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Abstract: Honey yield from apiary sites varies significantly between years. This affects the beekeeper’s
ability to manage hive health, as well as honey production. This also has implications for ecosystem
services, such as forage availability for nectarivores or seed sets. This study investigates whether
machine learning methods can develop predictive harvest models of a key nectar source for honeybees,
Corymbia calophylla (marri) trees from South West Australia, using data from weather stations and
remotely sensed datasets. Honey harvest data, weather and vegetation-related datasets from satellite
sensors were input features for machine learning algorithms. Regression trees were able to predict
the marri honey harvested per hive to a Mean Average Error (MAE) of 10.3 kg. Reducing input
features based on their relative model importance achieved a MAE of 11.7 kg using the November
temperature as the sole input feature, two months before marri trees typically start to produce nectar.
Combining weather and satellite data and machine learning has delivered a model that quantitatively
predicts harvest potential per hive. This can be used by beekeepers to adaptively manage their apiary.
This approach may be readily applied to other regions or forage species, or used for the assessment of
some ecosystem services.
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1. Introduction

The beekeeping industry in Western Australia has grown rapidly in the past decade, from 660
registered beekeepers in 2010 to over 3000 in 2019 [1]. In addition, honey produced from Western
Australia has some of the highest antimicrobial properties known for honey [2]. As these high
antimicrobial honey varieties are produced from marri (Corymbia calophylla, Myrtaceae) and jarrah
(Eucalyptus marginata, Myrtaceae) trees that occur across a large area (see Figure 1) of approximately
84,000 km2 [3], beekeepers often travel long distances to inspect apiary sites and manage their beehives.
Access to a tool to predict areas of higher and lower honey production would make apiary management
more efficient and improve industry safety by reducing the amount of rural driving required.
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Figure 1. Geographic extent of Corymbia calophylla (a) and Eucalyptus marginata (b) [3]. 

Efforts to predict flowering patterns of Myrtaceous trees in Australia from weather data have 
often found complex relationships between weather and phenology. For example, a phenological 
study of four different species of Eucalyptus with coincident geographic ranges analysed 400 data 
points of flowering status and climate over 30 years [4] with the Generalised Additive Model for 
Location, Scale and Shape (GAMLSS) technique to assess the impact of minimum, mean and 
maximum temperature for the flowering period of those species, as well as flowering intensity in the 
preceding months and season. This study found that there is a non-linear relationship between 
temperature and flowering intensity, both of which varied between the four species. Two species 
flowered more intensely with increasing maximum temperatures, one species flowered more 
intensely with increasing minimum temperature and one species flowered less intensely with 
increasing maximum temperature. While temperature was consistently a key factor in flowering 
intensity, the effect was far from consistent. 

While several studies on the relationship between satellite-derived vegetation indices and honey 
production in south-east Australia have shown promising outcomes [5–7], these have been 
qualitative in nature, with no demonstration of quantitative relationships, nor predictive model 
development. 

Hawkins and Thomson [8] developed a qualitative, relativistic model for landscape/regional 
scale nectar availability in subtropical Eastern Australia, covering an area of 314,400 Ha. This study 
identified some key factors that were related to nectar availability, notably the Gross Primary 
Productivity for the previous 12 months and the average annual solar radiation and rainfall for the 
previous 6 months. The study was broad, covering more than 50 different plant species from many 
different genera. 

In this paper, we use machine learning regression methods to assess the capability of both 
weather data and satellite-derived vegetation and moisture related data to develop a honey harvest 
prediction model for marri honey. This includes an assessment of the spatial density of weather 
station data from the Australian Government’s Bureau of Meteorology (BOM). The primary aim is to 
identify the key factors that influence marri honey production and identify potential limitations in 
the data sources for these key factors. 

Figure 1. Geographic extent of Corymbia calophylla (a) and Eucalyptus marginata (b) [3].

Efforts to predict flowering patterns of Myrtaceous trees in Australia from weather data have
often found complex relationships between weather and phenology. For example, a phenological study
of four different species of Eucalyptus with coincident geographic ranges analysed 400 data points of
flowering status and climate over 30 years [4] with the Generalised Additive Model for Location, Scale
and Shape (GAMLSS) technique to assess the impact of minimum, mean and maximum temperature
for the flowering period of those species, as well as flowering intensity in the preceding months and
season. This study found that there is a non-linear relationship between temperature and flowering
intensity, both of which varied between the four species. Two species flowered more intensely with
increasing maximum temperatures, one species flowered more intensely with increasing minimum
temperature and one species flowered less intensely with increasing maximum temperature. While
temperature was consistently a key factor in flowering intensity, the effect was far from consistent.

While several studies on the relationship between satellite-derived vegetation indices and honey
production in south-east Australia have shown promising outcomes [5–7], these have been qualitative
in nature, with no demonstration of quantitative relationships, nor predictive model development.

Hawkins and Thomson [8] developed a qualitative, relativistic model for landscape/regional scale
nectar availability in subtropical Eastern Australia, covering an area of 314,400 Ha. This study identified
some key factors that were related to nectar availability, notably the Gross Primary Productivity for the
previous 12 months and the average annual solar radiation and rainfall for the previous 6 months. The
study was broad, covering more than 50 different plant species from many different genera.

