ltd., Taiwan), left and right discs, a coupler, a ball bearing seat, and a
cylindrical rod (16 mm × 200 mm (diameter [D] × length [L])). The size of the case is
216 mm × 180 mm × 278 mm (L × width (W) × height (H)), and the weight of the whole
machine is 6 kg. In terms of tool design, the appearance of traditional weeding tools is
mostly designed to imitate the blade geometry. Different types of soil require the use of
different shaped cutters to shovel the soil [60]. This type of tool set is installed on a rotating
mechanism, which can make the vertical cutting surface of the blade move downward
through the rotating torsion force to achieve the purpose of shoveling the soil. However,
this tool is suitable for use in fields with a low cultivation density. In contrast, weeding
tools, such as the disc, round head, and sawtooth types, are more suitable for use in fields
with higher planting density and can effectively treat weeds on the surface of the soil. In
addition, the rake-type cutter can be used to dig out weeds with shallow roots [27,59], but
the material of this cutter is more likely to stick to the soil.

Therefore, a new type of tool was designed, the material of which was aluminum
alloy. The shape of the weeding tool is an inverted triangle (90 mm × 47 mm × 80 mm
(L ×W × H)) with a sharp end, which is suitable for hard soil. In addition, the bottom of
the cutter is wider, which can cover the size of a single weed and shovel out the roots of the
weeds. A combination of multiple iron plates is used as the mechanism case. The upper
part of the front and rear sides is locked with a pull handle, and a proximity switch is
installed inside the upper part of the iron plate (Model: TG1-X3010E1, Prosensor Phototech
Co., Ltd., Taoyuan city, Taiwan), which is used to stop the motor. The digital lens (Model:
Logitech BRIO, Logitech International S.A., Lausanne, Switzerland) is installed under
the case.

The control box is installed on the back side of the case, and it contains an embed-
ded control board (Model: Jeston Nano, NVIDIA Company, Santa Clara, CA, USA) and
peripheral circuit boards. A DC 24V lead-acid battery (Model: GP1272 F2, CSB Energy
Technology Co., Ltd., Taipei city, Taiwan) is the power source for the entire system. The
specifications of the weeding system are shown in Table 1.
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Table 1. The specifications of the weeding machine.

Description Value or Other Details

Mechanism body

Size (L ×W × H) 216 mm × 180 mm × 278 mm
Weight 6 kg

Weeding body
Upper sprocket (Number of teeth (T) × outer diameter (Ø)) 16 mm × 54 mm
Lower sprocket (T × Ø) 32 mm × 102 mm
Roller chain (length; tension) RS35-1; 1150 kgf
Cylindrical rod (D × L) 16 × 200 mm
Weeding tools (L ×W × H) 90 mm × 47 mm × 80 mm
Disc (D ×W) 140 mm × 3 mm

Electronics components
Main control board (speed; memory) 1.43 GHz; 4 GB 64-bit LPDDR4
DC motor (voltage; gear ratio; torque; speed) 24 V; 1:15; 26.7 kg/cm; 120 rpm
Proximity switches (voltage; distance; output) 24 V; 10 mm; normal open
Digital camera (resolution; focus type) 4 K Ultra HD; auto focus
Battery (voltage, capacity, weight) DC 24 V, 7.2 Ah, 2.4 Kg

Considering the lowest transmission loss, the double-gear chain transmission mecha-
nism was designed. This design concept was derived from the mechanical transmission
principle of the bicycle. The transmission component adopts a sprocket, which is made of
medium carbon steel.

First, the DC motor rotates to drive the upper gear, and the chain of the upper gear
drives the lower gear. The lower gear is fixed in the case on the left side, and is connected
to the left and right disks by a coaxial connector. Close to the center point of the two discs,
a square seat is locked, and a cylindrical rod is installed in it, which is inserted into the
square coupler and is connected to a ball bearing seat inside the casing. There are holes in
different positions on the end of the cylindrical rod, and the user can select a suitable hole
position and lock the weeding tool on the cylindrical rod to adjust the distance between
the weeding tool and the ground. When the motor rotates, the weeding handle has a
reciprocating swinging behavior (Figure 3). This operation mode is like a farmer holding
a hoe for weeding. The sequence of this motion involves extending the weeding tools,
digging down, turning up the roots of the weeds, throwing away the weeds, and retracting
the weeding tools.
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Assume that the torque, speed, and radius of the upper sprocket are Ta, na, and ra,
respectively. The chain connects the upper and lower gears. Without considering the
transmission and mechanical friction, the torque Tb and speed nb of the lower gear are:

