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Abstract: The objective of this study was to construct a sorghum–sudangrass hybrid (SSH) yield
prediction model based on climatic, soil, and cultivar information in the southern area of the Korean
Peninsula. Besides, the effects of climatic factors on SSH yield were investigated simultaneously.
The SSH dataset (n = 105), including Dry Matter Yield (DMY, kg/ha), Seeding-Harvest Accumulated
Temperature (SHaAT, ◦C), Seeding–Harvest Accumulated Precipitation (SHAP, mm), Seeding–Harvest
Sunshine Duration (SHSD, h), Soil Suitability Score (SSS), and cultivar maturity information, was
developed for model construction. Subsequently, using general linear modeling method, the SSH
yield prediction model was constructed as follows: DMY = 6.5SHaAT – 4.9SHAP + 13.8SHSD
– 54.4SSS – 1036.4 + Maturity. The impacts of the accumulated thermal climatic variables and
accumulated precipitation during crop growth on the variance of SSH yield in this region were
confirmed. The summer-concentrated precipitation in the southern area of the Korean Peninsula
exceeded the proper range of SSH water requirement and led to stresses to its yield production.
Furthermore, to improve the data quality for high fitness model construction, the standard schedule
for forage crop cultivation experiment in this region was recommended to be developed, especially
under the data requirement in the context of the big data era.
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1. Introduction

Sorghum–sudangrass hybrid (Sorghum bicolor × Sorghum bicolor var. sudanense, SSH) is a
representative summer forage crop in the southern area of the Korean Peninsula [1]. In this area, SSH
was seeded during late April to May and its growth duration generally lasted until late September
or early October [1]. The sunlight and soil moisture could be efficiently utilized by SSH to produce
biomass, and SSH is not strict to edaphic requirement, high yield could be achieved with enough water
and fertilizer in a thick soil layer [2]. A high portion of crude protein and extract ether is contained in
SSH, meanwhile, the contents of easy digestible cellulose and semi-cellulose are high, and the lignin
ratio is low [3]. These characteristics indicate that SSH is suitable for making silage to livestock to
improve the digestibility substantially and subsequently raise its economic value [4,5]. At the same time,
the requirement of high-quality domestic forage is drawing great concerns since importing forages
costs a lot, and the long-distance transportation may lead to instability of forage quality. In recent years,
the SSH cultivated area has ranked the first position among the summer forage crops in this region [1].

As the summer forage crop with the largest cultivated area in this region, its sustainable production
is considered important for the supply of high-quality forage to the Korean livestock industry. For the
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time being, the sustainable development of the forage production sector brings the requirement of
reducing the carbon footprint during its production. With the development of precision agriculture
under the context of the big data era, crop yield modeling using environmental big data was considered
as a useful tool in the promotion of agricultural management practices and optimization of cropping
systems [6–8]. Crop model, remote sensing, and empirical modeling using statistical methods are the
main tools for crop yield prediction. Crop models need numerous data items, which are hard to obtain
in actual utilization [9]. Remote sensing is proper for yield estimation with large contiguous cultivation
areas [10,11]. In the southern area of the Korean Peninsula, the scale of forage crop farmers is small
and geographically scattered. Thereafter, the statistical method was taken for SSH yield modeling in
this study.

Climatic and soil factors are considered as the main environmental causes of crop yield
development and variability [12,13]. Climatic factors affect the phenological process of vegetation
and also determine the yields [14]. Worldwide meteorological instability has been disturbing the
sustainability and stability of crop production, and eventually threaten the supply safety of forage
sources, especially in the perspective of the forage importers in the context of climate change [15,16].
Against this background, weather-crop yield modeling considering climatic factors could be a sufficient
mean to understand agricultural productivity [17,18]. Studies on food crops yield prediction, such
as rice [19] and grain maize [20] in the southern area of the Korean Peninsula, have been actively
performed. Similar studies were also carried out in economic plants, such as Chinese cabbage [21] and
apple [22], in this region. For forage crops cultivated in this region, yield modeling studies based on
climatic data were carried out on whole crop rye [23], Italian ryegrass [24], and whole crop maize [25].
However, no research expounding climatic, soil, and cultivar data-based yield modeling of forage
crops cultivated in the southern area of the Korean Peninsula was reported. Soil is the basic factor
affecting the crop growth and yield production. Meanwhile, many new SSH cultivars were developed
and introduced in Korea in recent years, and the cultivar maturity was considered a contributor to SSH
yield variance [26]. Thus, this study was conducted to perform the SSH yield modeling using regional
climatic, soil, and cultivar data. Besides yield prediction, weather-crop yield modeling could also
investigate the effects of climatic factors on SSH yield simultaneously. The evaluation of the impacts of
the detected driving climatic factors on yield is considered helpful to enhance the response capacities
of SSH cultivation to the fluctuating meteorological conditions.