In this paper, we use machine learning regression methods to assess the capability of both weather
data and satellite-derived vegetation and moisture related data to develop a honey harvest prediction
model for marri honey. This includes an assessment of the spatial density of weather station data from
the Australian Government’s Bureau of Meteorology (BOM). The primary aim is to identify the key
factors that influence marri honey production and identify potential limitations in the data sources for
these key factors.
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2. Materials and Methods

2.1. Honey Harvest Data

Honey harvest data used for this study were from the same dataset used by Campbell, Fearns [9].
The dataset is from two apiarists: one ‘commercial’ apiarist with ~700 hives and one ‘hobby’ apiarist
with ~50 hives. This consisted of harvest data from 2011 to 2018, across 16 apiary sites (with not all
apiary sites being used every year). Honey harvest data were reduced to the average weight of honey
harvested per hive, per year, per apiary site (see Table 1). The data were also classified by this measure
as to whether the harvest was a ‘poor year’ (<20 kg honey per hive), ‘moderate year’ (20–40 kg honey
per hive) or ‘good year’ (>40 kg honey per hive).

Table 1. Summary of honey harvest data by site and year.

Site 2011 2012 2013 2014 2015 2016 2017 2018
101 N/A N/A N/A N/A 39.3 20.3 12.5 35.0
102 N/A N/A N/A N/A 36.3 0.0 4.0 30.0
103 N/A N/A N/A N/A N/A 6.0 10.0 28.1
201 Not used Not used 49.6 Not used 52.2 Not used Not used Not used
202 Not used Not used 65.6 Not used 45.5 Not used Not used Not used
204 16.1 Not used 71.0 Not used Not used Not used 26.8 40.2
205 0.0 Not used Not used Not used 48.2 Not used 13.4 38.8
206 Not used 0.0 18.8 Not used 29.5 Not used Not used 16.1
207 Not used 0.0 18.8 Not used 29.5 Not used Not used 16.1
208 Not used 8.0 16.1 16.1 12.1 Not used Not used 16.1
209 Not used Not used 18.8 Not used 20.1 Not used Not used 16.1
210 Not used Not used 56.3 Not used 67.0 Not used Not used Not used
211 Not used Not used 49.6 Not used 52.2 Not used Not used Not used
212 8.9 Not used 42.9 Not used 32.1 Not used 11.6 26.8
213 Not used 17.1 Not used Not used Not used Not used 44.2 Not used
Red = ‘poor year’ (<20 kg per hive), yellow = ‘moderate year’ (20–40 kg per hive) and green = ‘good year’
(>40 kg per hive).

While most apiary sites were within 65 km of the capital city of Perth (Western Australia, −31.95
latitude 115.86 longitude), sites extended from as far north as Dandaragan (140 km north of Perth,
−30.66 latitude 115.70 longitude) to as far south as Boyup Brook (230 km south-east of Perth, −33.83
latitude 116.38 longitude). The locations of the apiary sites are shown in Figure 2. All sites experience a
warm temperate climate zone [10] and fall within the highly biodiverse South West Australian Floristic
Region [11]. While all sites are within the same broad climatic region, the geographic extent of the sites
means there is a range of annual weather trends within the study area, with the sites north of Perth
being hotter and drier and the site south of Perth being cooler and drier (further inland than Perth).
The mean annual and summer weather statistics for the three main areas are summarised in Table 2.

Table 2. Summary of key summary weather data for the three regions where sites are located.

REGION
ANNUAL SUMMER (DECEMBER–FEBRUARY)

Mean Max.
Temperature Rainfall Mean Max.

Temperature Rainfall

Dandaragan (north of Perth) 25.9 ◦C 484.5 mm 33.8 ◦C 32.4 mm
Mundaring (Perth Hills) 22.6 ◦C 1069 mm 29.7 ◦C 49.3 mm

Boyup Brook (south of Perth) 22.4 ◦C 649.1 mm 29.0 ◦C 44.7 mm
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Figure 2. Apiary site locations indicated by yellow markers. Site labels correspond to those listed in 
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There was also a large range of mature tree canopy cover across the sites. Using the vegetation 
structure products produced by Auscover [12] in combination with the height range of mature, 
flowering Corymbia calophylla (marri) trees of 10–40 m [13], the percentage of mature canopy cover for 
the apiary sites ranges from as low as 2.6% (for a farm site near Dandaragan) to as high as 61.9% (for 
a forest site in the Beelu National Park, near Mundaring) with a median mature canopy cover of 
32.6%. Examples of these canopy cover extents are shown in Figure 3. 

 
Figure 3. Examples of the minimum, median and maximum mature canopy cover across the apiary 
sites (images are all 1 km × 1 km extent). 

2.2. Temperature, Rainfall and Solar Exposure Datasets 

These standard meteorological datasets were retrieved from the Bureau of Meteorology (BOM)’s 
Australian Data Archive for Meteorology (ADAM), a database that holds weather observations 
dating back to the mid-1800s for some sites [14]. Daily weather observations stored within ADAM 
are readily accessible online via BOM’s Climate Data Online portal [15]. Weather stations managed 
by BOM are installed and operated to consistent standards [16], providing a high degree of 
confidence when comparing data between years and sites. 