Tb =
Gb
Ga
× Ta (1)

nb =
Ga

Gb
× na (2)

Among them, Ga and Gb represent the ratio of the number of teeth of the upper gear
to the lower gear, respectively. Since the lower gear and the two discs are on the same axis,
the disc rotation speed nc = nb, the tangential torque of the fixed point of the cylindrical
rod on the disc Tc is:

Tc =
rb
rc
× Tb (3)

where rb represents the radius of the lower gear and rc is the distance between the center
of the disc and the center of the square seat. Assuming that point o is a fixed point, the
distance from point o to the ground is defined as h and the depth of weeding as D. When
the center point of the square seat is at the positions ¶, ·, ¸, and ¹ in Figure 3, the length l
from point p to the end of the cylindrical rod can be defined as:

l = hcos−1θ (4)

where θ depicts the angle of weeding. When θ = 0
◦

(position ·), the length reaches the
maximum value lmax:

lmax = h + d (5)

When the center point of the square seat is at position 4 (origin position), l has a
minimum length lmin.

During the weeding process, a digital camera takes an image of the planted area, and
a YOLOv3-based deep learning method is used to detect and locate weeds (see Figure 4a).
Suppose v depicts the moving speed of the vehicle and s represents the operation range
of weeder between the center point p (xp, yp) of the weed detection frame and the point
q (xq, yq) below the weed cutter, as shown in Figure 4b. The orange frame represents the
detection results. The green arrow indicates the heading of the trailer and the dashed box
indicates ground truth. The light gray area represents the weeding range, w is the width
of the weeding, and the white color line represents the upper and lower boundary of the
weeding range. Once two weeds are detected and appear in the gray area, the object with
the largest frame area is selected. In addition, the size of weeds that are too small are
ignored because they have little effect on the growth of the crop. When the trailer moves
for t = s/v seconds, once the weeding system detects weeds, the system must activate the
weeding tool within t seconds to remove the weeds.

2.2. System Description
2.2.1. Hardware

The sensing and control circuit components in the weeding system include a main
control board, relays (JQC-3FF-S-Z, Tongling), DC motors, digital cameras, DC/DC conver-
sion modules (model: XL4005, XLSEMI company, Shanghai, China), proximity switches,
and automatic voltage regulators (AVRs). The circuit system architecture is depicted in
Figure 5a. The function of the main control unit is to execute weed detection algorithms
and motor drive and control decisions. The main control board can receive the images
taken by the digital camera via the Universal serial bus (USB) port and store them in the
memory. Two sets of relays are connected to the general-purpose input/output (GPIO)
port of the main control board, which can receive the driving signal output from the main
control board to start and stop the motor.
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The proximity switch (type: normal open (NO)) is used to detect whether the square
seat in the weeding mechanism has returned to the original position, and the detection
signal is then input into the main control unit through the GPIO interface. The 24 V battery
provides power for circuit components, including motors and proximity switches. The
negative output terminal “−” of the battery is connected to the ground (GND) terminal of
the circuit board. The DC/DC module is used to convert 24 V to 5 V for the embedded
control board; these components and the control board are integrated in a waterproof
control box, as shown in Figure 5b. The upper layer is a circuit board, which mainly
integrates DC/DC conversion modules, relays, and other electronic components, and the
lower layer is for placing an embedded control board.