2. Materials and Methods

2.1. Crop Cultivation, Climatic, and Cultivar Data

The SSH cultivation data (n = 856), including dry matter yield (DMY), seeding dates, heading
dates, harvest dates, cultivar information, and cultivated locations, was collected from the nationwide
forage cultivation experiments operated by the National Agricultural Cooperative Federation of Korea
and National Livestock Research Institute of Korea.

To generate the climatic variables for yield modeling, the raw meteorological data such as
daily mean temperature, daily precipitation, and daily sunshine hours was collected based on the
cultivated locations and dates in SSH cultivation dataset. Cumulative temperature, water, and solar
radiation related variables during crop growth were considered as the main climatic factors affecting
crop yield [27,28]. Thereafter, using the raw meteorological data, three climatic variables including
Seeding–Harvest Accumulated Temperature (SHaAT, ◦C), Seeding–Harvest Sunshine Duration (SHSD,
h), and Seeding–Harvest Accumulated Precipitation (SHAP, mm) were generated. The temperature
related variable, SHaAT, assumed the daily mean temperature with 10 ◦C as the base temperature from
the seeding date until the harvest date [29,30]. The solar radiation related variable, SHSD, assumed
the daily sunshine hours from the seeding date until the harvest date [28]. The water related variable,
SHAP, assumed the daily precipitation from the seeding date until the harvest date [28].
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Furthermore, Seeding–Harvest Mean Ttemperature (SHMT, ◦C), which is the mean of the daily
mean temperature from seeding date to harvest date, was also calculated to present the temperature
situations during the SSH growth period in this region.

During the generation of the climatic variables, 641 data points that lacked seeding, heading, or
harvest dates were eliminated. Besides those, 3 data points were deleted since their DMY values were
detected as outliers under the normality assumption via box-plots using SPSS 24.0 (IBM Corp, Somers,
NY, USA). In addition, 107 data points with no credible cultivar maturity information were eliminated.
Therefore, an SSH dataset (n = 105) with yield values, 3 climatic variables (SHaAT, SHAP, and SHSD),
and cultivar information (Table 1) was generated.

Table 1. Sorghum–sudangrass hybrid cultivar maturity groups.

Maturity Group Cultivars

Early–maturity
BMR, GoldII, Choice, Dairyman’s dream, G83F, GW9110G, KF429,

Maxigraze, Multicut, NC+855, P988, 855F, P947, Piper, Sprint, Sweet
home, Turbo10

Mid–maturity Honey chew, Revolution(BMR), Sordan79, Super green, SX17
Late–maturity G7, P931, SS301BMR, SS405

2.2. Generation of Soil Suitability Score

To quantitatively measure the effects of soil physical and chemical attributes on yield variance
of SSH in the yield modeling, the calculation criteria for generating SSH soil suitability score (SSS)
were developed [31,32] (Table 2). The criteria for calculating SSS include soil attributes, level score,
and the weight of each soil attribute. The soil attributes included soil physical attributes (soil texture,
drainage class, slope, effective soil depth, and gravel in top soil) and soil chemical attributes (acidity,
salinity, and organic matter content). The level scores included improper (0), poor (0.5), possible (0.8),
and proper (1). Each soil attribute was given a weight score.

Table 2. The suitability criteria of sorghum–sudangrass hybrid to soil conditions.