Figure 2. Apiary site locations indicated by yellow markers. Site labels correspond to those listed in
Table 1. Coordinates are in World Geodetic System 1984 (WGS84).

There was also a large range of mature tree canopy cover across the sites. Using the vegetation
structure products produced by Auscover [12] in combination with the height range of mature,
flowering Corymbia calophylla (marri) trees of 10–40 m [13], the percentage of mature canopy cover for
the apiary sites ranges from as low as 2.6% (for a farm site near Dandaragan) to as high as 61.9% (for a
forest site in the Beelu National Park, near Mundaring) with a median mature canopy cover of 32.6%.
Examples of these canopy cover extents are shown in Figure 3.
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2.2. Temperature, Rainfall and Solar Exposure Datasets

These standard meteorological datasets were retrieved from the Bureau of Meteorology (BOM)’s
Australian Data Archive for Meteorology (ADAM), a database that holds weather observations dating
back to the mid-1800s for some sites [14]. Daily weather observations stored within ADAM are readily
accessible online via BOM’s Climate Data Online portal [15]. Weather stations managed by BOM
are installed and operated to consistent standards [16], providing a high degree of confidence when
comparing data between years and sites.

While the individual weather station measurements have a high degree of confidence, weather
stations in the study area are widely spaced, with up to 38.9 km between apiary sites and the nearest
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weather station (Table 3). With the majority of the surveyed extent of the marri trees covering
~84,000 km2 [3], only ~11,000 km2 (or 13% of this area) has a temperature station within 10 km. This is
shown spatially in Figure 4. The relatively sparse weather station network means that the extrapolation
of temperature data to apiary sites may introduce some errors. Additionally, while a 10 km buffer from
the rainfall recording stations covers 50% of the surveyed extent of marri trees, the spatial extent of
rainfall events, particularly summer thunderstorms, can be much less.

Table 3. Distances between apiary sites and weather stations Bureau of Meteorology (BOM) weather
station locations retrieved from [17].

Apiary Site Nearest Temperature
Station Distance (km) Nearest Rainfall

Station Distance (km)

101 PEARCE RAAF 12.3 MARBLING 3.7
102 BICKLEY 10.5 MAIDA VALE 5.2
103 BICKLEY 9.7 ROLEYSTONE 3.6
201 BICKLEY 6.2 BICKLEY 6.2
202 BICKLEY 23.9 CHIDLOW 5.5
203 BICKLEY 24.5 WOOROLOO 4.7

204 BICKLEY 19.3 LAKE
LESCHENAULTIA 1.8

205 BICKLEY 27.0 WOOROLOO 6.9

206 BADGINGARRA
RESEARCH STN 38.9 CHELSEA 4.9

207 BADGINGARRA
RESEARCH STN 33.3 TAMBREY 2.4

208 LANCELIN
(DEFENCE) 34.6 DANDARAGAN

WEST 3.2

209 LANCELIN
(DEFENCE) 37.9 DANDARAGAN

WEST 1.2

210 BICKLEY 1.2 BICKLEY 1.2
211 BICKLEY 4.8 BICKLEY 4.8
212 BICKLEY 20.1 CHIDLOW 0.1

213 BRIDGETOWN
COMPARISON 29.9 BOYUP BROOK 10.0

Shaded cells indicate either temperature stations further than 10 km from the apiary site or rainfall stations more
than 2 km from the apiary site.Agriculture 2020, 10, x FOR PEER REVIEW 6 of 17 
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An example of the rainfall from such a storm event is shown in Figure 5. The main storm feature
is approximately 18 km across its long axis but the more intense central area, where rainfall may be as
high as 200 mm/h in this case, is just over 2 km across. Reducing the buffer around the BOM rainfall
stations to 2 km means that only 3.1% of the marri spatial extent is sufficiently close to a rainfall station
to reliably detect these isolated, yet intense, summer rain events. With summer rainfall being one of
the key indicators of marri honey harvest weight [9], this lack of coverage may limit the ability of the
BOM rainfall data to reliably classify or predict honey harvest weight.
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red), and (b) the storm front of a winter thunderstorm in July.

The distances between the apiary sites where the honey harvest data is from and the nearest
weather stations are provided in Table 3, with temperature stations more than 10 km away and rainfall
stations greater than 2 km away highlighted. A total of 75% of the apiary sites are more than 10 km
from the nearest temperature station and 75% of the apiary sites are more than 2 km from the nearest
rainfall station. Only one apiary site was within both 10 km of a temperature station and 2 km of a
rainfall station.