2.2.2. Software

The YOLOv3 tool [57] is a common deep learning model used to quickly detect
objects. It is executed in the Darknet environment. Residual neural network (RestNet) [61]
and feature pyramid networks (FPN) are its main architectures, which can improve the
prediction ability of small objects. This network tool is used to detect weed objects. A
desktop computer with a high-speed computing processor (Model: Intel i5-8400, Intel Co.,
Santa Clara, CA, USA) is paired with a high-speed graphics processing unit (GPU) (Model:
GTX 1070, Nvidia Co., Santa Clara, CA, USA) to train the YOLOv3 network model. The
training model of YOLOv3 is configured as follows: Batch size set to 64, image size resized
to 416 × 426 pixels, subdivision of 32, momentum of 0.9, decay of 0.0005, learning rate
of 0.001, batch size of 64, etc. After that, image preprocessing is performed, including
image cropping, white balance, and noise filtering processing, which is then marked by
trained technicians and used for model training and evaluation. Among them, 80% of the
images are used for training and 20% are used for testing. The bounding box of the region
of interest is drawn and exported to YOLO format for model development.

During training, the training loss of each epoch is recorded to evaluate the performance
of the visualization model in real time. Once the loss is stable and there is no significant
change, the training process stops, and the corresponding weights of the model are saved
for further evaluation of the weed detection performance. The trained YOLOv3 model
integrates the weeding control program and is embedded in the weeding system. Figure 6
shows the program execution flow, which is written in python language. First, the function
library is imported, including the external function (ctype.cdll), multi-threading module,
and open source computer vision library (cv2). Then the GPIO pins, data type, class,
structure, and subfunctions are defined. The next step is to set, import, and load the
environmental variables of Darknet; it also includes defining the frame selection parameters
and their storage file paths.

The program is executed to perform a while loop, the image is read and converted
from the blue (B)–green (G)–red (R) color layer to the RGB color layer, and then weed
detection operation is performed. Once the weed object is detected, the value “1” is
written to the text file. Otherwise, the value “0” is written to the text file. The detection
results, including bounding box and labels, are displayed in the image (see Figure 6a). In
the process of program execution, the multi-threaded module is activated and the motor
control program is executed synchronously (Figure 6b). In the while loop, the text file
value is open and read. When the value is 1, the system outputs a signal to start the motor,
otherwise it stops the motor. A function Delay() with a delay time is inserted into the
program for starting and stopping the motor.

2.3. Performance Evaluation Metrics

The performance indicators for detecting weeds will be defined in this section, includ-
ing the precision, recall, and F1-score, as well as descriptions of the efficiency of weeding
and the rate of plant damage.
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2.3.1. Weed Detection

The detection performance metrics used to evaluate YOLOv3 include the precision,
recall, and F1 score [61]. The accuracy index is as per Equation (6):

δP =
TP

TP + FP
(6)

TP (true positive solution) represents a true positive test result is one that detects the
condition when the condition is presented; in contrast, FP (false positive solution) is the
opposite result.

Ideally, the FP should be as small as possible in order to ensure the accuracy of the
network in identifying each object. The intersection-over-union (IoU) is a method to define
whether the detected object is a positive solution, as shown in Equation (7):

u =
Ud ∩Uy

Ud ∪Uy
(7)

where Ud and Uy indicate the ground truth and predict boxes of the deep neural network,
respectively, and the symbols “∩” and “∪” depict the intersection and union operator,
respectively. If u is larger than the threshold uT, the prediction result is regarded as a TP;
otherwise, it is regarded as an FP.
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The recall rate is a metric that quantifies the number of correct positive predictions
made from all possible positive predictions, and its definition is shown in Equation (8).

δR =
TP

TP + FN
(8)

where FN depicts the false negative test result. The sum of TP and FN in Equation (8)
is just the number of ground-truths, so there is no need to compute the number of FN.
The F1-score (δf) is a weighted average of the precision and recall which is performed
as a trade-off between δR and δP to demonstrate the comprehensive performance of the
trained models.

δ f =
2δPδR

δP + δR
(9)

The values of δf range from 0 to 1, where 1 means the highest accuracy. Through the
uT setting for the confidence score at various recall levels, different pairs of precision and
recall are generated with recall on the x-axis and precision on the y-axis, which can be
drawn as a precision–recall (PR) curve, indicating their association and can be employed to
measure the performance of the weed detection.
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2.3.2. Weeding Efficiency

We conducted field tests in the field to evaluate the performance of the weeding
machine for weeding operations. The evaluation metrics include weeding efficiency and
plant damage, which are shown in Equqtions (10) and (11):

η = (W −W)/W (10)

D = d/d (11)

Among them, W and W represent the number of weeds before and after weeding, respec-
tively, and d and d represent the damaged crop and the total amount of crops, respectively.