Soil Attributes Improper (0) Poor (0.5) Possible (0.8) Proper (1) Weight
(%) Score

Soil texture silty clay, sandy clay,
clay soil

silty clay loam, loamy
sand, silty soil,

sandy soil

clay loam soil, sandy
clay loam, sandy

loam, loam, silt loam
20

Drainage class very poor poor imperfect, excessively
well moderately well, well 20

Slope (%) >60 30–60 15–30 <15 10

Effective soil depth
(cm) <20 20–50 >50 15

Gravel in top soil plenty some none none 5

Acidity (pH) >7.5 or <4.5 4.5–6 6–7.5 10

Salinity (EC dS/m) >8 4–8 2–4 <2 5

Organic matter
content (%) <0.5 0.5–1.5 >1.5 15

Total score 100

According to the location recorded in the forage cultivation dataset, the soil data was gathered
from the Korean soil information system, then the following equation derived from the above criteria
was followed to calculate the scores:

SSS = G1 ×W1 + . . .+ Gk ×Wk, (1)

where Gk is the level score, and Wk is the weight score of the kth soil attribute in Table 2. Then,
the generated soil scores were added to the SSH dataset for yield modeling.
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2.3. Yield Modeling Method

Descriptive statistics of the response and explanatory variables were generated to check their
distribution. Simultaneously, the VIF (variance inflation factor) values and the Pearson’s, partial, and
part correlation coefficients of SHaAT, SHAP, and SHSD, when running enter approach of regression
analysis, were calculated to detect the existence of multicollinearity among the climatic explanatory
variables [33].

The general linear regression model, including both continuous variables and the dummy variable,
was utilized to construct the SSH yield prediction model. The equation of the general linear regression
model is as follows:

Yn×1 = Xn×(p+1) β(p+1)×1+Zn×c γc×1+εn×1 , ε ∼ i.i.d. N (0, δ 2
)
, (2)

where Y is the vector of the response variable (DMY), X is the matrix of the continuous explanatory
variables (SHaAT, SHAP, SHSD, and SSS), and Z is the matrix of the dummy variable, which is the
cultivar maturity (early-, medium-, and late- maturities). Partial eta–squared of each explanatory
variable in the model was calculated to evaluate their effect sizes.

To check the fitness of the model, residual diagnostics, including the normal quantile–quantile
plot (Q–Q plot) of the standardized residuals and the scatter plot indicating the standardized residuals
against the predicted DMY values, were performed. The 3-fold cross-validation method was applied
to measure the accuracy of the constructed model. In 3-fold cross-validation, the SSH dataset was
randomly divided into 3 sub datasets. Each of the sub datasets was used as the test set once with the
rest 2 sub datasets used as a training set in the 3 times of validation. The R-squared and the normalized
root–mean–square error (NRMSE) were utilized as accuracy indicators. The calculation equation of
NRMSE and the judgement criteria followed the previous studies [34]. Microsoft Excel 2010 (Microsoft
Corp, Redmond, WA, USA) was used to prepare the datasets, and SPSS 24.0 was adopted for the
statistical analyses.

3. Results and Discussion

Descriptive statistics of DMY, SHaAT, SHAP, and SHSD were calculated (Table 3). The mean and
median of DMY had no large difference, and the difference between mean and the first quartile had no
large gap with the difference between the mean and the third quartile. It could be considered that
DMY was symmetrically distributed, which means it could be used as the response variable in the
following general linear regression analysis.

Table 3. Descriptive statistics for all the variables in the sorghum–sudangrass hybrid dataset.

Mean Median SE 2 Quartile

1st 3rd

DMY 1 19746.9 20316.0 681.8 13985.0 25630.0
SHaAT 2915.2 2891.7 28.9 2738.1 3100.9
SHAP 933.8 930.0 29.3 701.6 1164.3
SHSD 697.4 678.4 11.4 611.8 741.8
SHMT 23.0 22.9 0.1 22.4 23.7

1 DMY: dry matter yield, kg/ha; SHaAT: seeding–harvest accumulated temperature, ◦C; SHAP: seeding—harvest
accumulated precipitation, mm; SHSD: seeding–harvest duration of sunshine, h; SHMT: seeding—harvest mean
temperature, ◦C. 2 SE: standard error.