2.3. Satellite-Derived Data

All other input datasets for modelling were derived from the Moderate Resolution Imaging
Spectrometer (MODIS) sensor which is carried on the Terra and Aqua satellites [19], with data retrieved
from the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) online
portal [20]. A summary of the scientific basis for the creation of these datasets follows below. All
datasets were retrieved from the AppEEARS portal at a pixel size of 1000 × 1000 m, from the pixel
in which the apiary site is located. Retrieving data from coincident pixels meant that the subsequent
integration of the data into a single database was a straightforward process. This pixel size was selected
based on the typical forage range for honeybees with moderate nectar availability being 1–2 km [21].
This spatial resolution scale is also in line with studies elsewhere in the world investigating links
between honeybee foraging and satellite data, such as eastern Australia [6] and Europe [22]. These
studies concluded that, due to the foraging distances, the larger pixels of MODIS datasets were a more
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accurate representation of the foraging conditions for a given apiary site than data from sensors with a
higher spatial resolution.

All satellite derived data sets were filtered using the quality control channel contained in the
AppEEARS download files. The particulars of the quality control parameters for each dataset can be
found in the references provided in the following paragraphs. The quality control filter was set to only
allow the highest quality data through into the machine learning algorithm input dataset.

The Gross Primary Production (GPP) MODIS-derived product was developed by Running
and Nemani [23], based on the theory that productivity of crops with sufficient water and nutrient
availability is linearly related to the amount of absorbed solar radiation and the efficiency of its
use [24]. The MOD17 data product [25] used for this study incorporates the vegetation conversion
efficiency factor (ε), as well as the effect of water stress and cold conditions on this conversion factor.
Ground-based validation of the MOD17 data by Turner and Ritts [26] found that MOD17 GPP is
responsive to general trends associated with local climate and land use, but tended to overestimate
GPP in low productivity areas and underestimate GPP in high production areas.

The MOD16A2 Net Evapotranspiration data product [27] is based on the retrieval of key parameters
of the Penman–Monteith evapotranspiration formula from MODIS data [28]. A reliability study of this
data product in dry, heterogenous forests against ground measurements yielded a strong correlation of
r2 = 0.82 [29], indicating the high overall reliability of the product.

The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were
both retrieved from the MOD13Q1 data product [30]. NDVI has been found to be strongly related to
leaf chlorophyll content, whereas EVI is more indicative of canopy structural variations, including leaf
area index (LAI) [31].

The Marri Flowering Index (MFI), developed by Campbell and Fearns [32], was designed for
direct detection of marri flowers from MODIS data, based on an analysis of spectroradiometer surveys
of this particular species. While the MFI has proven to be an effective index for classifying the marri
honey harvest weight for some apiary sites with a high proportion of canopy cover [32], it appears to
be less reliable across multiple apiary sites and years [9].

The Normalised Difference Water Index (NWDI) [33] is sensitive to changes in the liquid water
content of vegetation canopies. This is a proven metric for vegetation water stress [34], which may
impact bud development and nectar production.

2.4. Classification and Regression Tree Analysis

Classification and regression trees [35] are machine learning methods commonly used to build
predictive models from input data [36]. Both methods partition the input dataset into smaller subsets
and perform a simple prediction for each subset. By repeating this process over the entire dataset and
combining the simple predictions together, a ‘tree’ type classification or regression structure is made.
Classification trees are used for predictive models based on discreet classes or values, while regression
trees are used for continuous variables or ranges.

To develop a predictive model, we tested two kinds of regression and classification approaches.
Boosted Regression Trees (BRTs) are versatile, tree-based regression methods that can handle input
features of different data types, while handling complex nonlinear relationships as well as interaction
effects between the input features [37]. Random Forest trees have become popular in recent years for
remote sensing and ecological applications due to their ability to handle both high data dimensionality
and multicollinearity, which are common in multi-spectral remote sensing data, and the fact that they
are both fast and insensitive to overfitting [38]. The Scikit-learn code for Python was used for the
analysis [39], with the GradientBoostingRegressor, GradientBoostingClassifier, RandomForestRegressor and
RandomForestClassifier functions initially used to assess which approach resulted in the most accurate
predictive model.



Agriculture 2020, 10, 118 8 of 17

2.5. Results

Input data were retrieved from several different sources for periods both preceding and during
the main honey flow period for marri trees (February). The sources, periods and abbreviations used
hereafter for these data are provided in Table 4. In total, a multidimensional database of 115 input
features was created from the data summarised in Table 4.

Table 4. Summary of features used in the regression tree analysis.

Feature Months Used Data Source

MaT: Median maximum monthly
temperature (◦C)

Median maximum monthly temperature during flowering
(MaTD) to the median maximum monthly temperature for

the 11 months preceding flowering (MaT11)

Australian Data Archive for
Meteorology (BOM) [15]

MiT: Median minimum monthly
temperature (◦C)

Median minimum monthly temperature during flowering
(MiTD) to the median minimum monthly temperature for

the 11 months preceding flowering (MiT11)

T40: Number of days above 40 ◦C
Total number of days above 40 ◦C during flowering (T40D)

to total number of days above 40 ◦C for the 6 months
preceding flowering (T406)

T25: Number of days below 25 ◦C
Total number of days below 25 ◦C during flowering (T25D)
to the total number of days below 25 ◦C for the 6 months

preceding flowering (T256)

R: Monthly rainfall (mm) Total rainfall during flowering (RD) to the total rainfall
during the 11 months preceding flowering (R11)

SRad: Nett mean monthly Solar
Exposure (MJ/m2)