3. Experimental Results

This section explains the data collection and model training methods. In addition, two
test scenarios were used to evaluate weed detection performance and weeding efficiency

3.1. Data Collection and Model Training

Images were collected in the field under different climates and time periods. A digital
camera was used to take a total of 140 images of weeds in the experimental field. Image
processing technology, including geometric transformation (resize, crop, rotate, horizontal
flip, etc.) and intensity transformation (such as contrast and brightness enhancement, color
and noise adjustment), was used to modify the original image, thereby increasing the
number of image samples, which totaled 60.

Then, the image size was adjusted from 1920 × 1080 to 416 × 416 pixels to fit the
YOLOv3 model network, and then, each weed in each image was marked with an object box
for model training. There were 160 images in the training set, 30 images in the validation
set, and 10 images in the test set. When the number of iterations reached 20,000 times and
the loss function approached 0.135, the training was stopped and the weight value of the
network was obtained. Finally, the trained model was used to evaluate the performance of
weed detection.

3.2. Experimental Test

The experiment site is located in front of the Department of Biomechanical Engineer-
ing of National Pingtung University of Science and Technology (longitude: 120.6059◦;
latitude: 22.6467◦). The experiment period was from 5 August to 15 September 2021. Veg-
etable crops were grown for 20 days on the cropland ridges. The length of each cropland
ridge in the field was approximately 20 m and the width was 25 cm. The spacing between
each plant was 50 cm. The number and location of the weeds within the cropland were
recorded in advance. These data were used for a comparison with the experimental results.
In addition, we set up a hoist machine at the end of the field, and hooked the trailer with a
steel shackle. The user was able to adjust the speed of the hoist machine to maintain the
forward speed of the trailer.

Two experiments were used to verify the performance of the weeding system. Ex-
periment 1 was mainly to test the weed removal performance of the weeding machine
on both sides of the crop. Two weeding machines were used. Among them, the weeder
machine (Weeder #1) was mounted on the right side of the vehicle, and the first-generation
weeder machine (Weeder #2) was mounted on the other side. An inverted triangle-shaped
weeding tool was installed on the right machine, and a claw-shaped weeding tool was
installed on the left machine. Experiment 2 was mainly to test the weeding performance of
the weeder (Weeder #1) proposed in this study in the intrarow of crops. Weeder #2 was
mounted at the center of the rear of the trailer.

The test scenarios of Experiments 1 and 2 are shown in Figure 7. The dashed border
represents the area of weed detection. The mechanical design parameters and specifications
of the modified weeder (Weeder #1) based on previous research results [60] are demon-
strated in Table 2. When the weeding tool was at the origin of the mechanism, the distance
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between the coupler in the mechanism and the surface of the ground was h = 16.9 cm.
When the weeding tool was activated, the excavation depth for the weeding tool was
d = 3 cm. The maximum and minimum lengths of the cylindrical rod were lmax = 26 cm
and lmin = 15 cm, respectively.
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Table 2. The parameters and specifications of the modified weeder (Weeder #1).

Parameters Value Parameters Value

na 120 rpm l 185 mm

nb 60 rpm lmin 150 mm

Ga 16 lmax 260 mm

Gb 32 h 169 mm

Ta 27 Kg-cm d 30 mm

Tb 54 Kg-cm θ 24 degree

Tc 50 Kg-cm rb 51 mm

ra 27 mm rc 55 mm

When the weeding operation was completed, manually the number of weeds that had
not been removed and the number of damaged crops on the cropland ridges were recorded.
Weeds that are too small are ignored. When the roots of the weeds were exposed to the soil
surface, it was considered that the weeds had been successfully removed.
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3.3. Results and Discussion
3.3.1. Performance of Weed Detection Using the YOLOv3 Model

The trained YOLOv3 model was verified to detect weeds in different climatic con-
ditions. During the experiment, the climatic conditions were cloudy in the morning and
at noon, cloudy in the afternoon, and cloudy in the afternoon. When the vehicle was
moving, the weeding tool was not activated. Only the digital camera under the weeding
tool was used to shoot the image on the cropland, and the image samples were taken
by a digital camera every 2 h. The image samples were stored in the memory card. The
number of weed objects is counted in each image that were framed (or unframed), and
Equations (6), (8) and (9) were finally used to evaluate detection performance of the model.