For the climatic variables used for SSH yield modeling, none of the variables were considered to
have serious multicollinearity based on their VIF values which were much less than 10 (Table 4) [35].
In the meantime, by investigating the plus-minus signs of the magnitudes of Pearson’s, partial, and part
correlation coefficients of the variables, the independence of SHaAT, SHAP, and SHSD could be further
recognized [35]. As presented in Table 4, no changes in the plus-minus signs of the three correlation



Agriculture 2020, 10, 137 5 of 11

coefficients of each of the three variables further confirmed no serious multicollinearity among the
three climatic variables. Therefore, the three variables SHaAT, SHAP, and SHSD were confirmed as
independent climatic variables for SSH yield prediction modeling with SSS and cultivar maturity.

Table 4. Multicollinearity statistics for climatic variables used for the sorghum–sudangrass hybrid
yield modeling.

VIF 2 Correlation Coefficient

Pearson’s Partial Part

ShaAT 1 2.122 0.318 0.186 0.169
SHAP 1.424 –0.124 –0.178 –0.161
SHSD 1.833 0.412 0.204 0.185

1 SHaAT: seeding–harvest accumulated temperature, ◦C; SHAP: seeding–harvest accumulated precipitation, mm;
SHSD: seeding–harvest duration of sunshine, h. 2 VIF: variance inflation factor.

Then, the cultivar maturity was added as a dummy variable to the general linear model with
SHaAT, SHAP, SHSD, and SSS as continuous variables to construct the SSH yield model as follows:

DMY (kg/ha) = 6.5SHaAT - 4.9SHAP + 13.8SHSD - 54.4SSS - 1036.4 + Maturity, (3)

where, for a cultivar, the Maturity predicator in the model should be substituted by the constant value,
which was calculated as shown in Table 5.

Table 5. Results of general linear model for sorghum–sudangrass hybrid including climatic variables,
soil suitability scores, and cultivar information (adjusted R-squared = 0.166, p < 0.01).

Parameter Coefficient SE 2 t 3 p-value Partial Eta-Squared

Constant −1036.4 19516.2 −0.1 0.958 0.000
ShaAT 1 6.5 3.2 2.0 0.045 0.040
SHAP −4.9 2.6 −1.8 0.068 0.034
SHSD 13.8 7.6 1.8 0.070 0.033

SSS −54.4 211.6 −0.3 0.798 0.001
[Maturity = early] 2242.2 2443.3 0.9 0.361 0.009

[Maturity = medium] 1470.9 2547.4 0.6 0.565 0.003
[Maturity = late] 0 4

1 SHaAT: seeding–harvest accumulated temperature, ◦C; SHAP: seeding–harvest accumulated precipitation, mm;
SHSD: seeding–harvest duration of sunshine, h; SSS: soil suitability score. 2 SE: standard error. 3 t: Student t quantile
for testing the significance of variables. 4 This parameter is set to zero because it is redundant.

SHaAT and SHSD were found positive effects on the variance of DMY of SSH. The thermal
temperature and solar radiation during the growth period of SSH had important effects on its
yield [36,37]. The selection of SHaAT and SHSD supported that selecting proper seeding and harvest
dates in the southern area of the Korean Peninsula to ensure sufficient accumulated temperature and
light for SSH yield development is important in management since the rainfall in this region mostly
concentrated in summer, which partially overlays its growth period.

The suitable precipitation range during the growth period of SSH is 500–800 mm [29], more or
less precipitation might lead to yield production stresses. However, in the southern area of the Korean
Peninsula, precipitation is concentrated in summer, which is the growing period of SSH. In the SSH
dataset, the first quartile of SHAP is 701.6 mm (Table 1), at the same time, the mean (933.8 mm) and
median (930.0 mm) of SHAP are all over 800 mm. Over 63% of the SHAP values in the SSH dataset
were over 800 mm (Figure 1). Thereafter, the over-demanded precipitation leads to stresses to the yield
development of SSH in this region. This was expressed as the minus signs of SHAP. The coefficient
values of cultivar maturities (early: 2242.2, medium: 1470.9, and late: 0) also indicated that, as the
growth period of SSH gets longer, the yield of SSH get more negative effects since the crop exposed
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longer period to the concentrated precipitation. Cultivars with strong waterlogging tolerance and
upland fields with good drainage conditions were recommended for the cultivation of SSH in this area.
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Figure 1. Seeding–harvest accumulated precipitation frequency in the sorghum–sudangrass hybrid
dataset (the vertical lines illustrate 800 mm, which is the threshold value of the suitable accumulated
precipitation).