Mean solar exposure during flowering (SRad) to the mean
solar exposure for the 11 months preceding flowering

(SRad11)

GPP: Gross Primary Productivity
(kgCm2)

Gross Primary Productivity from 1 month prior to
flowering (GPP1) to the Gross Primary Productivity from

the 11 months prior to flowering (GPP11)

Application for Extracting and
Exploring Analysis Ready

Samples (A%%EEARS)
[20]-MOD17A2H product

PSN: Net Photosynthesis
Net Photosynthesis from 1 month prior to flowering

(PSN1) to the Net Photosynthesis from 11 months prior to
flowering (PSN11)

A%%EEARS—MOD17A2H product

ET: Evapotranspiration
(kg/m2/day)

Evapotranspiration from 1 month prior to flowering (ET1)
to the Evapotranspiration from the 11 months prior to

flowering (ET11)
A%%EEARS—MOD16A2 product

LE: Average Latent Heat Flux
(J/m2/day)

Average Latent Heat Flux from 1 month prior to flowering
(LE1) to the Average Latent Heat Flux from the 11 months

prior to flowering (LE11)
A%%EEARS—MOD16A2 product

PET: Total Potential
Evapotranspiration (kg/m2/day)

Total Potential Evapotranspiration from 1 month prior to
flowering (PET1) to the Total Potential Evapotranspiration

from the 11 months prior to flowering (PET11)
A%%EEARS—MOD16A2 product

PLE: Average Potential Latent
Heat Flux (J/m2/day)

Average Potential Latent Heat Flux from 1 month prior to
flowering (PLE1) to the Average Potential Latent Heat Flux

from the 11 months prior to flowering (PLE11)
A%%EEARS—MOD16A2 product

NDVIA: Average Normalized
Difference Vegetation Index

Average NDVI from 1 month prior to flowering
(NDVIAv1) to the average NDVI for the 11 months prior to

flowering (NDVIAv11)
A%%EEARS—MOD13A1 product

NDVIM: Maximum Normalized
Difference Vegetation Index

Maximum NDVI from 1 month prior to flowering
(NDVIMx1) to the maximum NDVI for the 11 months

prior to flowering (NDVIMx11)
A%%EEARS—MOD13A1 product

EVIA: Average Enhanced
Vegetation Index

Average EVI from 1 month prior to flowering (EVIAv1) to
the average EVI for the 11 months prior to flowering

(EVIAv11)
A%%EEARS—MOD13A1 product

EVIM: Maximum Enhanced
Vegetation Index

Maximum EVI from 1 month prior to flowering (EVIMx1)
to the maximum EVI for the 11 months prior to flowering

(EVIMx11)
A%%EEARS—MOD13A1 product

MFI: Marri Flowering Index Maximum Marri Flowering Index (MFI) value for February AppEEARS—derived from
MODOCGA product

NDWI: Normalized Difference
Water Index

Average NDWI from 1 month prior to flowering
(NDWIAv1) to the average NDWI for the 11 months prior

to flowering (NDWIAv11)

AppEEARS—derived from
MOD09A1 product
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To assess the predictive accuracy of each algorithm, both the regression and classifier functions
for the gradient boosted and Random Forest tree algorithms were run for all 115 input features, with
an increasing number of trees in the model. No complexity limit was given due to the relatively small
size of the dataset and the resulting short run time. The output from this testing (see Table 5) shows
that the Random Forest functions worked better for the classification approach, based on the ‘poor
year’, ‘moderate year’ and ‘good year’ ratings, and the Gradient Boosted functions worked better for
predicting the honey harvest weights via the regression model.

Table 5. Summary of predictive errors for different sized Random Forests.

Number of
Algorithm

Trees

RANDOM FOREST TREES GRADIENT BOOSTED TREES

Honey
Weight

Regression

Honey
Weight

Classification

Honey
Class

Classification

Honey
Weight

Regression

Honey
Weight

Classification

Honey
Class

Classification

5 11.68 kg 25% 50% 13.49 kg 50% 42%
10 13.63 kg 25% 50% 11.38 kg 25% 42%
20 12.46 kg 25% 42% 10.42 kg 18% 42%
50 11.48 kg 25% 42% 10.55 kg 18% 42%
100 11.31 kg 25% 33% 10.35 kg 18% 42%
200 11.63 kg 25% 33% 10.33 kg 18% 42%
500 11.56 kg 25% 33% 10.33 kg 18% 42%

1000 11.29 kg 25% 33% 10.33 kg 18% 42%
5000 11.43 kg 25% 33% 10.33 kg 18% 42%

Note that the ‘Honey weight classification’ is performed by doing the ‘Honey weight regression’, then classifying the
predicted honey weight into the appropriate class of ‘poor year’, ‘moderate year’, or ‘good year’. The ‘Honey class
classification’ output is provided by the relevant ‘Classifier’ function. The lowest predictive errors are highlighted
in green.

The lowest predictive errors came from the use of Gradient Boosted Regression (GBR), with a
mean average error of +/− 10.3 kg for the weight, with this weight being in the correct class 82% of
the time.