Table 3 shows the results of weed detection using the YOLOv3 model in different
time periods. The results show that the F1 score was between 74.3% and 92.8%, especially
during the period from 10:00 to 13:00, where the accuracy was up to 95.6% and the F1-score
value was also the highest. It is worth noting that due to the low light intensity during
18:00–19:00, the accuracy rate and recall rate are reduced.

Table 3. Using deep learning models to detect weeds during the daytime.

Description Evaluation Metrics

Weather Time Precision Recall F1-score

Cloudy and sunny

08:00–09:00 0.902 0.829 0.864

10:00–11:00 0.956 0.901 0.928

12:00–13:00 0.936 0.885 0.910

14:00–15:00 0.918 0.854 0.885

Cloudy
16:00–17:00 0.903 0.833 0.867

18:00–19:00 0.832 0.701 0.761

Figure 8 shows the weed detection results of each time interval, where the green frame
represents the area where weeds are detected. It can be seen from these figures that most
of the weed objects were framed, and only a few weeds were not framed between 18:00
and 19:00.

Then, weed detection experiments were carried out on different days, and the climatic
conditions during the detection process were variable, including cloudy, sunny, and rainy.
Figure 9 shows average detection performance results obtained at different time intervals in
the same field using the YOLOv3 network model. The evaluation metrics at different time
intervals include precision, recall, and F1-score, each representing a ten day average value.

3.3.2. Performance of Weeder

The experimental weeder tests was conducted from 10:00 to 12:00, and the weather
conditions were sunny. Due to the limited area of the site, two experiments were carried
out in a single day and repeated on three different days. Finally, the data obtained from the
three times were averaged. Figure 10 shows the actuation behavior of the weeding tool. In
Figure 10a, “¶” and “·” in the white frame indicate the visible range of the camera on the
left and right weeding tools. The orange line indicates the position of the weeding tool,
which is the origin of the mechanism. When the vehicle was moving, once the weeds had
been detected, the weeder was activated (the weeding tool on the right side of Figure 10b).
In contrast, Weeder #1 was maintained at the origin of the mechanism when the weeds
could not be detected (as shown in Figure 10b, the left weeder—Weeder #2).
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The effective cutting width of the two weeding machines is 20 cm. The data given in
Table 4 show that in scenario 1, when the vehicle speed was 10 and 15 cm/s, the weeding
efficiency was between 84% and 90.9%, which is equivalent to an hourly working area of
up to 72 and 108 m2. The average F1-score values of the deep learning networks in the
left and right weeders were between 0.841 and 0.901. When the trailer speed increased to
20 cm/s, its weeding efficiency was significantly reduced, and the F1-score value was able
to still reach approximately 0.867.

In scenario 2, when the vehicle moving speed was 10 and 15 cm/s, the weeding
efficiency when using Weeder #1 was 92.3% and 82.6%, respectively, the crop damage rate
was 5.5% and 11.1%, and the F1-score was at least 0.890. The weeding efficiency of using
Weeder #2 was 87.0% (10 cm/s) and 78.6% (15 cm/s), respectively, the crop damage rate
was 8.33% and 13.8%, and the F1 score value was above 0.878. Once the vehicle speed
increased to 20 cm/s, the weeding efficiency of using Weeder #1 and Weeder #2 dropped
to 64% and 56%, respectively, and the crop damage rate increased to 44.4% and 52.7%.
However, the F1-score values were still 0.833 and 0.848, respectively.
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cameras on the left and right weeders. (a) The weed object is framed (the detection result of area
¶ (upper right corner)) and no weed is detected (the detection result of area · (upper left corner));
(b) the weeding tool on the right is activated, and the left weeding cutter is maintained at the origin
of the mechanism.