The values of the partial eta-squared of SHaAT, SHAP, and SHSD were 0.040, 0.034, and 0.033
(Table 5), respectively. SSH is a C4 forage crop, therefore, its growth and development need sufficient
thermal and moisture conditions. The suitable growth temperature of SSH is 24–33 ◦C [38]. As presented
in Table 3, the mean, median, and the first and third quartiles of SHMT values were all near the
optimum temperature of the growth of SSH. Comparing with the SHAP conditions, the higher partial
eta-squared value of SHaAT than the value of SHAP in the model could be interpreted.

The adjusted R-squared of the constructed model was 16.6%, which was lower than anticipated.
Though the linear model has its advantages in yield prediction modeling under the context of
insufficient data record conditions, it has its natural limitations on model predictability as well [37].
Except for the limitations from the modeling method itself, the following reasons were also considered
as causes affecting the modeling results. Firstly, limited to the soil data record condition, soil attributes
which are more directly related to SSH yield, such as total nitrogen, alkali-hydrolysis nitrogen, available
phosphorus, and available potassium, were not measured. Secondly, converting the eight soil fertility
attributes into one measure might cause information loss and subsequently lead to the shrink of its
contribution to yield prediction (Table 5). Thirdly, management information was not considered in
the modeling since the data was not well recorded. To overcome the mentioned points, the standard
schedule for forage crop cultivation experiment was recommended to be developed, especially for
the data required under the context of the big data era. Though, a lot of field studies were performed
in the southern area of the Korean Peninsula, the data record conditions were not under a proper
status [19,20]. As mentioned above, the dates related to SSH phenological phase were not well recorded,
which led to the elimination of 641 data points during the preparation of the SSH dataset. Meanwhile,
the cultivar maturity information was not sufficient and this led to the deletion of 107 data points in the
SSH dataset. What’s more, the research investment in this sector was not paid enough attention since
the forage production sector in Korea is not large. Rare forage cultivation experiments performed and
reported the soil attributes of the experimental sites. This led to the low contribution of SSS since the
soil data were regional mean values obtained from the Korean soil information system. Thereafter, it is
recommended to develop a standard protocol for forage crop cultivation experiments to accumulate
high-quality data for future crop yield projection.
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The points in the Q–Q plot (Figure 2) are arranging well on the 45-degree line. At the same
time, the points around the zero line do not present a particular pattern in the scatter plot (Figure 3).
The results of the residual diagnostics from the two plots confirmed the fitness of the model. The results
of the 3-fold cross-validation (Figure 4) were segregated into training and test sets in each subfigure.
The average coefficient of determination (R2 fit) and the average NRMSE (NRMSE fit) of the 3 training
sets were 0.23 and 30.8%, respectively; while for the 3 test sets, the average coefficient of determination
(R2 val) and the average NRMSE (NRMSE val) were 0.16 and 33.3%, respectively. These results indicated
that the accuracy of this model was at the common level.
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4. Conclusions

In this study, a yield prediction model for sorghum–sudangrass hybrid using climatic, soil,
and cultivar data in the southern area of the Korean Peninsula was constructed. The impacts of the
accumulated thermal climatic variables and accumulated precipitation during crop growth on the
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variance of SSH yield in this region were confirmed. The summer-concentrated precipitation in the
southern area of the Korean Peninsula exceeded the proper range of sorghum–sudangrass hybrid
water requirement and led to stresses to its yield production. Furthermore, to improve the data quality
for high fitness model construction, the standard schedule for forage crop cultivation experiment in
this region was recommended to be developed, especially under the data required on the context of
the big data era.
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