The partial dependence plots for the 10 features with the highest feature importance from the
full feature input model are shown in Figure 6. These plots show that the model predictions have the
highest dependence on the mean maximum temperature for October–January (MaT4), with mean
maximum temperatures below 27 ◦C having a strong positive relationship and mean maximum
temperatures above 27 ◦C having a negative relationship. There are also strong relationships with
Gross Primary Production from the 11 months preceding the flowering period (GPP11), with low GPP
associated with lower honey production, and a higher evapotranspiration for January (ET1) having a
positive relationship with higher honey production.
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Figure 6. Partial dependence plots for 10 most important features (Gradient Boosted Regression).
Refer to Table 4 for the feature acronym definitions. (a) Average maximum temperature for October
to January (b) evapotranspiration for January (c) Gross Primary Productivity from March to January
(d) Net Photosynthesis For March to January (e) Solar Radiation for January (f) Total Potential
Evapotranspiration For August to January (g) rainfall from December to January (h) average maximum
temperature in January (i) maximum Enhanced Vegetation Index from December to January (j) rainfall
from August to January.



Agriculture 2020, 10, 118 11 of 17

In order to determine whether the dimensionality of the input features could be reduced without
compromising the predictive accuracy of our models, the GBR function was run multiple times with
fewer input features for each run. The selection of input features for each run was on the basis of the
highest feature importance from the preceding model. Table 6 shows the VIs and predictive errors for
this process. The MaT4 feature is clearly the most important input, with a VI of 37.7% even when all
115 features are used in the regression modelling. This is followed by ET1 and GPP, both at below
10% when all feature inputs are used. The columns highlighted in green show the models with the
lowest error, by class (five input features) and by weight (two input features). These reduced input
feature models both have slightly higher honey weight prediction errors than the full feature model
(increased error of 0.52 kg versus a honey harvest range of 0.0 kg to 71.0 kg in the training and testing
datasets). If this simplified approach were to be applied to larger datasets for the prediction of honey
harvest weight, a significantly smaller number of feature inputs can be used, with a minimal reduction
in predictive accuracy, reducing the size of the multidimensional dataset required.

Table 6. Gradient Boosted Regression errors and feature importance (import.) for differing number of
input features.

# Features All 10 8 6 5 4 3 2 1
Honey weight 10.33 kg 11.75 kg 9.56 kg 12.87 kg 10.85 kg 11.61 kg 10.91% 10.42 kg 11.72 kg
Honey class.

(1–3) 17% 17% 17% 25% 8% 17% 17% 17% 25%

Honey class.
(1–2) 0% 0% 0% 0% 0% 0% 0% 0% 0%

MaT4 import. 37.7% 30.7% 31.7% 45.7% 48.9% 56.8% 57.0% 63.2% 100%
ET1 import. 7.9% 18.6% 15.4% 25.0% 26.3% 29.3% 31.0% 36.8%

GPP11 import. 5.9% 11.3% 14.4% 10.0% 11.1% 8.4% 12.0%
NSP11 import. 5.7% 9.8% 12.5% 7.5% 7.3% 5.5%
SRad1 import. 4.0% 8.0% 8.8% 6.0% 6.5%
PET6 import. 3.7% 6.2% 6.6% 5.8%

R2 import. 3.7% 5.4% 6.1%
MaT1 import. 3.2% 4.6% 4.6%

EVIMx2 import. 2.8% 3.9%
R6 import. 2.7% 1.6%

The models with the lowest errors are highlighted in green. Gray cells are where the input features were not used in
the classification algorithm.

The ‘Honey class. (1–2)’ row in Table 6 is calculated by classifying the predicted honey weight
as either ‘good year’ or ‘below good year’, based on the high degree of clustering found with key
weather and satellite inputs for ‘good years’ by Campbell and Fearns [9]. This tight clustering for
‘good years’, and the 0% error in the predictive regression classification, means that for this dataset
the ‘good year’ prediction is both an accurate and a robust model. While this cannot assist apiarists
with preparation for ‘poor years’, when their bees can sometimes starve due to the lack of nectar,
the apiarists can prepare for a ‘good year’ in advance and therefore increase the honey production,
compared with being unprepared for a ‘good year’ and having insufficient hives or other equipment
to facilitate efficient use of the abundant resource.

Although the predictive regression model developed solely from the MaT4 and ET1 features has a
relatively low error and is shown to be quite robust at predicting harvests that are ‘good years’, both
input features require data from the month immediately preceding the honey flow. If the predictive
model developed here was used operationally by beekeepers to adaptively manage their beehives, this
timing of the key input data would limit the time available for apiarists to prepare for a ‘good year’. To
determine whether a predictive model could be generated with a longer lead time into the honey flow,
mean maximum temperatures for the individual months from October to January were also tested
in the GBR, as well as combinations of these months. The VIs from this process are summarised in
Table 7. While the original MaT4 and ET1 features retained a high importance, MaT3 (mean maximum
temperature for November) was also assessed as a key feature input, based on a visual assessment of
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the clustering of each feature versus honey harvest weight (see Figure 7). While the model does not
produce the lowest errors, it is nonetheless a reliable predictor (particularly for ‘good years’ versus
non-good years). The lower accuracy of the prediction is offset by the lead time to the honey flow; with
honey flow generally starting in late January to early February [32], having a strong indicator of an
upcoming good harvest by the end of November gives apiarists approximately two months to prepare
for the predicted conditions.