Table 4. Performance evaluation results of the weeding system.

Experiments Type of
Weeder

v
(cm/s)

Number of Weeds
η

Damaged Crop
D (%) F1-Score

W W d

Scenario 1 Weeder #1/
Weeder #2

10 25 */22 ** 4/2 84.0/90.9 - - 0.852/0.901

15 26/27 4/3 84.6/88.8 - - 0.841/0.889

20 24/21 11/8 54.2/61.9 - - 0.851/0.867

Scenario 2

Weeder #1

10 26 2 92.3 2 5.5 0.910

15 23 4 82.6 4 11.1 0.890

20 25 9 64.0 16 44.4 0.833

Weeder #2

10 23 3 87.0 3 8.33 0.903

15 28 6 78.6 5 13.8 0.878

20 25 11 56.0 19 52.7 0.848

*, **: Number of weeds on the left* and right** sides of the cropland.
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Figure 11 shows an image of the weeds being removed by two weeding tools and the
damage of the crops. Most of the roots of the weeds were turned up to the soil surface
(Figure 11a,d), and some of the weeds on the edge of the weeding tool’s coverage area
were also turned up (Figure 11b,e). Some crops were slightly shifted or damaged from
their original position due to the activation of the weeding tools (Figure 11c,f).
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Figure 11. Snapshot of the soil on the field after weeding by the weeding machine. (a) weeds are
completely removed by weeder #2, partially removed (b) and damaged crops (c); (d) weeds are
completely removed by weeding tool #1, partially removed (e) and damaged crop (f). The red circle
and orange arrow indicates the position of the crop roots and the root of the weed, respectively.

3.3.3. Discussion

There were three types of weeds in the experimental field, namely gramineous weeds,
cyperaceae and broadleaf grasses, of which sedges and broadleaf grasses accounted for a
higher proportion. At the end of each weeding experiment, we recorded the number of
weeds remaining in the field, and most of these weed objects were detected. Part of the
weeds did not actually turn up and the roots of some weeds were not removed due to the
position of the weeds on both sides of the cutting width of the weeding tools. In addition,
different shapes of weeding tools have different effects on different types of weeds. The
claw rake-type weeding tool is suitable for shallow-rooted weeds. In contrast, the weeding
tools used in this study are more suitable for removing weeds with deep roots, such as the
tuber roots of Cyperaceae.

Second, the speed of the vehicle needs to match the weeding time. When the speed is
greater than 20 cm/s, the weeding tool cannot accurately turn up the weeds. Especially
under high weed density, some weeds cannot be removed immediately. The experimental
results showed that the vehicle has a 92.6% success rate of weeding when the moving speed
is lower than 15 cm/s. The cutter can shovel 3 cm below the ground. The, the height of the
camera and the ground, and the distance between the camera and the weeding tool are
10 cm and 20 cm respectively. However, when the vehicle moves at a speed of 20 cm/sec,
the highest success rate is only 64%, and there is a 44.4% crop damage rate. The loop speed
of the weeding machine is set to one circle per second. If the moving speed of the trailer
exceeds 20 cm/s, it increases the probability of crop damage and reduce the efficiency of
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weeding. A relatively slow speed is required to achieve a higher weeding success rate
without damaging the crop. It is worth noting that when multiple weeds appear in the
image simultanously, select the weed object with the largest area to maximize the weeding
efficiency. In addition, before using this weeding tools, make sure that there are no large
stones or bricks in the soil to avoid damage to the weeder. Because the steel cable is used
by the hoist to pull the vehicle, when the vehicle is moving, the ground is relatively uneven,
and there are several short speed changes during the movement of the vehicle, resulting in
a time deviation. However, the deviation of weeding is still within the acceptable range.

The frame rate of YOLOv3 is set to 5 frame per second (fps), which can meet the
requirements of real-time detection. A small number of weed samples were provided to the
YOLOv3 model for training. Its network model was able to effectively detect weed objects
with an accuracy rate of up to 95.6%. As far as we know, there are no relevant studies that
use the YOLOv3 model to detect individual weeds in the field and use weeding tools to
weed them. Since the number of image samples has an impact on the model detection
performance, too few samples will reduce the model recognition performance [62].