Table 7. Gradient Boosted Regression errors and the feature importance of mean temperatures 1–4
months before flowering and evapotranspiration 1 month before flowering.

# Features 10 8 6 4 3 MaT3 + ET1 MaT3
Honey weight 10.09 kg 10.34 kg 9.64 kg 11.16 kg 10.44 kg 8.92 kg 11.72 kg

Honey class. (1–3) 17% 25% 17% 25% 17% 17% 25%
Honey class. (1–2) 0% 0% 0% 0% 0% 0% 0%

ET1 import. 28.3% 28.3% 28.4% 35.1% 36.8% 38.1%
MaT 1–4 import. 24.5% 35.1% 33.8% 17.1% 38.3%
MaT 2–3 import. 24.1% 13.9% 16.9% 37.5% 24.9%
MaT 2 import. 5.7% 8.2% 8.9% 10.4%

MaT 3–4 import. 3.2% 3.4% 3.2%
MaT 1 import. 8.9% 8.8% 8.9%

MaT 2–4 import. 1.2% 1.8%
MaT 1–2 import. 3.6% 0.6%
MaT 3 import. 0.4% 61.9% 100%
MaT 4 import. 0.2%

The models with the lowest errors are highlighted in green. Gray cells are where the input features were not used in
the classification algorithm.

Agriculture 2020, 10, x FOR PEER REVIEW 12 of 17 

Agriculture 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/agriculture 

process are summarised in Table 7. While the original MaT4 and ET1 features retained a high 
importance, MaT3 (mean maximum temperature for November) was also assessed as a key feature 
input, based on a visual assessment of the clustering of each feature versus honey harvest weight (see 
Figure 7). While the model does not produce the lowest errors, it is nonetheless a reliable predictor 
(particularly for ‘good years’ versus non-good years). The lower accuracy of the prediction is offset 
by the lead time to the honey flow; with honey flow generally starting in late January to early 
February [32], having a strong indicator of an upcoming good harvest by the end of November gives 
apiarists approximately two months to prepare for the predicted conditions. 

Table 7. Gradient Boosted Regression errors and the feature importance of mean temperatures 1–4 
months before flowering and evapotranspiration 1 month before flowering.  

# Features 10 8 6 4 3 MaT3 + ET1 MaT3 
Honey weight 10.09 kg 10.34 kg 9.64 kg 11.16 kg 10.44 kg 8.92 kg 11.72 kg 

Honey class. (1–3) 17% 25% 17% 25% 17% 17% 25% 
Honey class. (1–2) 0% 0% 0% 0% 0% 0% 0% 

ET1 import. 28.3% 28.3% 28.4% 35.1% 36.8% 38.1%  
MaT 1–4 import. 24.5% 35.1% 33.8% 17.1% 38.3%   
MaT 2–3 import. 24.1% 13.9% 16.9% 37.5% 24.9%   

MaT 2 import. 5.7% 8.2% 8.9% 10.4%    
MaT 3–4 import. 3.2% 3.4% 3.2%     

MaT 1 import. 8.9% 8.8% 8.9%     
MaT 2–4 import. 1.2% 1.8%      
MaT 1–2 import. 3.6% 0.6%      

MaT 3 import. 0.4%     61.9% 100% 
MaT 4 import. 0.2%       

The models with the lowest errors are highlighted in green. Gray cells are where the input features were not 
used in the classification algorithm  

 
Figure 7. Mean monthly maximum temperature for November (MaT3) versus honey harvest 
weight. 

3. Discussion 

From the regression tree analysis performed in this study, there are a range of different factors 
that influence the honey harvest of marri trees and the timeframe of some of these factors (e.g., Gross 
Primary Productivity) can be as much as a year before the honey flow starts. Despite the range of 
available input variables that we explored, we found that the inputs to the predictive model can be 
reduced significantly with a minimal reduction in the accuracy of the predictive model. The mean 

Figure 7. Mean monthly maximum temperature for November (MaT3) versus honey harvest weight.

3. Discussion

From the regression tree analysis performed in this study, there are a range of different factors
that influence the honey harvest of marri trees and the timeframe of some of these factors (e.g., Gross
Primary Productivity) can be as much as a year before the honey flow starts. Despite the range of
available input variables that we explored, we found that the inputs to the predictive model can be
reduced significantly with a minimal reduction in the accuracy of the predictive model. The mean
maximum temperature for the few months preceding honey flow (November to January) and the
evapotranspiration in the month before honey flow (January) were found to describe the majority of
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the variability in honey harvest weight almost as accurately as the full multidimensional dataset of
115 input features.