In this study, the images were taken by mobile phones and some of the images were
obtained using data augmentation technology. With a limited number of images, the weed
detection model will still have different detection performance due to the difference in the
brightness of the image background. In Scenario 1, the brightness of the images captured by
the cameras on both sides is different due to the mask of the body frame and the asymmetry
of the position of the weeding equipment, resulting in different model detection results
(F1-score) of the two modules. The F1-score of the deep learning model designed in this
research can reach above 0.83. Although the use of image processing technology can
achieve a recognition rate of more than 90% in the identification of individual weeds and
crops [27]. However, due to the influence of unstable light, the recognition rate fluctuates
greatly. Using YOLOv3 model to detect weeds in low light conditions, the accuracy rate
dropped slightly, but it remained at 83.2%. On the other hand, when the deep learning
model detects eggs, its detection results are not affected by light [63], which is slightly
different from the results of this study. The reason may be that the characterization of the
detected object is more complicated. In weak light intensity environments, the performance
of the model is still affected. This result still needs to be further studied.

The advantage of using the YOLOv3 model based on the Darknet-53 architecture is
that it can quickly obtain the main characteristics of a weed or crop, and even features
outside of human visual perception [55]. It can be observed from Fig. 11 that tiny weeds
still remain on the soil surface. This result is acceptable. The dynamic balance of farmland
agroecosystems will be improved when the composition of the weed community is changed,
and the biodiversity of farmland will be improved [64].

The weeder is equipped with only one camera, and its weeding system can detect all
weeds in the image. The proposed system does not involve the construction of multiple
cameras and complex detection systems that require lighting control [42]. Meanwhile,
the YOLOv3 model can also solve the identification limit of the same size of crops and
weeds [44]. This study proposes an alternative strategy for single weed removal, replacing
the traditional all-in-one weeding (chemical or physical) method. Small weeds on the field
are neglected, which can improve the dynamic balance of the farmland ecosystem and
increase the biodiversity of the farmland [64].

Finally, the use of a new-generation YOLOv4 network can shorten the time for object
recognition [65]. If there are multiple different types of objects in the image or there are
complex backgrounds, this method should be explored and studied.

4. Conclusions

The proposed weeder uses deep learning technology to detect weeds in the field and
can use a special weeding tool to remove the weeds. The experimental results herein
confirmed the effectiveness of the machine for weeding. At travel speeds of vehicle below
15 cm/s, the weeding system can detect the weed signal with a detection speed 5 fps of
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YOLOv3 and the average weeding efficiency is 88.6%. With an F1-score of 89.5% and a
recall rate of 90.1%, the average detection accuracy rate is 90.7%. These results were from
field trials of vegetable under different climate condition, which also included various
densities of weeds. Since most of the deep learning model is only used to detect objects in
the image; and the operating conditions of the weeder depend on the detection results of
the contact or non-contact sensors on the machine. In this study, a smart farming method
combining deep learning and weeding control was proposed. Its advantage lies in reducing
the number of sensors used and the cost of maintenance. In addition, the powerful deep
learning method can also identify different types of crops and weeds, with high flexibility.

The proposed weeder can be installed on the pylon behind the tractor, and multiple
units can be made to be used on farmland of different scales and areas. The weeder is
suitable for low-density weeds, early germination of weeds, or farming environments
with deep roots of weeds, such as rice in wetlands or weeding in fields that have been
prepared. The use of the proposed weeder can indeed destroy the growth conditions of
weeds while reducing environmental medication. In addition, the weeder adopts DC
power supply, which has a low production cost (approximately 1000 US dollars) and power
consumption (approximately 500 W/h), which is of great significance for energy saving
and environmental protection.

Future work will focus on the improvement of the performance of the weeder, includ-
ing reducing the weight of the weeder and adjusting the rotation speed of the weeding tool
in real time to adapt to different speed of vehicle. This deep learning method will also be
tested to distinguish crops or weeds of the same size but different colors. Finally, install
this weeder on a large tractor for tillage farming verification.
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