The potential limitations in the accuracy of the weather station data available from BOM, due to
the sparsity of stations across the extent of marri trees versus the spatial variability of the observations,
may mean that some relationships between marri honey production and weather may not be fully
captured in the existing database. The sparse nature of rainfall stations compared to the localised
nature of summer rainfall events means that the influence of rainfall in particular may have been poorly
characterised in our input dataset. Unfortunately, due to this sparsity of rainfall stations, excluding
apiary sites from the database that have temperature stations more than 10 km away and/or rainfall
stations more than 2 km away would result in only one apiary site in the database with honey harvests
from two of the study years. This is insufficient data for the development of a predictive model,
particularly as both of these years are ‘good years’ (>40 kg of marri honey per hive).

Rainfall immediately preceding and during the flowering period is one of the key factors in harvest
quality (see Figure 8), with heavy summer rainfall events after flowering commences actually knocking
stamen, and sometimes flowers, from the trees [40]. This presents an issue with the development of a
predictive model as, even with good conditions in the lead up to the peak flowering period, a localised
storm may downgrade a prospective harvest from a ‘good year’ to a ‘moderate year’ or even a ‘poor
year’ in a matter of hours.
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from Campbell and Fearns [9]).

Such a localised storm may have been the cause of the quality of some of the ‘moderate year’
harvests in the Perth Hills in 2015 being incorrectly classified as ‘good years’ by the predictive model;
the November mean maximum temperature was within the range for a good harvest that season, but
three of the eight apiary sites only yielded a harvest that was a ‘moderate year’. Rainfall for all of the
apiary sites was below 40 mm for February (in the range 18.6–30.0 mm). The rainfall radar image from
the main rainfall event at the start of the month, shown in Figure 9, contains localised patches of more
intense rainfall (up to 80 mm/hr) that are under 2 km across. The presence of one of these localised
higher intensity zones over an apiary site may well have increased the rainfall received by the site to
over 40 mm for the period, the upper limit for good harvests from the currently available data [9].
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With marri honey being the largest annual honey harvest in Western Australia [42], the highly
specific conditions required for a good harvest may be less likely to occur with the projected climate
models for the extent to which marri trees occur. The Regional Climate Model developed for southwest
Western Australia by Andrys and Kala [42] assessed projections of both mean and extreme weather
events over the period from 2030 to 2059 under a high greenhouse gas emissions scenario. Compared
with historic data from 1970 to 1999, mean maximum temperatures for spring and summer are projected
to increase by between 0.5–2.0 ◦C. With more than 80% of the ‘good years’ occurring in seasons where
the preceding November mean maximum temperature is less than 24.0 ◦C. As the November mean
maximum temperature for the Perth Hills region is already at 25.0 ◦C, the probability of this criteria for
a good harvest being met will likely decrease. In addition, while the projections for summer rainfall
vary considerably between models, the models all predict that the intensity of summer rainfall events
will increase, resulting in an increase in the probability of localised rainfall events of sufficient intensity
to reduce the harvest quality.

4. Conclusions

The development of a multidimensional database with 115 factors that may influence the honey
production of marri trees was subjected to a regression tree analysis. The GBR models achieved the
highest predictive accuracy when all features from the multi-dimensional dataset were used, with an
average error of +/− 10.33 kg for the weight, with the weight being in the correct class 82% of the time.
A similar level of predictive accuracy was achieved with a revised GBR model using the input features
with the five highest values of feature importance. This regression model was able to predict the honey
yield per hive with a mean average error (MAE) of 10.85 kg and classify the harvest into the correct
quality category with 92% accuracy.

Analysis of the predictive accuracy of GBRs with different input features highlighted that ‘good
years’ could be predicted robustly compared with ‘moderate years’ and ‘poor years’ (100% accuracy
with only one or two input features in the models). With mean maximum temperature in the months
leading up to the marri honey flow consistently rating among the highest importance values, testing
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the model with various combinations found that using the November mean maximum temperature
on as the only input feature into the GBR algorithm could predict the honey harvest weight per hive
to an MAE of 11.72 kg, classify it into the correct class with 75% accuracy and predict a ‘good year’,
versus other types of year, to 100% accuracy. With the honey flow typically starting in February, giving
apiarists a reliable predictor of a good season two months ahead of time will allow them to prepare
their equipment, including establishing new hives, before the flow starts to improve the production in
years with good honey harvests.

In an operational setting, the accuracy of the prediction models may be restricted by the availability
of weather data, with less than 13% of the extent of marri trees having a temperature station within
10 km. Intense localised summer rainfall events also have an important role to play in making the model
more widely applicable. Only 3.1% of the marri areas have a rainfall station within 2 km. Access to more
spatially accurate weather data may be able to improve the regression model’s predictive accuracy.

With cooler weather and lower summer rainfall required for good marri honey harvests, the
climate projections for southwest Western Australia indicate that good harvests are likely to become
rarer in the future, with mean maximum temperatures and the intensity of summer rainfall both
projected to increase.

While this study has been focused on honey production from a single species endemic to South
West Australia, the weather stations and satellite data used to develop the model, for example, the
Royal Netherlands Meteorological Institute (KNMI) Climate Explorer tool [43], have collected over
10 TB of weather data from multiple weather agencies around the world (including the BOM data
used for this study). The MODIS input feature data are freely available global datasets produced by
NASA. If these data are used in conjunction with honey harvest data from other species and/or regions,
predictive models could foreseeably be developed using the methodology employed for in study for
other honey harvests.
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